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• Ten models were evaluated in term of
discharge simulation at different per-
centiles.

• Poor performances and larger uncer-
tainties at lower discharge percentiles

• Simulation performances improved as
discharge percentiles increased.

• Simulation performances improved
from upstream to downstream.

• Poor performances in discharge simula-
tion for the river sections close to
estuary
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Water resources are of strategic importance for socioeconomic development. Many hydrological models (HMs)
and land surfacemodels (LSMs) have been developed forwater resources assessment. However, systematic eval-
uation of discharge simulation frommultiplemodels is still lacking in the Lancang-Mekong River basin. Here, we
evaluated the performances of tenHMs and LSMs by evaluating their simulated discharge against observations at
the basin scale. The selected models were within the Inter-Sectoral Impact Model Intercomparison Project
(ISI-MIP2a) frameworkdrivenbyGlobal SoilWetness Project 3 (GSWP3) climate forcing data. Five dischargeper-
centile series were used to evaluate themodel performances for low, mean, and high flows. The intercomparison
according to four statistical criteria revealed considerable differences exist in model performances for different
discharge percentiles, indicating a large uncertainty caused by the choice ofmodelswith different degree of phys-
ical complexity and sensitivity to the quality of the input data. The models generally performed better for high
flow than for low flow. Furthermore, the models generally performed better in downstream than in upstream,
with the exception of close to the estuary, where complex processes involving interactions between freshwater
and saline water are present. It is not surprising that the two calibrated model (WaterGAP2 and WAYS) are su-
perior over the other models. This systematic intercomparison provides insights into the model behaviours
and accuracies in discharges predicting with varying intensities, which can aid in quantifying uncertainties in
water resources simulation at the basin scale.
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Table 1
General information of the seven hydrological stations.

Station Longitude
(°E)

Latitude
(°N)

Elevation
(m)

Mean annual discharge
(×103 m3/s)

Chiang Saen 100.083 20.273 698 2.594
Luang Prabang 102.134 19.893 690 3.760
Nong Khai 102.732 17.881 172 4.403
Mukdahan 104.733 16.583 166 7.850
Pakse 105.813 15.100 117 9.856
Stung Treng 105.950 13.533 66 12.839
Kratie 106.018 12.481 14 12.055
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1. Introduction

Hydrological models (HMs) and land surface models (LSMs) are
valuable tools inwater resources simulation andmanagement. HMs de-
scribe water storage and fluxes by defining a set of equations (Van
Huijgevoort et al., 2013; Ward et al., 2014). LSMs simulate hydrological
processes based on land surface energy fluxes andwater balances. Parts
of LSMs define water fluxes using the same concepts as HMs
(Haddeland et al., 2011), while HMs focus more closely than LSMs on
the description of the water cycle processes (Gudmundsson et al.,
2012a). HMs and LSMs play important roles in assessment of hydrolog-
ical responses to climate change, e.g., water availability changes and
projections (Beran et al., 2016; Gosling and Arnell, 2016), flood hazard
and risk assessments (Ward et al., 2014; Gosling et al., 2017), and
drought assessments (Van Huijgevoort et al., 2013; Prudhomme et al.,
2014). Hydrological metrics simulated by HMs and LSMs can guide pol-
icy decisions on water resources management and climate change
(Arnell et al., 2016; He et al., 2017); thus, evaluations of the current
HMs and LSMs carefully are essential. However, reports on HMs and
LSMs performances for the Lancang-Mekong River basin are rare. The
Lancang-Mekong River is one of the longest rivers in the world. Model
evaluations for this river are critical to identifying the limitations and
strengths of the models and improving the models to ensure their
wide applications.

Discharge is one of the most intuitive metrics to reflect the condi-
tions of a watershed. Evaluating the observed and simulated discharge
series is a commonly used method in hydrological models assessment
(Balsamo et al., 2009; Magome et al., 2015;Wang et al., 2016). Previous
studies of hydrological model assessments usually utilized different sta-
tistical measures with complete data series (e.g., discharge, runoff, and
evapotranspiration) and ranked the models (Faiz et al., 2018;
Zaherpour et al., 2018). For a more detailed understanding of model
strengths and limitations, further model evaluations were carried out
from different perspectives. Runoff trend assessment using annual
seven-day maxima (high flow) and annual seven-day minima (low
flow) with multi-model ensemble of eight models in Europe concluded
that runoff displayed significantly different spatial trends (Stahl et al.,
2012). The findings also revealed different trends for different runoff
flows: high flow demonstrated an increase trend in wet season, while
low flow exhibited a decrease trend for dry season. To analyze the ef-
fects of climate change on hydrological processes, nine large-scale hy-
drological models were evaluated using the observed runoff data from
426 nearly natural catchments in Europe. The simulated runoff were
evaluated with five runoff percentile series that could adequately char-
acterize the overall flow range, and concluded that the model perfor-
mance systematically decreased from high to low runoff percentiles
(Gudmundsson et al., 2012a). A novel evaluation method was used to
evaluate the model performances of six hydrological models in 40
river basins, models performances for different runoff percentile series
were also evaluated. The study demonstrated that themodels generally
overestimated mean annual runoff and extreme runoff (Zaherpour
et al., 2018). The methods and datasets used for hydrological model
evaluation have become increasingly diverse (e.g., percentile series,
high flow and low flow; remote sensing data). The highly varied evalu-
ation methods means that there is still room in model evaluation.

