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Abstract 

Tonle Sap Lake (TSL) is one of the world’s most productive lacustrine ecosystems, driven by the 

Mekong River’s seasonal flood pulse. This flood pulse and its long-term dynamics under the 

Mekong River basin’s fast socio-economic development and climate change need to be identified 

and understood. However, existing studies fall short of sufficient time coverage or concentrate 

only on changes in water level (WL) that is only one of the critical flood pulse parameters 

influencing the flood pulse ecosystem productivity. Considering the rapidly changing 

hydroclimatic conditions in the Mekong basin, it is crucial to systematically analyze the changes 

in multiple key flood pulse parameters. Here, we aim to do that by using observed WL data for 

1960 – 2019 accompanied with several parameters derived from a Digital Bathymetry Model. 

Results show significant declines of WL and inundation area from the late 1990s in the dry 
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season and for the whole year, on top of increased subdecadal variability. Decreasing 

(increasing) probabilities of high (low) inundation area for 2000 – 2019 have been found, in 

comparison to the return period of inundation area for 1986 – 2000 (1960 – 1986). The mean 

seasonal cycle of daily WL in dry (wet) season for 2000 – 2019, compared to that for 1986 – 

2000, has shifted by 10 (5) days. Significant correlations and coherence changes between the WL 

and large-scale circulations (i.e., El Niño-Southern Oscillation [ENSO], Pacific Decadal 

Oscillation [PDO], and Indian Ocean Dipole [IOD]), indicate that the atmospheric circulations 

could have influenced the flood pulse in different time scales. Also, the changes in discharge at 

the Mekong mainstream suggest that anthropogenic drivers, such as hydropower operations, may 

have impacted the high water levels in the lake. Overall, our results indicate a declining flood 

pulse since the late 1990s.  

 

Keywords: Water level, Inundation area, Climate change, Cambodia, Mekong 

 

1. INTRODUCTION 

Lakes provide freshwater resources and myriad ecosystem services. As a consequence of 

anthropogenic activities and climate change, however, lakes are frequently impacted, affecting 

the livelihood of local residents and communities (Junk, Bayley, & Sparks, 1989; Lamberts, 

2006; Tang, 2020). Cambodia’s Tonle Sap Lake (TSL), the largest lake in Southeast Asia, is one 

of the world’s most productive lake-wetland systems (Arias, Holtgrieve, Ngor, Dang, & Piman, 

2019; Campbell, Poole, Giesen, & Valbo-Jorgensen, 2006; MRC, 2010a; Poulsen, Ouch, 

Sintavong, Ubolratana, & Nguyen, 2002; Ziv, Baran, Nam, Rodriguez-Iturbe, & Levin, 2012), 

supporting about 1.7 million people (Keskinen, 2006; Salmivaara, Kummu, Varis, & Keskinen, 

2016). The TSL has a unique ‘flood pulse’ (Arias, Cochrane, Norton, Killeen, & Khon, 2013; 

Junk et al., 1989), characterized by a seasonal rhythm of water level fluctuation between wet and 

dry seasons and resulting in a seasonally inundated floodplain (Arias et al., 2012; Frappart et al., 

2006; MRC, 2010a).  
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This periodic and extensive floodplain provides unique habitats for many seasonally migratory 

fish species with replenishment of nutrients from the Mekong River (Arias et al., 2019; Campbell 

et al., 2006; MRC, 2010a; Poulsen et al., 2002; Ziv et al., 2012). The TSL also offers provisions 

of freshwater resources (Chadwick, Juntopas, & Sithirith, 2008; Kummu, Sarkkula, Koponen, & 

Nikula, 2006) and maintains crucial habitats for many endangered species (Campbell et al., 

2006; Uk et al., 2018). In addition, the lake’s flood regime influences land cover change by, for 

instance, delineating the area of cropland in the floodplain and affecting the forest cover change 

(Arias et al., 2012; Halls et al., 2013; Salmivaara et al., 2016). Henceforth, TSL is the “heart of 

the lower Mekong”, as the regional socio-economic development and ecosystem sustainability 

ultimately depend on the “flood pulse” (Junk et al., 1989; Keskinen, 2006; Lamberts, 2006; 

Salmivaara et al., 2016; Uk et al., 2018) (Figure 1).  

 

Climate change and socio-economic development in the Mekong River Basin (MRB) have posed 

a soaring pressure on water resources in the past decades (Grumbine & Xu, 2011; Pokhrel et al., 

2018; Uk et al., 2018; Wang, Feng, Liu, Hou, & Chen, 2020), through rapid development of 

hydropower dams with large reservoirs (Grumbine & Xu, 2011; Hecht, Lacombe, Arias, Dang, 

& Piman, 2019; Yun et al., 2020), irrigation (Floch & Molle, 2009; Kummu, 2009; Pokhrel et al., 

2018), deforestation (Davis, Yu, Rulli, Pichdara, & D’Odorico, 2015; Hansen et al., 2013; Zeng 

et al., 2018), urbanization and cropland extension (Arias et al., 2019; Senevirathne, Mony, 

Samarakoon, & Kumar Hazarika, 2010; Song, Lim, Meas, & Mao, 2011). Strongly dominated by 

the Mekong mainstream flow, the flood pulse of the TSL would be influenced by any plausible 

changes to the mainstream flow (Kummu & Sarkkula, 2008; Kummu et al., 2014), resulting in 

destructions of the contiguous floodplain, inhibition of fish production, and thus the livelihood 

for the floodplain inhabitants (Keskinen, 2006; Lin & Qi, 2017; MRC, 2010b). Therefore, an 

adequate understanding of changes in the flood pulse is crucial for local and regional water 

management and sustainable development.  

