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Abstract
Porosity is one of the most basic physical properties of a stratum. Previous studies have shown that porosity generally decreases
with depth. There are five main types of empirical models available for describing such a porosity–depth relationship: the linear
model, the exponential model, the power law model, the reciprocal model, and the parabolic model. For the majority of past and
existing studies, each tends to focus on one study area, and thus does not present enough data to cover a large depth range and
represent the general attenuation of porosity through Earth’s crust. Whether those models can deal with a larger depth scale or not
remains unknown. This paper proposes a new empirical porosity–depth model that can describe the decrease of porosity through
the entire Earth’s crust. Porosity–depth data are collected from the literature and the proposed model fits the data very well. The
model improves the agreement between calculated and measured porosity values and can be used to describe the porosity–depth
relationship for continental crust, oceanic crust, sedimentary rocks, and unconsolidated sediments. The proposed model tends to
slightly overestimate the measured data for Earth’s continental crust in the depth range of 5–15 km. It is also difficult for a model
to fit the near-surface porosity data well for unconsolidated sediments. This study improves the usefulness of the empirical
models in estimating porosity where measured data are unavailable, in discerning abnormal strata, and in supporting regional
groundwater studies.
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Introduction

Porosity is of great importance in hydrogeological investiga-
tions that determine the capacity of an aquifer and evaluate
geologic characterization of a reservoir (Pinneker 2010; Şen
2015; Fetter 2018). Observation data show that porosity of
sedimentary rocks generally decreases with depth (e.g., Athy
1930; Hedberg 1936; Chilingarian 1983; Ramm and
Bjørlykke 1994). Porosity–depth relationships have been
widely used to study the generation and migration of hydro-
carbons and some abnormal cases of strata (Rieke and

Chilingarian 1974; Schmoker and Halley 1982; Halley and
Schmoker 1983; Wygrala 1989). Porosity attenuation in sed-
imentary rocks has been shown to be associated with many
physical, geological, and mineralogical factors (Hedberg
1936; Dickinson 1953; Maxwell 1964; Gregory 1977;
Ramm 1992).

Various empirical models have been proposed to describe
the porosity–depth relationship. Previous studies on porosity–
depth models basically focused on sedimentary rocks (e.g.,
Athy 1930; Hedberg 1936; Dickinson 1953; Schmoker and
Halley 1982). The most frequently used models can typically
be catalogued into two types: the linear model and the
exponential model. The exponential model was proposed by
Athy (1930) and it has been widely used to describe the
porosity–depth relationships of various sedimentary rocks, in-
cluding shale, mudstone, limestone and dolomites, and sand-
stone (Rubey and Hubbert 1959; Steckler and Watts 1978;
Sclater and Christie 1980; Schmoker and Halley 1982; Goff
1983; Halley and Schmoker 1983; Baldwin and Butler 1985;
Bethke 1985; Ramm and Bjørlykke 1994; Armstrong et al.
1998; Kominz and Pekar 2001; Jiang et al. 2010; Tanikawa
et al. 2016, 2018; El-Shari 2017; Carlino et al. 2018; Ojha and
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Lewis 2018; Aschwanden et al. 2019; Das et al. 2019;
Farahzadi et al. 2019; Guy et al. 2019; Licciardi et al. 2019;
Morris et al. 2019; Zhu and Li 2019; Fang et al. 2020; Martín-
Martín and Robles-Marín 2020). Researchers have also pro-
posed modified forms of the exponential model (Robinson
and Gluyas 1992; Bjørkum et al. 1998). The double exponen-
tial model is proposed to better describe additional porosity
loss at shallow depths (Bond et al. 1983; Schneider et al. 1996;
Dutta et al. 2009; Saul and Lumley 2013; Saul et al. 2013;
Guy et al. 2019; Martín-Martín and Robles-Marín 2020). The
linear model is the most intuitive one that is generally applied
to sandstone datasets (Hedberg 1936; Wilson and McBride
1988; Ramm and Bjørlykke 1994). It has also been widely
used because most study areas cover limited depth ranges
and the porosity reduces to values far away from zero.

