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Abstract Realistically representing the Arctic amplification in global climate models (GCMs) represents
a key to accurately predict the climate system's response to increasing anthropogenic forcings. We
examined the amplified Arctic warming over the past century simulated by 36 state‐of‐the‐art GCMs
against observation. We found a clear difference between the simulations and the observation in terms of
the evolution of the secular warming rates. The observed rates of the secular Arctic warming increase from
0.14 °C/10a in the early 1890s to 0.21 °C/10a in the mid‐2010s, while the GCMs show a negligible trend
to 0.35 °C/10a at the corresponding times. The overestimation of the secular warming rate in the GCMs
starts from the mid‐twentieth century and aggravates with time. Further analysis indicates that the
overestimation mainly comes from the exaggerated heating contribution from the Arctic sea ice melting.
This result implies that the future secular Arctic warming may have been over‐projected.

1. Introduction

The Arctic has experienced a rapid warming during the past decades (Huang et al., 2017). Along with such
fast‐increasing near surface air temperature (SAT), the Arctic climate has undergone tremendous changes,
such as Arctic wetting, reduction of Arctic sea ice thickness and coverage, decrease of snow cover extent and
duration, melting of Greenland ice sheet and thawing of permafrost (Box et al., 2019; Chadburn et al., 2017;
IPCC, 2013; van den Broeke et al., 2016). These changes also have thrown impacts on the local ecosystem
and the climate outside of the Arctic (Greene et al., 2008; Mori et al., 2019). For example, many studies indi-
cated that the loss of Arctic sea ice may lead to more frequent occurrence of extreme weather and climate at
boreal mid‐latitudes (Chen et al., 2016; Cohen et al., 2014; Mori et al., 2019; Screen et al., 2018).

The warming rate of the Arctic has been found to be more than twice as fast as the global average,
which is usually called as Arctic amplification (Chylek et al., 2009; Screen & Simmonds, 2010). As
one of the most significant and well‐established global warming signatures, the Arctic amplification
has gotten a lot of attention (Acosta Navarro et al., 2016; Cohen et al., 2014; Serreze & Barry, 2011).
The feedback effects associated with temperature, surface albedo, as well as water vapor and clouds
have been suggested for the amplified Arctic warming (Dai et al., 2019; Gao et al., 2019; Pithan &
Mauritsen, 2014; Praetorius et al., 2018). While a number of local and remote positive feedbacks contrib-
uted to the Arctic warming (Jeong et al., 2014; Screen et al., 2012; Winton, 2006), sea ice change has
been identified as one of the key players in the amplification (Dai et al., 2019; Screen & Simmonds,
2010). Given the importance of diminishing sea ice over the Arctic to global climate system, especially
the great concern of its impact on middle latitude extreme weather and climate (Mori et al., 2019;
Zhang et al., 2018), reliable future projections of climate change rely on the realistic representation of
the Arctic amplification in climate models.

The Arctic warming over the past century has been attributed to anthropogenic influence (Gillett et al., 2008;
Najafi et al., 2015). With the increase of the human emissions, anthropogenic influence will continue playing
a leading role in the future Arctic climate. Therefore, quantitatively examining the contribution of human
influence in the past Arctic warming will increase our understanding of the representation of the amplified
Arctic warming in climate models and improve our predictions of future climate change.

In the past, a linear trend analysis method was widely used to calculate the warming (e.g., Fyfe, von Salzen,
et al., 2013; IPCC, 2013). In reality, however, the rate of human emissions is time dependent and the climate
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system has significant internal variability on various temporal scales (IPCC, 2013). Thus, the response of
SAT to anthropogenic forcings should be varying with time (Duan et al., 2019; Ji et al., 2014; Wu et al.,
2007). As the linear trend could not appropriately represent such nonlinear response of SAT to anthropo-
genic forcings, a method called ensemble empirical mode decomposition (EEMD) was suggested for such
nonlinear analysis (Wu & Huang, 2009). In this study, we focus on the secular Arctic warming associated
with human influence with the method of EEMD by comparing an observational data set and simulations
from 36 Coupled Model Intercomparison Project Phase 5 (CMIP5) GCMs (Taylor et al., 2012).