The Lancang-Mekong River is the most critical trans-boundary river
in Southeast Asia, and it plays an important role in regional agriculture,
hydropower production, and fisheries (MRC, 2019). The discharge of
the Lancang-Mekong River is essential for Southeast Asia's socio-
economic development where has undergone substantial natural and
socio-economic changes in the past few decades. A number of models
have been used to simulate the discharge of the Lancang-Mekong
River (Kingston et al., 2011; Johnston and Kummu, 2012). However,
an accurate and systematic evaluation of discharge simulations for com-
monly used HMs and LSMs in the Lancang-Mekong River is still lacking.
A systematic evaluation of currently used models with a common
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statistical framework is helpful to determine reliabilities and to quantify
uncertainties ofmodels in hydrological simulations. Tofill the gap of hy-
drologicalmodel evaluation in this area,we evaluated the performances
of ten models using different discharge percentile series against the ob-
served data. The definition of percentile in this study follows a statistical
concept, which is the cumulative or non-exceed frequencies in the cor-
responding data series. The high flows represent the direct response of
catchments to hydrological events, whereas low flows were associated
with retention and a slow release of water which occurred during dry
periods (Smakhtin, 2001; Gudmundsson et al., 2011).

The overall aim of this study is to provide a systematically assess-
ment of the selected HMs and LSMs with regard to their discharge sim-
ulations in the Lancang-Mekong River basin with a focus on extreme
hydrology events. First, the strengths of the ten selected HMs and
LSMs in extreme hydrological events simulation were assessed. We
evaluated themodel performanceswith the annual simulated discharge
series at different percentiles. Then, the selected models were ranked
based on overall discharge series according to the four statisticalmetrics
at the basin scale.

2. Study area and data

2.1. Study area

The Lancang-Mekong River is one of the largest river systems in the
world, spanning a length of approximately 4880 km and draining an
area of 795,000 km2 (http://www.lmcchina.org/eng/). The Lancang-
Mekong River originates in the Qinghai Province on the Qinghai-
Tibetan Plateau. It flows through five other countries in order of
Myanmar, Thailand, Lao P.D.R, Cambodia, and Vietnam, and ends in
the South China Sea. The upstream of the Lancang-Mekong River basin
flows through the Tibetan Plateau and has an average elevation above
4000 m (Yao et al., 2019), and it is considered to be in a near natural
state due to the low impacts from human activities. The Lancang-
Mekong River basin supportsmore than 230million people and contrib-
utes substantially to the socioeconomic development of the countries
throughout which it flows (http://www.lmcchina.org/eng/).

The annual mean discharge of the Lancang-Mekong River is approx-
imately 446 km3,making it theworld's eighth largestflow (MRC, 2019).
The region has a wet season dominated by the southwest monsoon
from May to November, contributing approximately 70% of the annual
precipitation (Chen et al., 2018). The wet season precipitation provides
major source of theMekong River discharge and it is crucial for regional
agriculture (Hoang et al., 2016). In addition, the snow melt from the
Qinghai-Tibetan Plateau can affect the downstreamdischarge especially
in dry season (Johnston and Kummu, 2012).

2.2. Data

2.2.1. Observed data
The observed daily river discharge series covering the time period

1975–2010 for seven hydrological stationswere used as the verification
data. Table 1 displays the longitude and latitude of the stations. The red
dots in Fig. 1 display the locations of seven hydrological stations which

http://www.lmcchina.org/eng/
http://www.lmcchina.org/eng/


Fig. 1. Location and terrain of the Lancang-Mekong River basin (LMRB) and the Lancang-
Mekong River (LMR). Red dots represent the locations of the seven hydrological stations:
(1) Chiang Saen, (2) Luang Prabang, (3) Nong Khai, (4) Mukdahan, (5) Pakse, (6) Stung
Treng, and (7) Kratie.
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were used in this study. Fig. 2 shows themonthlymean discharge of the
seven hydrological stations. It can be found that the discharge gradually
increased from upstream to downstream.