There are also other models, like the reciprocal model
(Falvey and Middleton 1981; Falvey and Deighton 1982;
Guidish et al. 1985; Rieser et al. 2006), the power law model
(Baldwin and Butler 1985; Curtis et al. 1986; Huang and
Gradstein 1990), the parabolic model (Huang and Gradstein
1990; Wold 1994), and the piecewise model (Ramm and
Bjørlykke 1994; Li et al. 2009; Cao et al. 2017; Wu et al.
2019). These models have been relatively less frequently
used. Although many studies have been conducted on poros-
ity, most of them are restricted to specific study areas and the
porosity–depth data presented are limited. As a result, a syn-
thesis of the existing data in the literature and a model that can
describe the porosity–depth relationship through the entire
crust are needed.

This paper proposes a new model for describing the
porosity–depth relationship for Earth’s crust. Evaluation of
the model was made by comparing the calculated porosity
values with measured data. Porosity–depth data for the conti-
nental crust, the oceanic crust, and unconsolidated sediments
were collected from the literature. Factors affecting the
porosity–depth relationship are also briefly discussed.

Materials and methods

Proposed model

A new model that can provide reasonable surface porosity
values and estimate the decreasing porosity rate is proposed,
which can be written as

ϕ zð Þ ¼ ϕ0

1þ mzð Þn ð1Þ

where ϕ is the porosity, ϕ0 is the porosity at ground surface
(z = 0), z is the depth, andm and n are fitting parameters. There
are three parameters in Eq. (1), i.e., ϕ0, m, and n. The param-
eter ϕ0 is controlled by measured surface porosity values. The

model decreases from ϕ0 at a reasonable rate with depth.
Equation (1) with n = 1 has been shown to fit the porosity–
depth data better than the exponential model, as it can provide
better description of the rapid porosity decrease near the sur-
face and the slow porosity decrease at greater depths (e.g.,
Falvey and Middleton 1981; Guidish et al. 1985; Rieser
et al. 2006).

Data

Porosity datasets in the literature were collected to evaluate the
proposed model. Most of the selected datasets are for sedi-
mentary rocks. As an essential factor affecting porosity, lithol-
ogy is a key point for the discussion of porosity–depth rela-
tionships (Maxwell 1964; Magara 1980; Wygrala 1989).
Thus, the porosity data of sedimentary rocks were divided into
those for mudstone, carbonate rocks, and sandstone. Each
category contains three or more data sources to make sure it
can represent the general situation. No attempt was made to
differentiate other factors that also contribute to scattering in
the porosity–depth plots. Datasets were also combined to gen-
erate profiles for Earth’s continental crust, oceanic crust, and
unconsolidated sediments.

The Levenberg-Marquardt nonlinear least squares method
(Marquardt 1963; Press et al. 1992) was used to fit the model
to each data category, including continental crust, oceanic
crust, and unconsolidated sediments. The fitted parameters
of the model are listed in Table 1. It should be noted that the
porosity–depth data for mudstone, carbonate rocks, and sand-
stone are not fitted separately; the parameters for “continental
crust” of the model in Table 1 are used to calculate porosity
values for these rocks. The performances of the models are
evaluated based on the coefficient of determination, R2

(Table 1). The higher the R2 value, the better the performance
of the model.

Table 1 Fitted parameters and coefficient of determination for the
proposed model

Type m n ϕ0 R2

Continental crust 0.071 5.989 0.474 0.583

Mudstone 0.128 3.899 0.541 0.622

Carbonate 0.195 2.889 0.494 0.684

Sandstone 0.005 70.72 0.432 0.442

Oceanic crust 0.008 89.53 0.678 0.850

Sediments 0.304 2.191 0.572 0.718
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Results