 

[Insert Figure 1] 
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Many studies have investigated flood regime changes in the TSL, including water level (Frappart 

et al., 2006), water volume (Frappart et al., 2018; Kummu & Sarkkula, 2008; Siev, Paringit, 

Yoshimura, & Hul, 2016), flood extent (Arias et al., 2012; Dang, Cochrane, Arias, Van, & de 

Vries, 2016; Ji, Li, Luo, & He, 2018), and turbidity (Wang et al., 2020), by various means: 

remote sensing (e.g., MODIS, GRACE, RADARSAT, Landsat, ALOS/PALSAR (Dang et al., 

2016; Ji et al., 2018; Sakamoto et al., 2007; Tangdamrongsub, Ditmar, Steele-Dunne, Gunter, & 

Sutanudjaja, 2016; Wang et al., 2020), Digital Bathymetry Model, and ground observed water 

level data (Arias et al., 2013; Kummu & Sarkkula, 2008). In general, for the flood regime of the 

TSL, these studies agree on an overall decreasing trend from 2000 in terms of water level (in the 

wet and dry seasons) (Ji et al., 2018; Lin & Qi, 2017) and inundation area (in the wet season) 

(Lin & Qi, 2017; Vichet et al., 2019).  

 

High-resolution remote sensing data have played an important role in studying the flood pulse. 

These studies, targeted on the recent three decades at the earliest, have fallen short of sufficient 

time coverage to analyze the long-term changes as well as consistency of data sources. Recent 

articles have examined the water level change over a longer time period (Cochrane, Arias, & 

Piman, 2014; Guan & Zheng, 2021), but this is only one of the key parameters impacting flood 

pulse ecosystem productivity (Junk et al., 1989). Given the importance of the lake’s flood pulse 

and potential changes to the lake caused by the climate and anthropogenic drivers in the MRB, 

more information is needed on the long-term changes of flood pulse’s key parameters (Arias et 

al., 2019). We provide here a systematic analysis of all key flood pulse parameters and their 

changes over the past 60 years, i.e., 1960 – 2019, and thus reveal the much-needed information 

on changes in the flood pulse system. This is essential in understanding the potential impacts of 

the flood regime changes on Tonle Sap’s ecosystem.  

 

2. MATERIALS AND METHODS 

2.1 Tonle Sap Lake 

Modulated by monsoon systems, the Mekong’s hydrology has distinct wet and dry season 

features (Chen, Chen, & Azorin-Molina, 2018; Delgado, Merz, & Apel, 2012; MRC, 2010b). 

Linking to the Mekong mainstream, the TSL is governed by the hydraulic gradient between the 
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mainstream and TSL, causing a reverse flow of Tonle Sap River in wet seasons (MRC, 2010a). 

The reverse flow from the Mekong into the TSL usually starts in May and ends in September 

(Kummu et al., 2014; MRC, 2019; Uk et al., 2018), contributing to more than 50% of the TSL’s 

annual volume change (Kummu et al., 2014). The lake’s water level ranges between ~1 and ~10 

meters above the mean sea level (m), driving the inundated floodplain fluctuating between 

~2,500 km2 and ~15,000 km2. The data and methods are described in detail as follows.  

 

2.2 Tonle Sap Lake water level and inundation area 

Daily water level data of Kompong Luong (WLKL at the lake), Prek Kdam (WLPK at the Tonle 

Sap River), and Phnom Penh port (WLPPP) (see Figure 1) were collected from the Mekong River 

Commission (http://www.mrcmekong.org/). WLKL was available from 01 January 1997 to 30 

September 2020, whereas WLPK and WLPPP were available from 01 January 1960 to 30 

September 2020. Since water levels in the TSL and Tonle Sap River are strongly correlated (cf. 

Arias et al. (2013) and Inomata and Fukami (2008)), we first used multiple polynomial 

regression to predict WLKL with WLPK and the difference between WLPK and WLPPP for the 

period 1997 – 2020 (see Eq. (1-2)), in which 80% of the data were used for training and the rest 

were for testing. When comparing the observations against modeled WLKL on the test set of data, 

the estimated time series showed a Nash-Sutcliffe efficiency of 0.97 and a Root-mean-square 

error of 0.47 m, indicating thus a good fit with the data (Figure 2). A complete series of daily 

WLKL was then estimated using multiple polynomial regression from 01 January 1960 to 30 

September 2020 (Figure S1). In this study, we focused on the hydrological year (1 May – 30 

April) and divided it to wet season (May – October) and dry season (November – April) to be 

consistent with the flood timing (Kummu & Sarkkula, 2008). 