The remainder of this manuscript is organized as follows: section 2 introduces the data and method. The
results are presented in section 3. In section 4, we give the conclusion and discussion.

2. Data and Method

In this work, the Arctic is defined as a geographic domain poleward of 60°N, and our research focuses on the
annual Arctic SAT, which is calculated from December of a year to the following November. Considering
detectable anthropogenic influence on the northern middle‐high latitudes since the late nineteenth century
(Duan et al., 2019) and inclusion of the latest change of the Arctic SAT, such as record‐breaking Arctic
warming during the past several years (Richter‐Menge et al., 2017), 1880–2017 is chosen here as the study
period. The observational data set HadCRUT4.6 (hereafter, HadCRUT) is used in this study, which is an
updated observed monthly global temperature anomaly on a 5° grid relative to the reference period
1961–1990. HadCRUT is composed of direct observations from land component CRUTEM4 and marine
component HadSST3. The CRUTEM4 is the observed land surface air temperature data set provided by
the Climatic Research Unit at the University of East Anglia, while the HadSST3 is the observed sea surface
temperature (SST) data set from the Met Office Hadley Centre (Morice et al., 2012). Relative to its previous
version, HadCRUT has greatly improved observational coverage in the Arctic (Morice et al., 2012). However,
the observation still is relatively limited in the Arctic, especially in the early times.

Interpolation is often used to fill the gaps in coverage in the observation data sets. Cowtan and Way (2014)
used the optimal interpolation to produce a long‐term global coverage of SAT based on HadCRUT4.
However, interpolated Arctic SAT with observations at middle and low latitudes may also include new bias.
Huang et al. (2017) utilized the method Data INterpolating Empirical Orthogonal Functions reconstructed a
full coverage of Arctic SAT by incorporating International Arctic Buoy Programme/Polar Exchange at the
Sea Surface Arctic observations into the global SAT of National Oceanic and Atmospheric Administration.
These researches indicated that incomplete and time‐varying observational coverage in the Arctic may result
in a little cooling bias in the recent decades (Cowtan&Way, 2014; Huang et al., 2017; Simmons & Poli, 2015).
However, interpolated data set by Cowtan and Way (2014) is only updated to 2014, and the reconstructed
data set by Huang et al. (2017) only covers 1900–2014. Furthermore, we investigate the effects of incomplete
observational coverage on the secular Arctic warming that we focus on in this work by comparing the results
from 36 CMIP5 GCMs' simulations with full coverage and with observational coverage (here, the coverage of
HadCRUT). Our result shows that the incomplete observational coverage has a statistically insignificant
effect on the secular Arctic warming (the details seen in section 3.3). Therefore, we use HadCRUT as the
observation in our work. In addition, 100 realizations from the HadCRUT were utilized to examine the
observed Arctic SAT variation and its uncertainties. These realizations were produced by blending 100
SAT members of the CRUTEM4 and 100 SST members of the HadSST3 on a one‐to‐one basis. These mem-
bers were generated by combining the observations with the corresponding errors arising from measure-
ment biases and applied bias adjustments.

The 36 CMIP5 GCMs' monthly SATs (Supporting Information Table S1) come from experiments forced with
the historical forcings and RCP8.5 (Representative Concentration Pathway [RCP]) scenario (van Vuuren
et al., 2011). Most of the historical simulations of the CMIP5 GCMs ended in 2005. To be aligned with the
observation in terms of time period, historical simulations were extended to 2017, in which RCP8.5 scenario
projections were used after 2005 during which period the world's greenhouse gas (GHG) emissions are closer
to the RCP8.5 than the other RCP scenarios (le Quéré et al., 2016; van Vuuren et al., 2011). In addition, the
global mean SAT and Arctic sea ice extent (north of 70°N) in the period of 1880–2017 are also analyzed to
identify their relationship with the Arctic SAT. In order to investigate the contribution of natural forcings
and GHG forcings to the evolution of Arctic SAT over the past century, we also employed additional
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forcing simulations from 17 out of the above 36 CMIP5 GCMs, which
include experiments driven with the historical forcings (His), only natural
forcings (Nat), and only GHG forcings (GHG; Table S1). Due to the fact
that most simulations in Nat and GHG experiments ended in 2005, all
of these simulations were only analyzed for the period of 1880–2005.
Before the analysis, all the simulated monthly SATs were firstly converted
to anomalies relative to 1961–1990 reference period as same as for the
HadCRUT, and then the data were regridded to the observational grids
andmasked by the observational coverage to be consistent with the spatial
and temporal coverage of the observation (HadCRUT). The Arctic SAT
series is calculated with available gridded observations with area weight.