Earth’s continental crust

The porosity–depth data were synthesized to produce a depth
profile as deep as possible for Earth’s continental crust
(Fig. 1). In this figure, data from sandstone, carbonate, and
mudstone were grouped together. Seven groups of data were
collected for mudstone, including the Mid-Atlantic Outer
Continental Shelf (COST B-2 well; Smith et al. 1976), Gulf
Coast (Magara 1974), Scotian Shelf off Canada (Mudford
1988), Soluq Depression in Libya (El-Shari 2017), Taranaki
Basin in NewZealand (Armstrong et al. 1998), VikingGraben
in the North Sea (Goff 1983), and Wairarapa in New Zealand
(Wells 1990). Six groups of data were collected for carbonate,
including Abadan Plain (Farahzadi et al. 2019), BMB
(Barnowko-Mostno-Buszewo) Field in Poland (Kasza et al.
2006), laboratory data (Terzaghi 1940; Fruth et al. 1966;
Robertson 1967; Morelock and Bryant 1971; Halley and
Schmoker 1983), Soluq Depression in Libya (El-Shari
2017), South Florida Basin in America (Schmoker and
Halley 1982), and Tarim Basin in China (Wei et al. 2017).
Ten groups of porosity data were collected for sandstone,

including the Mid-Atlantic Outer Continental Shelf (COST
B-2 well; Smith et al. 1976), the Mid-Atlantic Outer
Continental Shelf (COST B-3) well (Kominz and Pekar
2001), Eromanga Basin in Australia (Gallagher and
Lambeck 1989), Gulf of Mexico (Dutta et al. 2009), Junggar
Basin in China (Pang et al. 2012), Liaohe Basin in China (Wei
et al. 2016), Niuzhuang Sag in China (Liu et al. 2014), North
Ordos Basin in China (Xia et al. 2018), Norwegian Shelf
(Ramm and Bjørlykke 1994), and Viking Graben in the
North Sea (Zervos 1986). In addition, data from Franciscan
rocks from central and northern California, USA (Stewart and
Peselnick 1977; Bray and Karig 1985), Kola borehole in
Russia (Kozlovsky 1987; Lobanov et al. 2002; Trčková
et al. 2002; Zharikov et al. 2003), and KTB borehole in
Germany (Berckhemer et al. 1997) are also shown in the fig-
ure. The datasets from the Kola and KTB boreholes are pre-
dominantly igneous rocks with pervasively low porosity.
When the sedimentary rocks are taken as a whole, they cluster
together and show explicit consistency. Lithology may exert
an influence on the shape of the porosity–depth profile within
a limited range, but it does not change the overall pattern of
the porosity–depth relationship at a larger scale.

The proposed model provides an overall good fit to the
porosity–depth data (Fig. 1). The surface porosity ϕ0 provided
by the proposed model is 0.474, which is a reasonable value.
The proposed model describes the decreasing trend very well
over the depth range of 0–5 km. But the agreement between
measured and calculated data in the range of 5–15 km depth is
not so good. The proposed model tends to slightly overesti-
mate the measured data. This is probably due to fact that there
are not enough measured data in this depth range. The model
porosity decreases to almost zero when depth is greater than
about 18 km. The near-surface porosity values show a wide
range, as presented in Fig. 1. The model performance will not
be very good near the surface due to the scattering of the data.
As there are three fitting parameters in the proposed model,
the parameters and the shape of the curve may change when
more data are available with depths greater than 5 km, espe-
cially greater than 10 km.

Sedimentary rocks

Figure 2 shows the proposed model with data for mudstone.
There are seven groups of porosity–depth data from the liter-
ature and they can represent the porosity–depth profile of
mudstone in general. The data start from the ground surface
to a depth of 5.5 km, with porosity varying from over 0.75 to
0.03. In fact, the porosity–depth relation of mudstone (mostly
shale) has been generally represented by an exponential model
in previous studies (e.g., Magara 1974; Goff 1983; Mudford
1988; Armstrong et al. 1998; Kominz and Pekar 2001). It can
be seen from Fig. 2 that the proposed model also performs
well globally in this depth range. The proposedmodel with the

Fig. 1 Comparison of calculated and measured porosity data for Earth’s
continental crust in general
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set of parameters for “continental crust” can provide a reason-
able description of the porosity–depth data for mudstone, but
it tends to slightly underestimate the porosity values with
shallow depth (less than 1 km). The proposed model was also
fitted to the data separately and the fitted parameters are
shown in Table 1. The fitted surface porosity value for mud-
stone is higher than that for continental crust and these fitted
data improve the agreement between measured and calculated
data in the depth range of 0–1 km (Fig. 2). Although the
parameter sets for continental crust and mudstone are different
from each other (Table 1), the two curves become indistin-
guishable when depth is greater than about 3 km.