 

 𝑊𝑊𝑊𝑊𝐾𝐾𝐾𝐾~ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃−𝑃𝑃𝐾𝐾 ,𝑊𝑊𝑊𝑊𝑃𝑃𝐾𝐾 ,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 3, 𝑑𝑑𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)                                                Eq. (1) 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃−𝑃𝑃𝐾𝐾 = 𝑊𝑊𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃 −𝑊𝑊𝑊𝑊𝑃𝑃𝐾𝐾                                                                                                  Eq. (2) 

 

[Insert Figure 2] 
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To estimate the daily inundation area and lake volume, we employed a Digital Bathymetry 

Model of the TSL using WLKL, following the method from Kummu & Sarkkula (2008) and 

Kummu et al. (2014), which has also been applied by Arias et al. (2013). Good agreements of 

water level and surface extent between this method and a MODerate resolution Imaging Sensor 

(MODIS)-based estimation demonstrate the accuracy of this method (Frappart et al., 2018). 

Hence, daily inundation area and lake volume data throughout 1960 – 2019 were obtained. 

Regarding the flood pulse change, we assessed the changes in the key flood pulse parameters 

(Junk et al., 1989; Kummu, Keskinen, & Varis, 2008; Lamberts, 2006) as shown in Table 1.  

 

[Insert Table 1] 

 

2.3 Atmospheric circulations indices 

As climate influences the hydrology in the MRB and flood regime of the TSL (Kummu et al., 

2014), large-scale atmospheric circulation index data were also employed, including El Niño-

Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Indian Ocean Dipole 

(IOD). They have strong connections to the hydroclimate in the MRB (Delgado, Apel, & Merz, 

2010; Hrudya, Varikoden, & Vishnu, 2021; Räsänen & Kummu, 2013). The data for these three 

indices are available from ESRL/NOAA 

(https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/): for ENSO data we used NINO 3.4, 

available from 1870 to present; for PDO it is available from 1900 to present; and for IOD we 

used the Dipole Mode Index that is available from 1870 to present. We calculated the averaged 

monthly NINO 3.4 from December to the following February as the annual ENSO index (Chen, 

Ho, Chen, & Azorin-Molina, 2019); the averaged monthly PDO from November to the following 

March as the annual PDO index (Feng, Wang, & Chen, 2014); and the averaged monthly IOD 

from June to November as the annual IOD index (Feng & Chen, 2014). 

 

2.4 Quantification of the temporal changes of the flood pulse parameters 

To investigate the flood pulse change in the TSL, we estimated the trend and variability of the 

lake’s flood regime by hydrological year, and by wet and dry seasons. Mann-Kendall (Kendall, 
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1938) and Sen’s slope (Sen, 1968) were employed to estimate the trends, which are widely used 

in hydroclimate studies (Chen et al., 2018; Wu, Wang, Cai, & Li, 2016; Xue, Liu, & Ge, 2011). 

Averaged subdecadal variance of the time series (variance of scales lower than 10 years) was 

also evaluated using the wavelet analysis, which is a commonly used tool for analyzing the time-

space frequencies of non-stationarity hydroclimate time series (Delgado et al., 2012; Taleb & 

Druyan, 2003; Torrence & Compo, 1998), using a toolkit from Torrence & Compo (1998). The 

R package ‘segmented’ based on regression models was used to detect breakpoints of the 

interannual time series (Muggeo, 2003, 2017), which can compute the optimal breakpoints 

(Ferguson, Humphry, Lawson, Brendel, & Bechtold, 2018). 

 

To measure shift days of the daily water level before and after the detected breakpoints (in 1986 

and 2000 estimated in this study), we first calculated the mean daily water level for the two 

periods (i.e., 1986 – 2000 and 2000 – 2019) and divided the hydrograph into two time periods at 

the joint. Then the mean difference of the shift days between the two periods was calculated 

separately. We measured the return periods of the inundation area in the three time periods 

divided by the breakpoints using the Gumbel distribution. The Pearson correlation coefficient 

was used to quantify correlations between the flood pulse parameters and large-scale 

atmospheric circulations (ENSO, PDO, and IOD). Using a 21-year moving window, we analyzed 

the changes in correlation between the flood pulse parameters (i.e., water level) and the 

atmospheric circulations for 1960 – 2019.  

 

2.5 Anthropogenic impacts on flood pulse  

Owing to the complex TSL system and lacking observations, it is difficult to quantify the human 

activity impacts on the flood pulse with available data. Considering the rapid increasing dams in 

the upper stream of the lake, primarily shifting the seasonal flow regime (Hecht et al., 2019; Yun 

et al., 2020), seasonal change of discharge in the upstream Stung Treng station (a station with 

long observations close to the lake, see Figure 1) could reflect the potential impacts on flood 

pulse from the hydropower development. Following Kallio & Kummu (2021), we employed the 

following discharge data to measure the trend of high flow (Q5) and low flow (Q95):   
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- observed discharges in the Stung Treng station for 1960 – 2019, including both climatic 

and anthropogenic impacts, and; 

- simulated discharges from GLOFAS global streamflow reanalysis products from 1979 

without the information of the recent hydropower development and thus reflecting only 

the climatic impacts on discharges (Alfieri et al., 2020; Kallio & Kummu, 2021).  