EEMD is developed from EMD (empirical mode decomposition) and can
decompose data time series into intrinsic mode functions (IMFs) and a
residual (Wu et al., 2011). IMFs and the residual are manifested with oscil-
latory components on various time scales and a nonlinear, secular trend
(hereafter ST), respectively, and they may reflect specific physical pro-
cesses (Wu et al., 2007; Wu et al., 2011; Wu & Huang, 2009). In contrast
to EMD, EEMD defines the decomposed components as the mean of an
ensemble of decompositions, each of which is consisted of the data time
series plus a white noise of finite amplitude. This process can rule out
the influence of noise in the process of decomposition, which may result
in significantly different decomposition in EMD analysis (Ji et al., 2014;
Wu & Huang, 2009). Comparing to other methods, EEMD can extract
the trend from data series, particularly from nonlinear, non‐stationary
data series without requiring any predetermined basis function. This
method emphasizes the adaptiveness and temporal locality of the decom-
position, implying that the decomposition will not change with the addi-
tion of new data (Wu et al., 2007; Wu et al., 2011). This property of EEMD
is consistent with the reality that physical processes occurred in specific
time intervals should not alter when the time series is extended with
new data (Wu et al., 2007;Wu et al., 2011). In EEMD analysis, 0.2 standard
deviations of the annual Arctic SAT series over 1880–2017 was used as the
noise and 1,000 members were produced for each component. The ensem-
ble mean (EM) of these 1,000 members was the decomposed component
of EEMD. Consequently, six IMFs and one residual are obtained. Here,
we adopted EEMD to extract the significant components of the Arctic
SAT and to examine the performance of CMIP5 GCMs in simulating the
anthropogenic contribution to the secular Arctic warming.

3. Results
3.1. EEMD Analysis and Secular Trend of Arctic SAT

We decomposed the annual Arctic SAT series into six IMFs and a residual
with the method of EEMD (supporting information Figure S1). Following
the methods by Wu et al. (2007) and Wu et al. (2011) respectively, both
white noise and red noise significance tests consistently show that IMFs
on the multi‐decadal time scale (multi‐decadal variability [MDV]) and
the residual (ST), are statistically distinguishable from the

corresponding components of pure white noise and red noise (Figures S2 and S3). This means that these
two components most likely represent physically meaningful signals. In Figure S4, it is obvious that ST
represents the warming on the global scale, while MDV describes the multi‐decadal oscillation mainly
located in the North Atlantic Ocean. The sum of MDV and ST is defined, here, as a multi‐decadal trend
(MDT). As shown in Figures 1a and 1c, MDT can capture well the stepwise rise of the observed Arctic
SAT in the past century, while ST reasonably represents the nonlinear, secular trend of the observed Arctic

Figure 1. The annual Arctic SAT anomalies over 1880–2017 andMDT, ST of
the annual Arctic SAT based on ensemble empirical mode decomposition
analysis, for (a) the HadCRUT and (b) the CMIP5 global climate models
historical simulations. Gray curves represent 100 realizations from the
HadCRUT in (a) and the 36 CMIP5 global climate models' simulations in
(b), respectively; the black curves are the ensemble mean of HadCRUT
realizations; red thick dash and solid lines represent corresponding
simulated MDT and ST of CMIP5 GCMs, respectively. The multi‐decadal
variabilities and STs from (a) and (b) are collected in (c) separatelywith black
and red colors. SAT anomalies are relative to 1961–1990. CMIP5 = Coupled
Model Intercomparison Project Phase 5; MDT = multi‐decadal trend;
SAT = surface air temperature; ST = secular trend.
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warming. Similarly, MDT and ST also can capture the major variabilities
of the simulated Arctic SAT from the CMIP5 models (Figures 1b and 1c).

