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1 | INTRODUCTION

Precipitation plays a key role in the global hydrological
cycle (Pascale et al., 2015), combining both processes in

| Cesar Azorin-Molina'

Accurate precipitation data are the basis for hydro-climatological studies. As a highly
populated river basin, with the biggest inland fishery in Southeast Asia, freshwater
dynamics is extremely important for the Mekong River Basin (MB). This study focuses
on evaluating the reliability of existing gridded precipitation datasets both from satellite
and reanalysis, with a ground observations-based gridded precipitation dataset as the ref-
erence. Two satellite products (Tropical Rainfall Measuring Mission [TRMM] and the
Precipitation Estimation from Remote Sensing Information using an Artificial Neural
Network—Climate Data Record [PERSIANN-CDRY]), as well as three reanalysis prod-
ucts (Modern-Era Retrospective analysis for Research and Applications [MERRAZ2], the
European Centre for Medium-Range Weather Forecasts interim reanalysis [ERA-
Interim], and the Climate Forecast System Reanalysis [CFSR]) were compared with the
Asian Precipitation—Highly Resolved Observational Data Integration Towards Evalua-
tion of Water Resources (APHRODITE) over the MB. The APHRODITE was chosen
as the reference for the comparison because it was developed based on ground observa-
tions and has also been selected as reference data in previous studies. Results show that
most of the assessed datasets are able to capture the major climatological characteristics
of precipitation in the MB for the 10-year study period (1998-2007). Generally, both sat-
ellite data (TRMM and PERSIANN-CDR) show higher reliability than reanalysis prod-
ucts at both spatial and temporal scales across the MB, with the TRMM outperforming
when compared to the PERSTANN-CDR. For the reanalysis products, MERRA?2 is more
reliable in terms of temporal variability, but with some underestimation of precipitation.
The other two reanalysis products CFSR and ERA-Interim are relatively unreliable due
to large overestimations. CESR is better positioned to capture the spatial variability of
precipitation, while ERA-Interim shows inconsistent spatial patterns but more realisti-
cally resembles the daily precipitation probability. These findings have practical implica-
tions for future hydro-climatological studies.

KEYWORDS

Mekong River Basin, precipitation evaluation, rain gauge observations,
reanalysis data, satellite data

land-surface (i.e., surface runoff, infiltration, soil moisture,
and groundwater) and atmosphere (i.e., cloud, evaporation,
and precipitation) (Su and Hao, 2001; Andersson et al.,
2005). According to the Clausius—Clapeyron relation, warm
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air is expected to hold more moisture (Held and Soden,
2000; Bengtsson, 2010) and the increasing saturation vapour
pressure along with global warming could result in the vari-
ability of precipitation (Ramanathan, 2001). Unlike air tem-
perature, precipitation is of large spatial heterogeneity,
strongly controlled by atmospheric circulation, land cover,
and local topography (Decker et al., 2012). Particularly, it
receives increasing disturbances from human activity; for
example, water consumption and water transportation
through artificial river canals, dams, and reservoirs. There-
fore, long-term precipitation variability is one of the highest
concerns among climate scientists (Pascale et al., 2015) and
society at large. Under global climate change, no agreements
on precipitation changes on the global scale have yet been
reached (IPCC, 2013; Wang et al, 2018). However, ade-
quate observation and exploration could lay the foundations
for a better understanding of past global precipitation pat-
terns, and thus contribute to improved predictions which
could lead to potential mitigations and adaptations in the
future (Tang et al., 2009; IPCC, 2013).