A comparison of the proposed model with porosity–depth
data for carbonate rocks is shown in Fig. 3. The data cover a
depth range over 8 km from ground surface where the porosity
is about 0.5 on average. The data presented by Schmoker and
Halley (1982) fall into three groups (1 data point, 2–3 data
points, andmore than 4 data points), but no distinction is made
here. Porosity data obtained from borehole TS1 in northern
Tarim Basin cover a depth range of 6 to 8 km (Wei et al.
2017). In the carbonate data set, the porosity values are gen-
erally close to zero, but some of the porosity values show
significant anomalies because of hydrothermal dissolution of
dolomite rocks (Wei et al. 2017). The proposed model with
the set of parameters for “continental crust” can provide a

reasonable fit to the data overall. However, the model tends
to overestimate the porosity values when depth is greater than
about 5 km. The proposed model was also fitted to the data
separately. The fitted parameters are shown in Table 1.
Figure 3 shows that the proposed model curve is now closer
to the measured porosity data than the curve for continental
crust when depth is greater than about 5 km. The measured
near-surface porosity values also show a wide range.

Figure 4 shows a comparison of the proposed model with
the porosity–depth data for sandstone. This figure combines
10 groups of data and the porosity values are relatively
scattered. The data are distributed in the depth range of 0–
5 km. Differing from mudstone and carbonate, the data in this
case show a general linear decreasing trend. This linear trend
for sandstone is due to the dominance of primary porosity
(Magara 1980). The porosity–depth relationship is initially
almost a straight line, and its variances have been shown to
be caused by factors like pressure, temperature, cementation,
and deposition environment (Selley 1978; Wilson and
McBride 1988; Ramm and Bjørlykke 1994). The proposed
model with the set of parameters for “continental crust” de-
scribes the general decreasing trend reasonably well. The pro-
posed model was also fitted to the data separately and the
fitted parameters are shown in Table 1. Although the fitted
surface porosity is slightly lower, the continental crust curve

Fig. 2 Comparison of calculated and measured porosity data for
mudstone Fig. 3 Comparison of calculated and measured porosity data for

carbonate rocks
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and sandstone curve become indistinguishable when depth is
greater than about 2 km.

Earth’s oceanic crust

The decreases of porosity with depth for Earth’s oceanic
crust are shown in Fig. 5. Most of the data were collected
from boreholes of the Deep Sea Drilling Program
(DSDP), Ocean Drilling Program (ODP), and Integrated
Ocean Drilling Program (IODP; Hamilton 1976; Taylor
and Leonard 1990; Expedition 317 Scientists 2010;
Busby et al. 2017). Data sources are as follows: site 222
in the Arabian Sea (Hamilton 1976), site 671 in the
Barbados forearc (Taylor and Leonard 1990), site U1437
in the Izu-Bonin-Mariana arc (Busby et al. 2017), site
U1352 within the Canterbury Bight (Expedition 317
Scientists 2010), and seismic porosity (Shor 1962; Shor
and Von Huene 1972; Montecchi 1976; Curray et al.
1977; Muruachi and Ludwig 1980; Ladd et al. 1978;
Ibrahim et al. 1979; Von Huene 1979; Kieckhefer et al.
1980; Nasu et al. 1982; Bray and Karig 1985). Seismic
data from accretionary prisms are also used to extend the
depth range for this category (Bray and Karig 1985). The
data sets cover the depth range of 0–5 km. In contrast to
Earth’s continental crust, near-surface porosity for the

oceanic crust is exclusively high. The proposed model
agrees very well with the porosity data of Earth’s oceanic
crust (Fig. 5). The highest R2 value is also obtained in this
case (Table 1).