In climate analysis, multi‐model average of simulations from a large num-
ber of climate models can be used to represent the signal of external for-
cings due to internal variability effectively being averaged out (Dai et al.,
2019; Frankcombe et al., 2018). Here, we calculate the EM of 17 out of
the above 36 CMIP5 GCMs for forcing experiments His, Nat, and GHG,
respectively. From Figure 2a, it is very clear that the anthropogenic for-
cings almost dictate ST of the Arctic SAT during the past century, while
the natural forcing has little contribution. In respect of MDV, our analysis
shows that both natural and anthropogenic forcings have a great influence
on the evolution of MDV in the past century (Figure 2b). On the other
hand, previous work (Fyfe, von Salzen, et al., 2013; Yamanouchi, 2011)
indicated that internal variability also contributes to the multi‐decadal
variations of the Arctic SAT, such as the warming in the 1940s. This is also
evident in Figure 1c, which shows that the combination of natural and
anthropogenic forcings cannot totally explain the amplitude of the Arctic
warming and cooling in the 1920s–1940s and 1940s–1960s respectively.
Therefore, it can be concluded that the ST of the Arctic SAT almost exclu-
sively stems from anthropogenic forcings, which most likely dominates
the long‐term warming in the Arctic, while MDV can be considered the
resultant of internal variability and the natural forcings as well as
anthropogenic forcings.

3.2. Contribution of ST and MDV to the Arctic Warming

The changes of MDT, MDV, and ST were examined for the past century.
As shown in Figure 3a, the Arctic SAT (MDT) has increase 2.90 ± 0.11 °C
and 2.55 ± 0.78 °C (±1σ means one standard deviation) in 1880–2017
respectively for HadCRUT and CMIP5 GCM simulations. During this

period, the ST has contributed 2.33 ± 0.14 °C to the rise of the Arctic SAT in the observation, and the simulated
ST shows a comparable contribution (2.26 ± 0.74 °C, Table S2) only with a slight cooling bias of −0.07 °C.
However, this goes with a large model spread, which indicates that the CMIP5 multi‐model EM works well
in simulating the anthropogenically induced secular warming over the past century, although large spread still
exists among these climate models. In addition, the observedMDV has contributed 0.57 ± 0.04 °C (about 20%)
to the Arctic warming (2.90 °C) in the period of 1880–2017. This is consistent with the above conclusion that
the ST dominates the long‐termwarming. However, the simulatedMDVhas only contributed 0.30 ± 0.34 °C to
the simulated Arctic warming of 1880–2017, approximately 12% (Table S2). The contribution of the MDV to
the Arctic warming is much lower in the EM of simulations than the observation, which may be partly due
to exclusion of internal variability in the multi‐model mean.

As shown in Figures 1c and S5, the evolution of the observed Arctic SAT in the past century can be divided
into three periods: a warming in 1880–1940, followed by a cooling from 1941 to 1967, and a subsequently
rapid warming in 1968–2017. For the EM of CMIP5 GCMs' simulations considered, the cooling is too weak
and the recent warming starts 4 years earlier than the observation, from which the simulated MDT becomes
positive. Most notably, however, the CMIP5 multi‐model EM reproduces the most recent Arctic warming
very well, closely following the evolution of the Arctic SAT in 1968–2017 (Figure 1c). The simulated MDT
shows a warming of 2.08 ± 0.66 °C during 1968–2017 with a slight bias of −0.08 °C for EM relative to the
observed MDT change (2.16 ± 0.03 °C; Figure 3b). By contrast, the simulated ST has a warming of
1.41 ± 0.46 °C in this period, which is larger than that of the observation (0.95 ± 0.03 °C). The difference
between them is statistically significant at the 0.05 level. Further, most models (27 among the 36 CMIP5
models) produce larger ST changes during the period 1968–2017 than all of the 100 realizations of
HadCRUT. Therefore, although the CMIP5 multi‐model EM can reproduce well the Arctic temperature ris-
ing in 1968–2017, it significantly overestimates the anthropogenically induced secular warming. In respect of
MDV, the observedMDV has contributed 1.21 ± 0.04 °C (56%) to the warming (2.16 ± 0.03 °C) in 1968–2017.