As the primary freshwater source, precipitation is vital
for the sustainable development of people inhabiting in the
Mekong River Basin (MB). On account of the ecosystem
services provided by the Mekong River, a population of over
60 million live in the Lower MB (LMB) which supports one
of the world's largest inland fisheries (Pech and Sunada,
2008; Ziv et al., 2012; Piesse, 2016). The climate in the MB
is very complex, with high spatio-temporal variability
(MRC, 2010). Additionally, owing to the changing hydro-
logical processes induced by climate change (Hoang et al.,
2016), water-related extreme events, especially droughts and
floods, have shown increasing trends in the MB since the
20th century, affecting agriculture, fishery, water resources,
and ecosystems (Delgado et al., 2010; Hoang er al., 2016).
Although rain gauges can directly measure precipitation that
reaches the ground surface (Ashouri et al., 2015), the avail-
able rain gauges are sparsely and unevenly distributed across
the MB (Wang et al., 2016), which is not enough to thor-
oughly monitor the spatial features of precipitation over the
region. This is because many gaps and discontinuities exist
as the result of conflicts among the riparian countries of the
LMB during the second half of the 20th century (Lutz et al.,
2014). Accordingly, to better explore and understand the
changing hydroclimate across the MB, it is crucial to assess
the reliability of gridded precipitation datasets.

With advances in technology and science, both satellite
and reanalysis methods offer precipitation data with fine
spatio-temporal resolutions, especially in far-remote areas
with sparse in situ precipitation networks. Generally, satellite
observation provides an indirect method to estimate precipi-
tation with consistent spatial continuity and relatively high
temporal frequency (Tang er al., 2009; 2010; Nasrollahi
et al., 2013). Moreover, reanalysis methods offer precipita-
tion estimations by assimilating all available data into a
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background forecast physical model (Wong et al., 2017).
Because a series of satellite and reanalysis gridded precipita-
tion datasets have been released by many international insti-
tutions over recent decades (e.g., Moderate Resolution
Imaging Spectroradiometer by the National Aeronautics and
Space Administration [NASA], and ERA-Interim by the
European Centre for Medium-Range Weather Forecasts
[ECMWF]), their great efforts in continuously upgrading
data methodologies have brought state-of-the-art precipita-
tion datasets (Decker et al, 2012). Despite this advance-
ment, these available gridded precipitation datasets are
produced by unique remote sensors and numerical models,
therefore the quality and quantity of observational data used
in the assimilation processes result in discrepancies among
them (Decker et al.,, 2012; Wang and Zeng, 2012). Hence-
forth, the quality of the gridded precipitation datasets must
be evaluated before further study on Climatology and
Hydrology.

Previous studies have evaluated the performance of sat-
ellite and reanalysis precipitation datasets at various spatial
scales such as the global (i.e., (Decker et al., 2012; Lorenz
and Kunstmann, 2012); Gebregiorgis and Hossain, 2015),
European (Kidd et al., 2012), Asian (Zhou et al., 2008; Rana
et al., 2015; Ceglar et al., 2017), African (Koutsouris et al.,
2016), North American (Kirstetter et al., 2013; Seyyedi
et al., 2015; Wong et al, 2017), South American (Salio
et al., 2015), and Tropical Pacific basin (Chen et al., 2013).
Table 1 summarizes a review of some studies dealing with
the evaluation of precipitation from ground-based, satellite,
and reanalysis products. Overall, precipitation datasets pro-
duced by different institutions show a wide array of perfor-
mance on various spatio-temporal scales which can be
attributed to the diversity of environmental conditions (Berg
et al, 2006). Specifically, satellite precipitation products
generally capture rainfall spatio-temporal variability better
than the reanalysis and land data assimilation products, with
reference gauge data (Rana et al, 2015; Seyyedi et al.,
2015; Tan et al, 2017). However, satellite data tend to
underestimate precipitation in the cold season (Kidd et al.,
2012; Huang et al., 2016a). Among the satellite data, Tropi-
cal Rainfall Measuring Mission (TRMM) products present
overall good performance (Zhou et al, 2008; Yamamoto
et al., 2011; Salio et al, 2015). TRMM post-real-time
research product version 7, 3B42v7 exhibits higher perfor-
mance in comparison to its predecessor, 3B42v6 (Chen
et al., 2013; Kirstetter et al., 2013; Rana et al., 2015). As for
the reanalysis data, ERA-Interim, Climate Forecast System
Reanalysis (CFSR), and Modern-Era Retrospective analysis
for Research and Applications (MERRA) also capture the
principal precipitation variability well (Wang and Zeng,
2012; Huang et al., 2016b; Koutsouris et al., 2016).