2.2.2. ISI-MIP data
The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP)

is a climate-impact modelling initiative dominated by community. ISI-
MIP contains different sections and modelling scales under a consistent
framework (https://www.ISI-MIP.org/) (Schewe et al., 2014). The aim
Fig. 2. Monthly mean discharge from 1975 to 2010 for Chiang Saen, Lua
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of ISI-MIP is to improvemulti-scale riskmanagement by integrating cli-
mate impacts in different sectors (Warszawski et al., 2014). ISI-MIP has
several simulation rounds including ISI-MIP Fast Track, ISI-MIP2a, and
ISI-MIP2b. ISI-MIP Fast Track is the first simulation round, it aimed at
providing cross-sectoral projections of the impacts of different levels
of global warming. ISI-MIP2a focus onmodel validation, with special at-
tention to the representation of the effects of extreme weather and cli-
mate variability. ISI-MPI2b focuses on the impacts of different sectors at
multiple scale and provides assessments of the impacts of 1.5 °C global
warming.

In the present study, ISI-MIP2a was used for model validation and
determining the effects of extreme events since it focus on model com-
parison and validation. The experimental data of the global water sector
forced by GSWP3 data in ISI-MIP2a were selected to validate the dis-
charge simulations of differentmodels in this study. Global SoilWetness
Project 3 (GSWP3) provide the climate forcing data for the historical pe-
riod from 1971 to 2010 (http://hydro.iis.u-tokyo.ac.jp/GSWP3/) (Kim,
2017). The GSWP3 data provides daily climate data at a 0.5° spatial res-
olution, and the climate metrics used to drive themodel include precip-
itation, minimum temperature, maximum temperature, relative
humidity, surface down welling long-wave radiation, surface down
welling short-wave radiation and wind speed at 10 m.

TenHMs and LSMswere selected to assess the discharge simulations
for different discharge percentiles in the Lancang-Mekong River basin,
including the Community Land Model version 4.0 (CLM4.0) (Leng
et al., 2015), the Distributed Biosphere Hydrological model (DBH)
(Tang et al., 2007), H08 (Hanasaki et al., 2017), Lund-Potsdam-Jena
managed Land (LPJmL) (Sitch et al., 2003), Minimal Advanced Treat-
ments of Surface Interaction and Runoff (MATSIRO) (Takata et al.,
2003), Max Planck Institute–Hydrology Model (MPI-HM) (Stacke and
Hagemann, 2012), Organizing Carbon and Hydrology in Dynamic Eco-
systEms (ORCHIDEE) (Guimberteau et al., 2014), PCRaster Global
Water Balance (PCR-GLOBWB) (Wada et al., 2014), Water Global As-
sessment and Prognosis version 2 (WaterGAP2) (Alcamo et al., 2003;
Muller Schmied et al., 2016), Water And ecosYstem Simulator (WAYS)
(Mao and Liu, 2019). All models were driven by GSWP3meteorological
data, and the resolution of the output discharge data was 0.5° at a daily
time step. The ensemble of all models also participated in the assess-
ments. Table 2 displays the brief summaries of the ten HMs and LSMs
used in this study.

3. Methods

The simulated daily discharge series for the 1975–2010 period were
evaluated for different discharge percentiles against the daily observed
data. Five percentile levels were selected to evaluate the model perfor-
mances of discharge simulations, including the 5th percentile (Q5),
25th percentile (Q25), 50th percentile (Q50), 75th percentile (Q75)
ng Prabang, Nong Khai, Mukdahan, Pakse, Stung Treng, and Kratie.

https://www.ISI-MIP.org/
http://hydro.iis.u-tokyo.ac.jp/GSWP3/


Table 2
General information of the ten evaluated HMs and LSMs.

Model Class of
model

Spatial
resolution (°)

Evapotranspiration Dam/Reservoir Surface Runoff Routing

CLM4 LSM 0.5 the mass transfer equation No TOPMODEL-based (Beven and Kirkby,
1979)

Linear reservoir, constant flow velocity

DBH GHM 0.5 Energy balance No SiB2 model based (Sellers et al., 1986) Linear reservoir model
H08 GHM 0.5 Bulk approach Yes An improved bucket model (Hanasaki

et al., 2008)
Based on DDM30

LPJmL GHM 0.5 Priestley–Taylor Yes a semi-empirical method (Haxeltine
and Prentice, 1996)

Continuity equation derived from linear
reservoir model, routing data according to
DDM30

MATSIRO LSM 0.5 Penman-Monteith Yes SiB2 model based (Sellers et al., 1986) TRIP model based on DDM30
MPI-HM GHM 0.5 Bulk approach No HD-Model based (Hagemann and

Dümenil, 1998)
Linear reservoir cascade based on DDM30

ORCHIDEE LSM 0.5 Bulk approach No a multi-layer soil hydrology scheme
(de Rosnay et al., 2002)

STN-30p river network

WaterGAP2 GHM 0.5 Priestley–Taylor Yes HBV model based (Alcamo et al., 2003) Linear reservoir, flow velocity based on
Manning-Strickler based on DDM30

WAYS GHM 0.5 Penman-Monteith No Xinanjiang model based (Zhao, 1992) CaMa-Flood
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and 95th percentile (Q95). In this study, the definition of percentile
follows a statistical concept representing the cumulative or non-
exceedance frequencies in the data series. Q5 represents extremely
low discharge, Q50 represents the median of the discharge series, Q95
represents the high flow (very close to the complete discharge series).
Q25 and Q75 are two supplementary discharge series that provide
more discharge information. Both the observed and simulated daily dis-
charge series were converted to annual discharge series for the five
percentiles.