We were then able to disentangle the climatic and anthropogenic impacts on changes in 

discharge in Stung Treng by comparing the difference between the observed and simulated data.  

 

3. RESULTS  

3.1 Changes in flood pulse parameters 

Changes in the flood pulse parameters are shown in Figures 3 – 5 and summarized in Table 2. 

The annual mean water level (WL_hy) of the TSL has fluctuated between 1960 and 2019 (Figure 

3a). The lowest WL_hy can be seen in dry years 1998, 2010, and 2015, and the highest WL_hy 

in wet years 1996, 2000, and 2011. Breakpoints were found in 1986 and 2000; the 11-year 

moving average of WL_hy rose between 1986 and 2000 (p < 0.01) and fell significantly in the 

other two periods (1960 – 1986 and 2000 – 2019) (see Table 2). Time series of the averaged wet 

season water level (WL_wet) also fluctuated over the years, however no breakpoint was detected 

(Figure 3b). The averaged dry season water level (WL_dry) rose during 1986 and 1996 (p < 

0.001) and decreased significantly at the other two time periods (1960 – 1986 and 1996 – 2019) 

(Figure 3c). WL_hy had significant subdecadal variability in the 1990s and 2010s, whereas such 

variability for WL_wet was significant in the 1970s – 2010s. In addition, all the three parameters 

showed increasing subdecadal variabilities before the 2000s. Overall, these results indicate clear 

rising and falling stages of the water level over 1960 – 2019, with significant subdecadal 

variability; and there were apparent declining trends of WL_hy and WL_dry from the late 1990s. 

Similar results could also be found for the inundation area and water volume (Figure S2 –S3).  

 

[Insert Figure 3] 
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Interannual changes of the TSL’s peak water level and inundation area for 1960 – 2019 are 

displayed in Figure 4a-c. The annual WL_max fluctuated between 6 and 11 m, with a significant 

subdecadal variability from the mid-1980s. The WL_max has two breakpoints in 1988 and 2001 

and it significantly decreased from 2001 (-0.14 m/year, p < 0.05). The annual WL_min displayed 

an increasing trend before the breakpoint in 2003 (0.005 m/year, p < 0.01) with no significant 

trend after that. It has significant subdecadal variability from the 1990s. Several spikes in the 

peak water level revealed large flood and drought events (i.e., 1996, 1998, 2000). The amplitude 

between WL_max and WL_min (WL_amp) followed a similar trend with the WL_max, as 

WL_min has stayed rather stable (Figure 4c). The amplitude between maximum and minimum 

inundation area also showed a similar trend with the WL_max and WL_amp (Figure 4d). 

Besides, these parameters showed increasing subdecadal variabilities from the 1960s. 

 

[Insert Figure 4] 

 

The StartDate_Flood, EndDate_Flood, Duration_Flood, WL_max_date, and WL_min_date 

fluctuated over 1960 – 2019 (Figure 5 and Table 2). Both StartDate_Flood and WL_min_date 

had a breakpoint around 2000; however, they significantly delayed and advanced after 2000, 

respectively (p < 0.05). The WL_max_date and Duration_Flood both had two breakpoints 

around 1981 – 1984 and 1993 – 1994; and they both decreased before the first breakpoint (p < 

0.01), with no significant trend after the second breakpoint. The EndDate_Flood had a 

breakpoint in 1986 that advanced (-3.96 day/year, p < 0.001) and delayed (1.47 day/year, p < 

0.01) before and after the breakpoint, respectively. Similar to the WL_wet, the StartDate_Flood 

had significant subdecadal variability from the mid-1970s. The EndDate_Flood and 

Duration_Floods both have significant variability in the 1970s. And the WL_max_date and 

WL_min_date had significant variabilities in the 1970s – 1980s and 1970s – 2010s, respectively. 

Overall, these results indicate an exceptionally high subdecadal variability in the lake’s flood 

between the 1970s and 1990s; the StartDate_Flood, EndDate_Flood, and the WL_max_date have 

delayed from 2000, 1986, and 1981, respectively. 

 

[Insert Figure 5] 
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[Insert Table 2] 

 

3.2 Changes in the hydrograph 

The years of 1986 and 2000 appeared as breakpoints in many of the above-analyzed flood pulse 

parameters (Figures 3-5, Table 2), and flood timing displayed a trend of advancement before 

1986 and delay after 2000. Figure 6 presents a hydrograph of mean daily water level for the two 

periods of 1986 – 2000 and 2000 – 2019. Compared to the former period, our results show that 

the flood regime was delayed in 2000 – 2019. The average of such delays was about 4.7 and 10.0 

days in the wet and dry seasons, respectively.  