For the MB, there are few regional assessments of pre-
cipitation dataset performance. For instance, in a further
trend analysis, Lutz et al. (2014) evaluated four selected
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datasets (a) APHRODITE, (b) ERA-Interim,
(c) PRINCETON, and (d) CRU using the quality controlled
gauge data, finding that APHRODITE shows the best repre-
sentation of precipitation, especially during the monsoon
season. In comparison with gauge data, TRMM 3B43v6 has
been evaluated for drought monitoring in the Lancang River
Basin (Upper MB [UMB]) by Zeng et al. (2012), and a fair
accuracy has been proved. Yet, a comprehensive investiga-
tion of the spatio-temporal variability of precipitation on the
whole MB by using state-of-the-art, multi-source precipita-
tion datasets (satellite and reanalysis precipitation data) is
lacking.

As the spatio-temporal heterogeneous precipitation plays
a key role in human living in the MB, a high spatio-temporal
resolution gridded precipitation dataset could help deepen
our understanding of precipitation changes and variability.
Since the satellite and reanalysis precipitation data could
offer an alternative solution with a fine spatio-temporal reso-
lution to overcome the short-term and inhomogeneous gauge
observations over the MB (Lutz et al., 2014), the novelty of
this study is to conduct a first assessment on the reliability of
both satellite and reanalysis gridded precipitation datasets,
with the ultimate goal to improve future precipitation assess-
ments over the region.

This paper is structured as follows: the study area of the
MB and data used are shown in section 2; the methodology
applied is described in section 3; the results, including spa-
tial and temporal variability, are presented in section 4; the
overall reliability of the assessed products is discussed in
section 5; and major concluding remarks are highlighted in
section 6.

2 | STUDY AREA AND DATA

2.1 | Study area

The Mekong River is the 10th world's longest rivers at
around 4,909 km, and the total land area of its basin is over
795,000 km? (Figure 1a) (MRC, 2010). Located in South-
east Asia, the Mekong River originates from the Tibetan Pla-
teau in China, where the average mean elevation is over
4,000 m above sea level. It flows through Myanmar, Lao
People's Democratic Republic (Lao PDR), Thailand, Cam-
bodia, and Vietnam, before ending in the South China Sea.
The river basin consists of two parts: that is, the Upper Basin
in China and the Lower Basin in Mainland Southeast Asia.
There are over 70 million people living in the MB with a
population density around 88 inhabitants per km? (Pech and
Sunada, 2008; FAO, 2011), and this number is expected to
rapidly increase (Pech and Sunada, 2008). In the LMB,
about 75% of the population live in rural areas and are
closely linked to the river system although often lack access
to basic government services and live below the poverty
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line, especially in Lao PDR and Cambodia (MRC, 2010;
FAO, 2011).

The annual average rainfall in the MB is around
1,370 mm, ranging from 1,257 to 1,557 mm for the 10-year
(1998-2007) study period. The climate of the LMB is tropi-
cal monsoonal (MRC, 2010). June-October is the wet sea-
son, when the Indian Summer Monsoon (ISM) brings lot of
moisture from the Indian Ocean and contributes to the
annual precipitation of about 70% (i.e., ~995 mm).
November—May is the dry season, with an average precipita-
tion of 420 mm, when the East Asian Monsoon (EAM) with
high-pressure systems occupies the MB (MRC, 2010; Del-
gado et al., 2012). Supported by the ISM, a high amount of
precipitation in the LMB in wet season is the major freshwa-
ter source of the Mekong River and extremely important for
supplying agriculture water (Hoang et al., 2016). During the
dry season, less precipitation occurs, however, the snow-
melt water from upstream contributes to the downstream
Mekong River. Besides the ISM and EAM, the MB's climate
is also affected by Tropical Cyclones (TCs) (MRC, 2010),
as well as the El Nifio-Southern Oscillation (ENSO)
(Résdnen and Kummu, 2013). TC can induce a large amount
of instantaneous precipitation in the MB by extreme rainfall
events that may cause flooding. Meanwhile, the ENSO is
associated with the interannual hydrometeorology and dis-
charge variability (Rdsdnen and Kummu, 2013; Risidnen
et al., 2013), which could also lead to extreme water-related
events. Due to the climate change, the non-stationary atmo-
spheric circulations could be a reason for increasing hydro-
climate change in the MB (Delgado et al., 2010).