Different models have specific routing schemes, but the routing
module in HMs and LSMs cannot accurately simulate the location
of the river network. Therefore, the hydrological stations may
deviate from the simulated river network. In additional, the river
networks produced by the routing module in each of the hydrologi-
cal model were different. The corresponding pixel of hydrological
stations may not overlap with the simulated river network. To
resolve this issue, we first located the initial station pixel according
to the longitude and latitude of the station; then the sum of the
Nash-Sutcliffe efficiency coefficient (NSE) and the squared Pearson
correlation coefficient (R2) were calculated for the located pixel
and its eight surrounding pixels. The pixel with the largest sum
was identified as the target pixel where the hydrological station
was located.

Four statistical metrics were used to assess the models: R2, NSE, Δμ,
and Δσ. R2 is an evaluation index for the effect of fitting regression. In
this study, R2 represents the ability of models to capture temporal dis-
charge patterns of standard deviation for different percentiles. R2 can
be calculated as follows:

R2 ¼
∑n
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NSE represents the relative magnitude of the residual variance
compared with the measured data variance (Nash and Sutcliffe,
1970). NSE ranges from -∞ to 1, and the optimal value for NSE is 1.
The simulated result is more reliable when the NSE value is greater
than 0. Conversely, when the NSE is less than 0, the simulation is con-
sidered unreliable.

NSE ¼ 1−
∑n

i¼1 xi−yið Þ2
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Δμ represents deviation from the mean between simulated and ob-
served discharges; it measures the models' ability to capture the aver-
age discharge magnitude. Δμ can be calculated as follows:

Δμ ¼
∑n

i¼1xi
n −∑n

i¼1yi
n

∑n
i¼1yi
n

ð3Þ

Δσ represents deviation from the standard deviation, which mea-
sures the ability to capture the amplitude of the standard deviation. It
can be calculated as follows:

Δσ ¼
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xi denotes the simulated discharge values on day i, and yi denotes the
observed discharge values on day i.

These four statistical metrics were calculated for eachmodel at all
stations. Two steps were conducted to rank the model performances
in discharge simulations based on the observed data of seven hydro-
logical stations. First, we determined the optimal value for different
metrics: 1 for R2 and NSE, 0 for Δμ and Δσ. We ranked the ten models
based on the distances to the optimal value for four metrics at each
station, and four ranking sequences were obtained at each station.
The ranking represents the score of the item, which means that the
closer the value to the optimal value, the lower score of the model.
28 score series were calculated for four metrics at seven stations.
We summed the 28 scores for each model, and the sum represents
the performance of the models. The lower the score, the better the
model performance. Similarly, we extracted the discharge series at
different percentiles for all simulated and observed data and ranked
the model performances for the five discharge percentiles utilizing
the same method.

4. Results

4.1. Model performance at different discharge percentiles

The distribution of the simulated discharges became more concen-
trated as the percentile increased. Fig. 3 to Fig. 7 display the annual ob-
served and simulated discharge series for the five discharge percentiles
at the seven stations. For the low percentiles (Q5, Q25), large deviations
occurred between the simulated and observed discharge series, and
their annual discharge curves simulated by different models were



Fig. 3. Comparison of the annual discharge series of observed and simulated discharges at the 5th percentile. (a) Chiang Saen, (b) Luang Prabang, (c) Nong Khai, (d)Mukdahan, (e) Pakse,
(f) Stung Treng, and (g) Kratie.
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more divergent than that of high flow. The model ensemble discharge
and the observed discharge displayed high consistency at most stations
for all percentiles. Model ensemble series was closer to the observed se-
ries than most of the single model series. The interannual fluctuation in
the discharge increased as the discharge percentile increased. A system-
atic error occurred for the low percentiles (Q5, Q25), where the three
models CLM4, H08 and LPJmL always simulated a much smaller dis-
charge than the observed and other models. ORCHIDEE simulated a
much higher discharge than the others for Q5 and Q25. This trend
became more obvious when the station was closer to the estuary. For
the simulated discharge performance for Q5, ORCHIDEE was approxi-
mately twice that of the other models including the observed and en-
semble models at Chiang Saen, Luang Prabang, and Nong Khai
stations. Discharge of ORCHIDEE for Q5 was approximately four times
Fig. 4. Comparison of the annual discharge series of observed and simulated discharges at the 25
(f) Stung Treng, and (g) Kratie.
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of that at Stung Treng and Kratie stations. The simulated discharge of
ORCHIDEE for Q25 was similar to that of Q5. For the high discharge
percentile (Q95), ORCHIDEE simulated a smaller discharge than other
models at all stations except for Kratie. The same trend occurred with
the H08 model, which underestimated at low percentiles and
overestimated at high percentiles, although not as obviously as
ORCHIDEE displayed. The simulated discharges of WaterGAP2, WAYS,
PCR-GLOBWB and MATSIRO were closer to the observed discharge.