 

[Insert Figure 6] 

 

3.3 Changes in return period of flood inundation area 

Figure 7 shows the high and low inundation area (i.e., 1-month and 11-month inundation areas) 

of the TSL floodplain at different return periods in 1960 – 1986, 1986 – 2000, and 2000 – 2019. 

Regarding the return period of 1-month inundation area, 1986 – 2000 witnessed the largest 

inundation area at all return periods, followed by 2000 – 2019 and 1960 – 1986. For example, a 

100-year return period event of inundation was about 15,753 km2; this value increased to 19,408 

km2 in 1986 – 2000 and decreased to 18,234 km2 in 2000 – 2019 (Figure 7a). In terms of the low 

inundation area, similar results occurred with increased inundation areas for the latter two 

periods (Figure 7b). However, 2000 – 2019 had a slightly larger inundation area than that of 

1986 – 2000 at the same return periods. Overall, these results indicate consistent rising 

probabilities of low inundation area in the TSL in 2000 – 2019, and the declining probabilities of 

high inundation area in 2000 – 2019 compared to 1986 – 2000 suggest an increasing probability 

of shrinking lake area. 

 

[Insert Figure 7] 
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3.4 Correlation with atmospheric circulation indices 

Correlations between the large-scale atmospheric circulations (Figure S4) and flood pulse 

parameters are displayed in Table 3. Both ENSO and PDO had significant negative correlations 

with the water level at annual and wet season scales, together with peak water level and area 

(WL_max, WL_amp, and WA_amp). The ENSO and PDO also strongly correlated with the 

StartDate_Flood and WL_dry, respectively, and the IOD showed a significant positive 

correlation with the StartDate_Flood.  

 

[Insert Table 3] 

 

Taking WL_wet as an example, Figure 8 presents changing correlations between the WL_wet 

and atmospheric circulations using a 21-year moving window for 1960 – 2019. The WL_wet had 

a negative correlation coefficient with ENSO, which increased over time and became significant 

since the 1990s, indicating potential associations between ENSO and water level. This also 

means that the correlation between ENSO and water level is changing over time. The WL_wet 

negatively correlated with PDO, and the coefficient was significant in the 1990s and late 2000s. 

As to WL_wet and IOD, they shifted from negative correlation to positive correlation but 

remained insignificant over the whole period. The significant correlations between WL_wet and 

ENSO and PDO coincide with the wave pattern of WL_wet’s subdecadal variance, especially in 

the mid-1970s, 1990s, and late 2000s (see Figure 3). The breakpoints around 1986 and 2000 

concurred with the timing of significant correlations between them, indicating strong 

associations between the lake’s flood regime and atmospheric circulations, ENSO and PDO in 

particular. In addition, we found significant wavelet coherence changes between WL_wet and 

atmospheric circulations at the frequency of two- to fourteen-year periods; and the anti-phase 

between them indicates that the wet years tend to be associated with cold events (Figure S5). 

Overall, our results suggest that the large-scale atmospheric circulations could have influenced 

the water level of the TSL in different time scales. 

 

[Insert Figure 8] 
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3.5 Anthropogenic impacts on the flood pulse 

To understand the anthropogenic impacts on the Tonle Sap flood pulse, we used the observed 

and modeled discharges in the Mekong mainstream in Stung Treng as a proxy (Figure 9). Given 

the two breakpoints in 1986 and 2000 of the flood pulse parameters (i.e., WL_hy, WL_dry, 

EndDate_Flood, see Figures 3-5 and Table 2), we compared the linear trend lines of 1986 – 2000 

and 2000 – 2019 for low and high water levels in the lake (Figure 9a,b) with those for low and 

high discharges (Figure 9c-f). We found that the apparent shifts in observed low TSL water 

levels between the two periods are not shown in the observed low discharges in Stung Treng 

(Figure 9a,c). While simulated low discharges with climatic impacts only showed no trend in 

either of the two periods (Figure 9e), the observed low flows (with dam operations included) 

showed a clear upward trend since the 1990s. This indicates that the increased low season 

discharges are due to anthropogenic drivers but are not shown in the water levels in the lake. On 

the contrary to this, the high water levels in TSL show a similar trend to the observed high 

discharges (Figure 9b,d): upward trend until the year 2000 and then sharply decreasing trend. In 

simulated high discharges, this is not visible (Figure 9f), indicating that anthropogenic drivers 

have influenced the high discharges in Stung Treng and also the changes in high water levels, 

and thus some flood pulse parameters, in the TSL.  