Figure 2. The ensemble mean of STs and MDVs from the 17 CMIP5 GCMs'
simulations over 1880‐2005, respectively for the historical, only Natural
forcings, only greenhouse gasses forcing experiments. CMIP5 = Coupled
Model Intercomparison Project Phase 5; MDT = multi‐decadal trend;
ST = secular trend.
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By contrast, the simulated MDV has contributed 0.67 ± 0.39 °C warming,
nearly one‐third (32%), to the EM of the simulated Arctic warming in this
period. The contribution of MDV to the Arctic warming is substantially
smaller in the CMIP5 multi‐model EM than in the observation. This also
may be partly due to removal of internal variability from the multi‐
model EM.

3.3. Overestimate of Arctic Warming Rates in the CMIP5 Models

From the above analysis, we can conclude that the CMIP5 multi‐model
EM can reproduce well the anthropogenically induced secular Arctic
warming of 1880–2017; however, it significantly overestimates the secular
warming in the recent warming period (1968–2017). This may arise from
the nonlinear response of the secular Arctic warming to the anthropo-
genic forcings, namely, that the ST varies with time. Therefore, we further
examined the evolution of the ST during the period of 1880–2017. As
shown in Figure 4a, the rate of the secular warming increases in the obser-
vation from 0.14 °C/10a in the early 1890s to 0.21 °C/10a in themid‐2010s.
The simulated secular warming rate also grows but faster compared to
that of the observation, as indicated by a negligible warming rate in the
early 1890s and a relatively high warming rate of 0.35 °C/10a in the
mid‐2010s. Evidently, the mid‐twentieth century appears to be a turning
point for CMIP5 GCMs before which the CMIP5 multi‐model EM under-
estimates the anthropogenic secular warming rate. After this time point,
the simulated warming rate exceeds that of the observation and the dis-
parity grows with the time, reaching 0.14 °C/10a in the mid‐2010s.

The above analysis is based on SATs from the observation and the CMIP5
model simulations with observational coverage in the Arctic region. Both
the incomplete data coverage in the Arctic region and SAT instead of SST
used over open oceansmay affect the calculation of the Arctic temperature
(Cowtan et al., 2015; Huang et al., 2017). To estimate the impact of the
incomplete coverage on the Arctic temperature change, we performed
the same analysis based on the 36 CMIP5 GCMs' simulations with full cov-
erage in the Arctic region. Figures S6 and S7 show that full coverage in the
Arctic slightly increasesMDT, ST, andMDV of the Arctic warming in both
1880–2017 and 1968–2017 and slightly enhances the secular warming rate
at present relative to the incomplete coverage. However, their differences

Figure 3. The warming respectively represented by the changes ofMDT, ST,
and MDV in the periods of (a) 1880–2017 and (b) 1968–2017. The blue and
red columns represent contributions from the changes of MDT, ST, and
MDV respectively for the HadCRUT and 36 CMIP5 GCMs' simulations. The
vertical bars show the range of MDT, ST, and MDV changes respectively
from 100 realizations of HadCRUT and 36 CMIP5 GCMs' simulations.
CMIP5 = Coupled Model Intercomparison Project Phase 5; MDT = multi‐
decadal trend; MDV = multi‐decadal variability; ST, secular trend.

Figure 4. The rates of (a) the Arctic secular warming and (b) the departure of Arctic SAT ST from the global SAT ST dur-
ing 1880–2017, estimated with their 7‐point moving linear trend. The black and red solid lines represent ensemblemean of
(a) the secular warming rates and (b) the rates of the departure for the 100 realizations of the HadCRUT and 36 CMIP5
GCMs' simulations, respectively. The black (red) dash lines denote their 10th–90th percentiles for 100 HadCRUT reali-
zations and 36 CMIP5 GCMs' simulations, respectively. CMIP5 = Coupled Model Intercomparison Project Phase 5.
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are not statistically significant at the 0.10 level. In addition, similar results were also obtained for the simu-
lated ST in 1880–2017 by using full coverage data in the Arctic and SST instead of SAT over open oceans
(Figure S8). This demonstrates the robustness of the conclusion that anthropogenically induced secular
warming has been overestimated by the CMIP5 GCMs during themost recent warming period, and the over-
estimation is aggravated with time.