Dispersion of the simulated discharge series reflect the uncertainties
in discharge simulations among different models. The deviations in dis-
charge between different models for lower percentiles (e.g., Figs. 3 and
4) were much greater than those in higher percentiles (e.g., Figs. 6 and
7). The distribution at the median (Q50) was between the extreme low
and extreme high flow (Fig. 5). The large deviations between the
th percentile. (a) Chiang Saen, (b) Luang Prabang, (c) Nong Khai, (d)Mukdahan, (e) Pakse,



Fig. 5. Comparison of the annual discharge series of observed and simulated discharges at the 50th percentile. (a) Chiang Saen, (b) Luang Prabang, (c) Nong Khai, (d)Mukdahan, (e) Pakse,
(f) Stung Treng, and (g) Kratie.
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selectedmodels indicated that, uncertainties in discharge simulation for
lower percentiles were much greater than that for higher percentiles.

The annual mean series displayed similar patterns at all the stations
for all the models. Fig. 8 displays the annual mean discharge series for
five discharge percentiles. At all the seven stations, the simulated dis-
charges for all the models increased as the percentiles increased,
although the patterns were different especially for ORCHIDEE. In addi-
tion, the discharge increased dramatically from upstream to the down-
stream. The discharge increased approximately three fold from Chiang
Saen station to Kratie station, indicating that a substantial amount of
local contributions to discharge occurred from downstream of the
Lancang-Mekong River basin. The phenomenon of underestimation at
Fig. 6. Comparison of the annual discharge series of observed and simulated discharges at the 75
(f) Stung Treng, and (g) Kratie.
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low percentiles and overestimation at high percentiles for ORCHIDEE
is displayed in Fig. 3 to Fig. 7. Fig. 8 also revealed the phenomenon.
The discharges simulated by ORCHIDEE for Q5 and Q25 were larger
than all other simulated discharges including the observed and ensem-
ble at all the stations except for Chiang Saen. For Q95, the discharge of
ORCHIDEE was smaller than those of the other models at all stations.
The discharge series simulated by CLM4 and MATSIRO were smaller
than other models at most stations. H08, MPI-HM and DBH
overestimated the discharge for high discharge percentiles at most
stations.

Four statistical metrics indicated increasingly improvement as
the percentile of the simulated discharge series increased. Fig. 9
th percentile. (a) Chiang Saen, (b) Luang Prabang, (c) Nong Khai, (d)Mukdahan, (e) Pakse,



Fig. 7. Comparison of the annual discharge series of observed and simulated discharges at the 95th percentile. (a) Chiang Saen, (b) Luang Prabang, (c) Nong Khai, (d)Mukdahan, (e) Pakse,
(f) Stung Treng, and (g) Kratie.
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demonstrates station mean performances for different discharge per-
centiles using the average discharge from all the models. Fig. 9
(a) displays the R2 for the five discharge percentiles. R2 for Q5, Q25
and Q50 were less than 0.10, although it increased rapidly for Q75 and
Q95. R2 for Q95was close to 0.70. The results show that themodels per-
formed poorly for discharges at low percentiles, and the fitting effect
improved as the discharge percentile increased; the simulated dis-
charges had a poor performance for Q95. NSE indicated an obvious im-
provement in discharge simulations along with increasing percentile
(Fig. 9(b)). NSE had a very low value (less than −60) for the extreme
low percentile (Q5), indicating poor predictive power for the evaluated
Fig. 8. Annual mean of observed and simulated discharges at different percentiles. (a) Chiang
(g) Kratie.
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models for low discharge percentile. The simulated discharges
displayed underestimation for Q5, Q25, Q50 and Q75; slightly overesti-
mation for Q95. The simulated discharge series had themost centralized
distribution for Q95 (Fig. 9(c)). The ensemble simulated discharge un-
usually underestimated the discharges for most percentiles. The ability
of the models to capture the amplitude of standard deviation also im-
proved as the percentile increased, and Δσ was very close to 0 for Q95
(Fig. 9(d)). In general, the performances of discharge simulations were
poor for low percentiles but improved as percentile increased. Fig. 9
also indicated that the uncertainties in discharge for low percentiles
were greater than for high percentiles.
Saen, (b) Luang Prabang, (c) Nong Khai, (d) Mukdahan, (e) Pakse, (f) Stung Treng, and



Fig. 9. Comparison of model performances with different metrics at different percentiles. (a) R2, (b) NSE, (c) Δμ, and (d) Δσ.