 

[Insert Figure 9] 

 

4. DISCUSSION  

4.1 Flood pulse change in the Tonle Sap Lake 

This study showed significant decreasing trends of water levels and inundation areas from the 

late 1990s in the dry season and annual scales (Figure 3). This is in line with previous studies 

(Kallio & Kummu, 2021; Lin & Qi, 2017; Wang et al., 2020; Wang, Feng, Liu, & Chen, 2021), 

indicating a substantially diminished flood pulse of the TSL from 2000. Existing literature based 

on remote sensing data and other resources have limited with the available time series of water 

level and inundation area data from the late 1980s (Dang et al., 2016; Ji et al., 2018; Sakamoto et 

al., 2007; Tangdamrongsub et al., 2016), but our study provides a more extended time period 

analysis and puts the flood pulse change to the TSL since the late 1990s into a longer time 

perspective. Numerous studies exist on the impacts of hydropower development on the flood 
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pulse of the TSL and to the changes in the higher (lower) dry (wet) season water levels (Arias et 

al., 2012; Kallio & Kummu, 2021; Keskinen, Someth, Salmivaara, & Kummu, 2015; Kummu & 

Sarkkula, 2008). Our results revealed that, indeed, the maximum water level and inundation area 

had decreased significantly since 2000, but no trend was found for the minimum water level 

(Table 2, Figure 9). Cochrane et al. (2014) and Ji et al. (2018) compared two time periods 

(before and after 1991 [1960 – 2010] and 2008 [2000 – 2014], respectively) also found 

diminishing flood pulse; and Ji et al. (2018) showed decreasing dry season inundation area. Our 

study based on the long term daily water level revealed a more worrisome situation of the 

diminishing flood pulse of the TSL at annual and dry season scales than previous studies 

suggested (Table 2), accompanied by the increasing subdecadal variability, which strongly 

connects to the livelihood of the local residents. 

 

The lake has experienced interannual fluctuations of water level, inundation area, and water 

volume throughout the observed period from 1960, accompanied by significant subdecadal 

variabilities from the 1980s. The increasing variance of lake’s water level could be compared 

and validated with precipitation and discharge data (Delgado et al., 2010; Ho, Baik, Kim, Gong, 

& Sui, 2004; Wang, Wu, & Lau, 2001). Many studies have presented evidence of the impacts of 

climate change on the changes in Mekong flow and TSL (Day et al., 2011; Delgado et al., 2012; 

Frappart et al., 2018; Lauri et al., 2012; Räsänen & Kummu, 2013; Wang et al., 2021). There are 

strong connections between atmospheric circulations and hydrology at the southern MRB 

(Delgado et al., 2012; Räsänen & Kummu, 2013; Ruiz-Barradas & Nigam, 2018; Xue et al., 

2011). Moreover, Frappart et al. (2018) found significant correlations between the lake’s surface 

water volume and rainy season rainfall in the MRB, and the TSL’s hydroclimatic extremes had a 

strong connection to the large-scale atmospheric circulations; Wang et al. (2020, 2021) also 

revealed significant correlations between the lake’s inundations and precipitation in the region 

north of the TSL at annual and seasonal scales. Therefore, the basin-wide and lake’s hydrological 

changes highly correlated with the large-scale climate (Delgado et al., 2012; Frappart et al., 

2018). Our results of the significant correlation between water level and atmospheric circulations 

(ENSO, PDO, and IOD) using the 21-year moving window from the 1980s indicated strong 

connections between the high variability of flood pulse and atmospheric circulations over the 

period (Figure 8, Table 3). And their significant coherence variances (Figure S5) also indicate 
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that atmospheric circulations could have strongly influenced the flood pulse of the TSL in 

different time scales. 

 

Impacts of hydropower have been the main focus in many recent investigations (Arias, Piman, 

Lauri, Cochrane, & Kummu, 2014; Cochrane et al., 2014; Hecht et al., 2019; Ji et al., 2018; 

Kallio & Kummu, 2021; Lin & Qi, 2017; Räsänen, Koponen, Lauri, & Kummu, 2012; Räsänen 

et al., 2017; Wang et al., 2021). The apparent differences in the trend between the observed and 

simulated discharges at Stung Treng station (Figure 9) suggested the potential impacts of 

hydropower development on discharges in the Mekong mainstream and flood pulse parameters 

in the TSL. Kallio & Kummu (2021) also showed that all major dams in the Mekong Basin are 

critical in recent impacts on the flood pulse change. Future simulations with combined scenarios 

of hydropower and climate change are projected to impact, e.g., the inundation area, gallery 

forest, and sediments, indicating degrading ecosystem services of the TSL in the future (Arias, 

Cochrane, et al., 2014). Furthermore, future flow regime in the Mekong is projected to be driven 

by the planned hydropower development (Anh, Hoang, Bui, & Rutschmann, 2019; Arias et al., 

2012; Dang et al., 2016; Lauri et al., 2012; Räsänen et al., 2012) and climate change (Delgado, 

Merz, & Apel, 2014; Hoang et al., 2016; Keskinen et al., 2010; Kingston, Thompson, & Kite, 

2011; Yun et al., 2021). Considering the crucial role of the flood pulse of the TSL on the 

livelihood and biodiversity in Cambodia and the Mekong region, any changes to the flood pulse 

could be devastating to the regional sustainability (Lamberts, 2006; Uk et al., 2018).  