3.4. Overestimate of the Contribution of Sea Ice Loss

Recently, Dai et al. (2019) indicated that the Arctic sea ice loss plays a central role in Arctic amplification.
Without the Arctic sea ice melting, the evolution of the Arctic SAT is similar to that of the global mean
SAT (seefigure 6 inDai et al., 2019) under increasing CO2. Thus, the additional warming of the Arctic relative
to the global mean can be used to approximately represent the contribution from Arctic amplification
induced by the Arctic sea ice loss. As shown in Figure S9, the departures in the ST of the Arctic SAT relative
to the global mean SAT grow with time in both the observation (HadCRUT) and 36 CMIP5 model EM.
Likewise, the simulated ST of the annual Arctic sea ice extent also gradually rises in the past century.
Further analysis shows that the rate of the additional Arctic warming relative to the global mean decreases
slightly in the observation from 0.11 °C/10a in the mid‐1890s to 0.09 °C/10a in the mid‐2010s (Figure 4b).
In contrast, the trend rises in the 36 CMIP5 model EM from a rate close to zero to 0.20 °C/10a at the corre-
sponding times. Furthermore, the trend from the CMIP5 GCMs EM exceeds that of the observation since
themid‐twentieth century. It is clear in Figures 4a and 4b that the overestimation of the secular Arctic warm-
ing rate during the recent decades in the CMIP5GCMsmainly comes from the exaggerated contribution from
the Arctic sea ice loss, although it can also be partly due to the overestimated global warming rate in the
CMIP5models (Figure S10). A similar conclusion is also obtained for the 36 CMIP5model EMwith complete
coverage in the Arctic region and SST instead of SAT used in the open water area (Figures S8 and S11).
Therefore, the above conclusion is robust as it is not affected by the data coverage. However, given the limited
length of the observed Arctic sea ice, it is hard to figure out whether the overestimation of the secular Arctic
warming rate mainly comes from the inaccurately simulated change of Arctic sea ice extent or effects of asso-
ciated physical process under the increasing anthropogenic emissions.

4. Conclusion and Discussion

In this work, we found that the response of the Arctic SAT to the time‐varying anthropogenic forcings is non-
linear, mainly manifested with a nonlinear secular warming trend on the long‐term time scale, based on the
observational data set HadCRUT and the 36 CMIP5 GCMs' simulations. The rate of this secular warming is
intensified with time both in the observation and in the climate model simulations. Our results also indicate
that CMIP5 GCMs EM overestimates the anthropogenically induced secular warming rate since the mid‐
twentieth century against the observation and the overestimation aggravates with time, although the
GCMs EM can simulate well the increase of the Arctic temperature over 1880–2017. This finding implies that
the future Arctic warming could have been over‐projected by the CMIP5 models. Further analysis indicates
that the exaggerated heating contribution from the Arctic sea ice melting in GCMs may have contributed to
this overestimation. Given the important influence of Arctic climate change on the local and global environ-
ments as well as ecosystem (Cohen et al., 2014; Greene et al., 2008; Hanna et al., 2013), realistic representa-
tion of the nonlinear response of Arctic warming to the anthropogenic forcings is considered a key to the
reliable future climate projection. In particular, accurately simulating the response of Arctic SAT to melting
sea ice is the key to precisely project the future Arctic temperature.

However, there are also other local and remote feedbacks such as cloud, water vapor transport, and so forth
(Hao et al., 2019; Jeong et al., 2014; Pithan & Mauritsen, 2014; Praetorius et al., 2018; Screen et al., 2012;
Winton, 2006). These feedbacks may also play important role in the Arctic warming and need to be studied
either. It is also noticeable that large spread still exists among the CMIP5 GCMs' simulations. Although the
CMIP5 GCMs EM overestimate the secular warming rate in recent decades, the observed secular warming
rate still locates in the range of those of CMIP5 GCMs' simulations and is close to the lower end
(Figure 4a). In addition, some research (Fyfe, Gillett, & Zwiers, 2013) pointed out that the overestimation
of the global warming in the early of 21st century by CMIP5 models may be partly due to errors in the pre-
scribed external forcings. This may also affect the CMIP5 GCMs' simulations.
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