Fig. 10. Comparison of model performance with different metrics at seven hydrological stations. (a) R2, (b) NSE, (c) Δμ, (d) Δσ. The optimal value is 1 for R2 and NSE, 0 for Δμ and Δσ.
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4.2. Model ranking based on discharge simulation performances

As for the entire discharge series, themodels displayed different pat-
terns for different stations. Fig. 10 demonstrates the performances of
discharge simulations using four statistical metrics. All the models
displayed significant correlations with the observed discharge series
while R2 of most models were greater than 0.60 for all stations. R2 of
several models were larger than 0.80 for stations downstream of the
river including WaterGAP2, MPI-HM, H08, MATRISO and WAYS. These
resultsmean that the simulated discharge series of all themodels repro-
duce the observed series satisfactorily. The model ensemble series had
the best performance at all the stations in contrast with the single
model series. CLM4 and ORCHIDEE had the lowest R2 for most stations
(greater than 0.70 at all stations, and greater than 0.80 for some sta-
tions). R2 at Chiang Saenwas relatively low formostmodels. The overall
trend of R2 increased as the distance from the estuary decreased, al-
though for stations that were closest to the estuary (Stung Treng,
Kratie), the distribution of R2 was not concentrated at the stations in
the middle of the basin, such as Mukdahan (Fig. 10(a)).

Fig. 10(b) shows that all NSE values were greater than 0 (the vast
majority of NSE values were greater than 0.40), which means that the
simulations could be trusted. Similar to R2, NSE of the model ensemble
were greater than signal model at most stations. Model ensemble of
NSEwere greater than 0.80 at all stations except for Chiang Saen station.
WaterGAP was the best model at all stations based on NSE, and even
performed better than the model ensemble at Luang Prabang, Pakse
and Kratie. NSE values for CLM4 at Chiang Saen, Luang Prabang and
Kratie stations were obviously less than those of the other models.
WAYS also had a lower NSE value at Chiang Saen. The NSE values of
DBH, H08 and ORCHIDEE were lower than the average values.

Fig. 10(c) shows that the models had different performances for dif-
ferent stations as forΔμ, which indicates the deviation frommean value
between the simulated discharge series and the observed data. Δμ
displayed negative deviations at Chiang Saen, Luang Prabang stations
and positive deviations at Nang Khai and Kratie stations for most of
the models. From the perspective of model performance, CLM4 and
MATRISO had much higher negative deviations than the other models
Table 3
Model performances at seven hydrological stations based on NSE, R2, Δμ, and Δσ.

Station Indicator CLM4 DBH H08 LPJmL MATRISO

Chiang Saen NSE 0.18 0.45 0.52 0.54 0.60
R2 0.52 0.64 0.75 0.65 0.72
Δμ −0.46 0.17 −0.02 −0.11 −0.26
Δσ −0.18 0.17 0.35 0.12 −0.06

Luang Prabang NSE 0.39 0.56 0.69 0.65 0.73
R2 0.60 0.61 0.80 0.70 0.78
Δμ −0.39 0.08 −0.05 −0.14 −0.20
Δσ −0.14 −0.01 0.22 0.01 −0.11

Nang Khai NSE 0.60 0.45 0.50 0.65 0.75
R2 0.72 0.65 0.81 0.77 0.80
Δμ −0.08 0.29 0.16 0.05 0.02
Δσ 0.19 0.11 0.42 0.21 0.13

Mukdahan NSE 0.72 0.67 0.73 0.73 0.82
R2 0.77 0.78 0.88 0.82 0.85
Δμ −0.19 0.26 0.17 0.07 −0.17
Δσ −0.04 0.08 0.28 0.20 −0.10

Pakse NSE 0.63 0.81 0.85 0.82 0.79
R2 0.68 0.82 0.88 0.85 0.83
Δμ −0.08 0.12 0.02 −0.04 −0.19
Δσ 0.03 −0.04 0.10 0.06 −0.12

Stung Treng NSE 0.60 0.82 0.82 0.83 0.74
R2 0.64 0.83 0.84 0.84 0.78
Δμ −0.11 0.07 −0.02 −0.08 −0.19
Δσ −0.06 −0.11 0.03 −0.03 −0.19

Kratie NSE 0.24 0.52 0.47 0.57 0.77
R2 0.56 0.84 0.86 0.84 0.78
Δμ 0.21 0.48 0.35 0.27 −0.11
Δσ 0.28 0.21 0.44 0.37 −0.11
RANK 9 8 7 6 5
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for upstream and downstream reaches, respectively. DBH had higher
positive deviation than the other models at most stations. Δσ indicates
the deviation from standard deviation between the simulated discharge
series and the observed data. The obvious point was that Δσ of H08 and
ORCHIDEE were significantly different from those of other models. Δσ
of H08 were larger than that the others at all stations, whereas
ORCHIDEE had an opposite performance. DBH model had a large posi-
tive deviation in Δμ but a good performance in Δσ. WaterGAP2
displayed a good performance for both Δμ and Δσ.