Unconsolidated sediments

A comparison of calculated and measured porosity–depth
data for unconsolidated sediments is shown in Fig. 6.
Data sources are as follows: (1) all over the world
(Borst 1982), (2) Taranaki Basin in New Zealand
(Funnell et al. 1996), (3) an unspecified location (Lux
et al. 2014), and Honshu and Hokkaido in Japan
(Aoyagi 1983). The observed data are highly scattered
in a small depth range near the surface (0–0.5 km).
Compared with sedimentary rocks, unconsolidated sedi-
ments near the surface have greater porosity values, which
are close to those of the oceanic crust (Fig. 5). The pro-
posed model also performs well and the R2 value is also
relatively high. The agreement between the model and
measured data is globally good and the surface porosity
of 0.572 is also reasonable; however, it is hard for a mod-
el to match the near-surface porosity values well due to
the scattering of the data.

Fig. 4 Comparison of calculated and measured porosity data for
sandstone

Fig. 5 Comparison of calculated and measured porosity data for Earth’s
oceanic crust in general
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Discussion

The proposed model provides a reasonable decreasing poros-
ity rate over depth for Earth’s continental crust, oceanic crust,
and unconsolidated sediments. The fitted surface porosity ϕ0
of the proposedmodel is also a reasonable value. Furthermore,
three fitting parameters in the proposedmodel make the model
flexible. The parameters in the model can be improved when
more porosity–depth data are available, especially porosity–
depth data for large depths.

Many other factors such as initial porosity, time, clay con-
tent, temperature, cementation, and effective stresses, also af-
fect the porosity–depth relationship (Dickinson 1953;
Chilingarian and Wolf 1976; Wygrala 1989; Ramm 1992).
Relatively low porosity values within a certain depth range
are associated with the existence of secondary porosity, ero-
sion of upper strata, and uplift from historical maximum burial
depth (Wilson andMcBride 1988; Ehrenberg et al. 2009). It is
difficult to separate the effect of each single factor and express
the relationship simply as a function of depth (Magara 1978;
Ramm and Bjørlykke 1994). Nevertheless, burial depth is
demonstrated to be the single major factor determining poros-
ity in some study areas (e.g., Scholle 1977; Sonnenberg 2013).
Some studies on other factors affecting porosity loss, like

content of total clay and stable framework grain ratio, generate
multifactor models based on the exponential and the linear
porosity–depth model (Scherer 1987; Ramm 1992; Ramm
and Bjørlykke 1994). The empirical models represent the gen-
eral condition for porosity–depth profiles, but do not ensure
that it works in all cases and should be used in awareness of its
limitations. It should be noted that a predictive porosity–depth
model requires both improved understanding of different
mechanisms affecting porosity and more porosity data from
a greater depth range. More studies on the mechanisms of
porosity loss caused by other factors, and further development
of direct or indirect ways for porosity data acquisition at great-
er depth range, are therefore needed. These improvements will
provide better estimates for porosity in more specific cases
and lead to better porosity–depth models than the existing
ones.

Conclusions

A new model for describing the decrease of porosity with
depth is proposed. The proposed model was compared with
measured porosity–depth data. Porosity–depth data for
Earth’s continental crust, oceanic crust, and unconsolidated
sediments were collected from the literature. The proposed
model gives a reasonable decreasing porosity rate and can
describe the porosity–depth relationship over the entire range
of depth. The surface porosity values fitted by the proposed
model are also reasonable. Although the proposed model
agrees well with measured data globally, it tends to slightly
overestimate the measured data for Earth’s continental crust in
the depth range of 5–15 km. The proposed model also tends to
slightly overestimate the measured data for carbonate rocks in
the same range of depth. It is also difficult for the model to
match the near-surface porosity–depth data of unconsolidated
sediments well due to the scattering of the measured data.
There are three parameters in the model and the model is
flexible in fitting measured porosity–depth data. The proposed
model is mathematically simple and can be readily used in
various studies. It can be used to estimate porosity values for
study areas lacking observed data, to discern abnormal strata,
and to support regional groundwater studies.
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