 

4.2 Potential impacts of the flood pulse change on fishery 

The flood regime of the TSL is critical to the fishery, including the magnitude, timing, and 

variations (Arias et al., 2013; Baran, 2006; Day et al., 2011; Poulsen et al., 2002). For instance, 

high water levels are more favorable to the breeding and dispersal of fish larvae, and variation of 

water levels is a critical fish migration trigger (Baran, 2006; MRC, 2010a) because higher floods 

cultivate higher fish yield (MRC, 2010a). However, the elevated water level variance could 

interrupt the fish migration and disturb the fish production, which is the primary protein source 

in the region (Keskinen, 2006; Lamberts, 2006; Uk et al., 2018). Previous studies have found 
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drops of fish catches and fish size in the TSL for 2000 – 2015 (Ngor et al., 2018) and 1994 – 

2000 (Chan, Ngor, So, & Lek, 2017), respectively. Moreover, our results indicate substantial 

flood pulse shifts for about 5 and 10 days in the wet and dry seasons in 1960 – 1986 and 2000 – 

2019, respectively (Figure 6). Such shift could directly affect the migratory fish (Baran, 2006; 

MRC, 2010a). However, there is still a lack of knowledge of the impacts of flood regime 

changes on the fishery (Lamberts, 2006; Uk et al., 2018), requiring more endeavor to better 

understand water and fishery management. 

 

Flood pulse change could further influence the socio-economic system in the TSL. Combined 

with the diminishing flood pulse, population booming in Cambodia and TSL floodplain areas 

since the 1980s has exacerbated the crop production expansion and indiscriminate fishery (Kc et 

al., 2017; Ngor et al., 2018; Salmivaara et al., 2016). Furthermore, increased water level 

variability has caused an unstable cropping system and posed environmental shocks on farmers 

(Heinonen, 2006). Along with the deteriorating fishery (Chan et al., 2017; Ngor et al., 2018), 

people’s occupations have witnessed a shift from fishery to other occupations, such as forestry 

and hunting (National Institute of Statistics, 2018). Owing to the improving livelihood 

opportunities in urban areas, e.g., Phnom Penh and Thai cities, many farmers have migrated to 

other areas as a replacement for local livelihood strategies since the late 1990s (Bylander, 2015; 

Heinonen, 2006). Overall, the flood pulse change could hamper the socio-economic development 

of the TSL area. 

 

4.3 Limitations and way forward 

In terms of the data used, uncertainties of this study arise from the estimated time series of water 

level using the multiple polynomial regression due to the lacking observed time series for the 

whole study period, as well as assessing the inundation area based on the Digital Bathymetry 

Model. The comparisons between the existing observations and our modeled water level have 

shown a good fit of the data, suggesting that the estimated time series could reflect the flood 

pulse change reasonably well. Good agreements of water level and surface extent between the 
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method employed in our study and Frappart et al. (2018) based on MODIS estimation also 

validated our methods in estimating the flood pulse of the TSL.  

In terms of estimating the drivers of the changes in flood pulse parameters, we needed to use 

proxies, including indices on large-scale atmospheric circulations as well as modeled discharge 

in the Mekong mainstream. While these proxies indicate rather clear messages on the potential 

impacts of these drivers, future research should focus on to quantitatively assess the impact of all 

the drivers, such as climatic change, dam construction and operation, human water consumption, 

land use and land cover change, on different flood pulse parameters. Tools, including basin-wide 

hydrological models and hydrodynamic models covering the Lower Mekong Floodplains, exist 

but to apply those for such a long time period would need extensive work on reliable input data, 

calibration of the models, and then running multiple simulations preferably with multiple 

models. This information could then be further linked to the ecosystem services and livelihood in 

the region. 

 

5. CONCLUSIONS 

This study has quantified the flood pulse change in the TSL since the 1960s. The results showed 

decreasing water levels in the dry season and for the whole year since the late 1990s. The mean 

seasonal cycle of daily water level in the dry and wet seasons for 2000 – 2019, compared to that 

for 1960 – 1986, have shifted by 10 and 5 days, respectively. Rising probabilities of extreme 

inundation area in the later period compared to the earlier period were also identified. The annual 

flood pulse parameters had strong correlations with the large-scale atmospheric circulations from 

the 1980s. Moreover, coherence changes between the WL and atmospheric circulations further 

indicated the influence of atmospheric circulations on the flood pulse in different time scales. 

Also, apparent differences between the climatic and anthropogenic impacts on the discharge at 

Stung Treng station in the Mekong mainstream indicate that anthropogenic activity has affected 

the flood pulse parameters, especially the high water level in the TSL. Our long-term assessment 

of the changes to the crucial TSL flood pulse could support future research to quantify the 

impacts of flood pulse change on the fishery and livelihood of the TSL area in Southeast Asia.  
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Table 1. Definition of key flood pulse parameters for each hydrological year from 1 May – 30 

April 

Flood pulse parameter Acronym Definition 

Annual water level WL_hy Annual mean water level (1 May – 30 April) 

Wet season water level WL_wet Wet season mean water level (1 May – 31 October) 

Dry season water level WL_dry Dry season mean water level (1 November – 30 April) 