Table 3 presents the detailed values of the four indicators for all the
models at the seven stations. The performances of the ensemble series
were better than that of each of single model series. As the performance
of specificmodel.WaterGAP2 got the highest score based on the scoring
system, while WAYS, PCR-GLOWBW, MPI-HM and MATRISO ranked 2,
3, 4, and 5, respectively. ORCHIDEE obtained the lowest ranking mainly
due to its poor performance forΔμ. CLM4model did not performedwell
in term of NSE (0.18 for Chiang Saen and 0.24 for Kratie), and it had neg-
ative deviations for Δμ at Chiang Saen (−0.46) and Luang Prabang
(−0.39). The simulated discharge series of CLM4 differed considerably
from those of the other models. NSE and R2 for most of the models
were closer to 1 as the station location approached the estuary, but
there was a drop at Kratie station. The values of Δμ at Chiang Saen,
Luang Prabang and Pakse were negative for most models, which
means that most models underestimated the magnitudes of the dis-
charge series at these stations. However, as the station locations
approached the estuary, models with negative Δμ values were signifi-
cantly reduced, and only two models displayed negative values for Δμ
(MATRISO andORCHIDEE) at Kratie station. This phenomenon indicates
that the model performances improved as the location of stations
moved closer to the estuary.

5. Discussion

This study systematically evaluated ten HMs and LSMs using differ-
ent discharge percentile series for the Lancang-Mekong River basin
from 1975 to 2010. Four metrics (R2, NSE, Δμ, and Δσ) were used to as-
sess the model performances. Model ranking based on the entire
MPI-HM ORCHIDEE PCR-GLOWBW WaterGAP2 WAYS ENSEMBLE

0.71 0.50 0.55 0.71 0.25 0.79
0.73 0.65 0.57 0.79 0.49 0.80

−0.10 −0.21 −0.02 0.08 −0.04 −0.10
−0.07 −0.48 −0.11 0.16 0.18 −0.09
0.75 0.57 0.69 0.85 0.59 0.84
0.80 0.72 0.71 0.85 0.64 0.85
0.10 −0.18 −0.01 −0.01 −0.19 −0.10
0.11 −0.48 0.00 −0.03 −0.13 −0.13
0.71 0.66 0.73 0.86 0.71 0.86
0.76 0.73 0.73 0.86 0.73 0.87
0.09 0.08 −0.03 0.02 0.02 0.06
0.09 −0.40 −0.07 −0.02 0.01 0.00
0.74 0.57 0.74 0.90 0.89 0.91
0.78 0.69 0.75 0.90 0.89 0.91
0.12 0.00 −0.06 −0.03 0.04 0.02
0.04 −0.52 −0.06 −0.09 −0.04 −0.08
0.78 0.48 0.75 0.91 0.90 0.90
0.78 0.65 0.76 0.92 0.90 0.92

−0.02 −0.10 0.06 −0.01 0.00 −0.02
−0.10 −0.60 −0.06 −0.12 −0.14 −0.15
0.73 0.51 0.73 0.87 0.87 0.88
0.74 0.62 0.73 0.88 0.88 0.90

−0.09 0.11 0.02 0.04 0.02 −0.02
−0.19 −0.53 −0.13 −0.11 −0.16 −0.21
0.60 0.51 0.70 0.87 0.89 0.86
0.76 0.64 0.74 0.90 0.90 0.91
0.28 0.22 0.16 0.15 0.09 0.21
0.16 −0.48 0.01 0.00 −0.12 0.00
4 10 3 1 2
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discharge series was acquired that could represent the relative abilities
of the models in discharge simulations.

An interesting finding of this studywas themodel performances im-
proved as percentiles increased (Fig. 9). The trends of model perfor-
mances with discharge percentile were consistent with those of the
previous studies (Smakhtin, 2001; Gudmundsson et al., 2011). The
models displayed relatively poor performances and huge uncertainties
for low percentiles. The dispersed distribution of simulated discharge
in lower percentiles can be attributed to several reasons. First, the differ-
ent strategies in the routing scheme, especially the differences in ex-
treme hydrological events simulations (e.g., drought events) could
lead to different simulation results under same driven data. A previous
study compared the simulated discharges from nine HMs and CaMa-
Flood, the simulated discharges from CaMa-Flood were driven by the
HMs' simulated runoff. They concluded that the routing scheme had a
considerable influence on discharge simulations (Zhao et al., 2017).
Second, the low discharge percentiles weremore sensitive to anthropo-
genic impacts. Human activities could lead to greater impacts on stream
flow at low percentiles. For example, irrigation andwaterwithdrawal in
dry season for domestic and industrial usage have larger effects on
stream flow at local scales (Wada et al., 2014).