Maximum water level WL_max Maximum daily water level defined as the 95th percentile for daily water level 

Minimum water level WL_min Minimum daily water level defined as the 5th percentile for daily water level 

Water level amplitude WL_amp The amplitude of water level between WL_max and WL_min 

Flooded area amplitude  WA_amp The amplitude of inundation area between maximum and minimum flooded 

area (defined as the 95th and 5th percentile for daily inundation area, 

respectively) 

Start date of a flood StartDate_Flood Start date of a flood when the water level is above 2 m for the first time 

End date of a flood EndDate_Flood End date of a flood when the water level is below 2 m for the first time after 

the start date of the flood 

Flood duration Duration_Flood Duration of a flood is the days between StartDate_Flood and EndDate_Flood 

Date of WL_max WL_max_date The date when WL_max occurs defined as the intermediate date when the 

water level is greater than the WL_max  

Date of WL_min WL_min_date The date when WL_min occurs defined as the intermediate date when the 

water level is lower than the WL_min 
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Table 2. Summary of changes in flood pulse parameters. Breakpoints were determined with R package 

‘segmented’ based on regression models (Muggeo, 2003, 2017). Subdecadal variability was assessed with 

wavelet analysis (Torrence and Compo, 1998; Taleb and Druyan, 2003; Delgado et al., 2012). Trends were 

estimated with Mann-Kendall (Kendall, 1938) and Sen’s slope (Sen, 1968) method.  

Flood pulse parameter Time periods 

delineated by breaks 

Trend in mean (m/year 

or days/year) 

Trend in subdecadal variability 

([m]^2/year or [km2]^2/year) 

Annual water level (WL_hy) 1960 – 1986 

1986 – 2000 

2000 – 2019 

-0.05*** 

0.17** 

-0.08** 

0.003* 

0.03*** 

-0.0006 

Wet season water level 

(WL_wet) 
1960 – 2019 -0.002 0.005*** 

Dry season water level 

(WL_dry) 

1960 – 1986 

1986 – 1996  

1996 – 2019 

-0.10*** 

0.32*** 

-0.07** 

0.004* 

0.03*** 

-0.008 

Maximum water level 

(WL_max) 

1960 – 1988 

1988 – 2001 

2001 – 2019 

-0.03 

0.16** 

-0.14* 

0.008*** 

0.04* 

0.03 

Minimum water level 

(WL_min) 

1960 – 2003 

2003 – 2019 

0.005** 

-0.003 

0.0001 

0.001* 

Water level amplitude 

(WL_amp) 

1960 – 1988 

1988 – 2000 

2000 – 2019 

-0.03 

0.13 

-0.13** 

0.008* 

0.03* 

0.011 

Flooded area amplitude 

(WA_amp) 

1960 – 1988 

1988 – 2001 

2001 – 2019 

-57.8 

201.8 

-204.2* 

26’353* 

-1’356 

52’158 

Start date of a flood 

(StartDate_Flood) 

1960 – 2000 

2000 – 2019 

-0.39 

1.76* 

4.43*** 

16.95*** 

End date of a flood 

(EndDate_Flood) 

1960 – 1986 

1986 – 2019 

-3.96*** 

1.47** 

36.19 

-9.25* 

Flood duration 

(Duration_Flood) 

1960 – 1984 

1984 – 1994 

1994 – 2019 

-4.00** 

10.44** 

0.13 

53.53** 

74.88** 

-2.19 

Date of WL_max 

(WL_max_date) 

1960 – 1981 

1981 – 1993 

1993 – 2019 

-2.00** 

4.00* 

0.09 

22.61*** 

-29.02*** 

-0.04 

Date of WL_min 

(WL_min_date) 

1960 – 2001 

2001 – 2019  

-0.43 

-1.35*** 

22.25 

-0.05 

*: p < 0.05; **: p < 0.01; ***: p < 0.001   
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Table 3. Correlation coefficients between key flood pulse parameters and large-scale 

atmospheric circulations: El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation 

(PDO), and Indian Ocean Dipole (IOD). 

Flood pulse parameter ENSO PDO IOD 

Annual water level (WL_hy) -0.36** -0.41** 0.07 

Wet season water level (WL_wet) -0.48*** -0.31* 0.00 

Dry season water level (WL_dry) -0.16 -0.35** 0.10 

Maximum water level (WL_max) -0.35** -0.36** 0.06 

Minimum water level (WL_min) -0.22 0.06 0.15 

Water level amplitude (WL_amp) -0.33** -0.39** 0.04 

Flooded area amplitude (WA_amp) -0.32* -0.38** 0.04 

Start date of a flood (StartDate_Flood) 0.39** 0.19 0.27* 

End date of a flood (EndDate_Flood) -0.02 -0.13 0.18 

Flood duration (Duration_Flood) -0.02 -0.13 0.18 

Date of WL_max (WL_max_date) 0.17 -0.08 0.10 

Date of WL_min (WL_min_date) -0.01 -0.10 0.20 

*: p < 0.05; **: p < 0.01; ***: p < 0.001    
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