It can be demonstrated that the overall performances of the models
were generally good (Fig. 10), although most of the models were not
calibrated. WaterGAP2 and WAYS were the only two models that had
underwent calibration, which explains why these two models were
the best among the ten models. The results of this study also displayed
that the simulated discharge series of these two models were the best
among the ten models (Table 3). This finding indicated that calibration
could improve the model and generate better simulations, which was
consistent with the findings of the previous studies (Mendoza et al.,
2015; Bai et al., 2018). Moreover, the simulation performances of the
HMs were generally better than those of the LSMs. Three LSMs used in
this study including CLM4, MATRISO, and ORCHIDEE ranked 9, 5, and
10 respectively. It can be attribute to that HMs were more focus on hy-
drology process simulations, and generally featured more detailed de-
scriptions of hydrology processes than LSMs.

In addition, the model performances of the discharge simulations
improved as the stations approach to the estuary, but deteriorated at
the station which was closest to the estuary (Kratie). As demonstrated
in Table 3, most models performed better at stations located farther
downstream than upstream, e.g., the values of R2 and NSE of WAYS
were closer to 1 for stations fromupstream to downstreambut dropped
at Kratie. Themodel ensemble series displayed a similar trend. This pat-
tern linked to the fact that the discharge in the downstream is greater
than that in the upstream. The simulations of the routing process were
more accurate in the downstream with greater discharge. Moreover,
the effects of forcing data cannot be ignored. An accurate forcing data
will substantially improve the simulations. The uncertainty in precipita-
tion data can led to a significant impact on discharge simulations
(Biemans et al., 2009). For the Lancang-Mekong River basin, the natural
conditions vary greatly from upstream to downstream. The upstreamof
the Lancang-Mekong River flows through the Hengduan Mountains,
and the topography of the upstream is more complex than that of the
downstream area. This difference between upstream and downstream
could have huge impacts on discharge simulations. The reason for the
worse performance at Kratie station (which is the closest to the estuary)
may be attributed to the fact that the currentHMs and LSMs did not take
the effects of interaction between sea water and river into consider-
ation. Such interactions between river and sea, e.g., seawater intrusion
and salt interaction can significantly change the hydrological process
in the river near the estuary (Pokhrel et al., 2018). The current HMs
and LSMs generally did not consider these interactions, leading to un-
satisfactory simulations at Kratie.

Several models displayed systematic underestimations at low dis-
charge percentiles for all stations in the Lancang-Mekong River basin
(CLM4, LPJmL and H08). This kind of systematic error also appeared in
10
the previous studies (Gudmundsson et al., 2012b). The study compared
large-scale hydrological models with observed runoff percentiles in
426 small catchments, significantly underestimated also appeared for
the above models (LPJmL and MPI-HM at Q5, MPI-HM at Q25 and Q50,
and H08 at Q75). The deviation between the station and selected pixel
led to extreme underestimations in the discharge simulations because
incorrect simulations of flow networks resulted in incorrect routing.
Since we optimized the pixel selection with R2 and NSE to determine
where the stationswere located, therewas no deviation between the se-
lected pixel and station location. Beside, all the models were forced by
the unified GSWP3 climate data. Thus, the systematic underestimation
at low percentiles can most likely be attributed to the routing scheme.

Overall, the selected HMs and LSMs performed generally well re-
garding the entire discharge series for the Lancang-Mekong River
basin, while the calibrated WaterGAP2 and WAYS had the best dis-
charge simulation performances. The models had poor performances
at low discharge percentiles, although the performances improved as
discharge percentiles increased. This pattern reflects the inadequacy of
existing models to simulate extremely dry hydrological events. In addi-
tion, the model performances in discharge simulations generally im-
proved with the distance towards the estuary. The differences of
routing schemes and different natural conditions from upstream to
the downstream appear to be responsible for this phenomenon.

6. Conclusion

This study evaluated the performances of the ten ISI-MIP models in
discharge simulation in the Lancang-Mekong River using five discharge
percentiles. Themajor findings of this paper are summarized as follows:

(1) The selectedmodels performed poorly in discharge simulation
for low discharge percentiles but improved as percentiles
increased. The uncertainties for discharge simulations for
lower percentiles were much larger than that for higher
percentiles.

(2) The model performances generally improved with the dis-
tance to the estuary for all discharge percentiles. However,
the models have difficulties in simulating discharge for the
river sections close to estuary.

(3) The models performed generally well in overall discharge
simulations for the Lancang-Mekong River basin, and while
the calibrated WaterGAP2 and WAYS had the best
performances.

This study inspire us current models are still not satisfactory in ex-
treme hydrological eventsmodelling and seawater intrusionmodelling.
Hence, further development of models remain necessary for extreme
hydrological event forecasts. The interactions between freshwater and
saline water near to estuary need to be further considered for more ac-
curate hydrological simulation.
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