2.2 | Precipitation datasets

2.2.1 |

The Asian Precipitation—Highly Resolved Observational
Data Integration Towards Evaluation (APHRODITE) is pro-
duced by the Research Institute for Humanity and Nature
and the Meteorological Research Institute of Japan Meteoro-
logical Agency (http://www.chikyu.ac.jp/precip/english/
index.html; last accessed January 24, 2018) (Yatagai et al,
2009; 2012). It is the only long-term and continental-scale
daily product that was created primary with a dense network
of daily rain gauge data for Asia (Tanarhte et al., 2012). The
data sources are: (a) the Global Telecommunications
System-based data from the Global Surface Summary of the
Day  (https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.
ncdc:C00516; last accessed January 24, 2018); (b) data pre-
compiled by other projects and organizations such as the
daily rainfall data assembled by the Global Energy and
Water Exchanges project Asian Monsoon Experiment—
Tropics (GAME-T, http://hydro.iis.u-tokyo.ac.jp/GAME-T/
GAIN-T/index.html; last accessed January 24, 2018), with a
lot of routine (operational) observation datasets from all over
the Southeast Asia collected in the framework of the
GAME-T project; and (c) their own collection (Yatagai

Rain gauge-based observations
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FIGURE1 (a) Terrain map shows Southeast Asia and the MB. (b) Annual mean precipitation across the MB for 1998-2007

et al., 2012). More details on the data sources of APHRO-
DITE can be found on the website (http://www.chikyu.ac.jp/
precip/; last accessed January 24, 2018) and Yatagai et al.
(2009). Though APHRODITE does not discriminate
between rain and snow, it incorporates an improved quality-
control method and orographic correction of precipitation
(Yatagai et al,, 2012; Rana et al., 2015). Moreover, APH-
RODITE has been chosen as a “ground truth” to evaluate
multi-precipitation datasets derived from satellite and reana-
lysis products in many regions over monsoon-affected Asia
such as Malaysia (Tan et al., 2017), Central Asia (Sidike
et al., 2016), and East Asia (Sohn et al., 2012). Furthermore,
it was found that APHRODITE is useful for discharge
modelling in the Mekong main stream (Lauri et al., 2014).
Though APHRODITE is of high quality gridded precipita-
tion data, it should be kept in mind that APHRODITE has
been turned out somewhat less precipitation compared to the
Global Precipitation Climatology Centre (GPCC) data in the
Mekong region (Yatagai et al., 2012; Lauri et al., 2014).
Concerning both the overall performance of APHRODITE
and the limited observations in the MB, the APHRODITE

was chosen as a reference dataset (hereafter reference data)
for assessing the reliability of the other precipitation prod-
ucts, both from reanalysis and satellite (hereafter investi-
gated data).

Reanalysis and satellite precipitation datasets to be eval-
vated against the APHRODITE reference product were
selected using the following four criteria: (a) the spatial cov-
erage must include the whole MB; (b) the spatial resolution
must be higher than 1°; (c) the temporal resolution should be
at least at the daily scale; and (d) data have to be accessible
in free and published databases. The selected precipitation
datasets that meet the criteria include the CFSR, ERA-
Interim, and the MERRA, Version 2 (MERRA2), as well as
two satellite products, the Precipitation Estimation from
Remote Sensing Information using an Artificial Neural
Network—Climate Data Record (PERSIANN-CDR) and the
TRMM post-real-time research products, version 7, 3B42v7
(TRMM 3B42). Details of each dataset are listed in Table 2
and domains of each dataset are shown in Figure S1, Sup-
porting Information. These are described in the following
subsections.
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TABLE 2 Global precipitation datasets used in the MB

Temporal
Type Product coverage Spatial coverage
Gauge APHRODITE 1951-2007 Eurasia 15°S-55°N,
interpolation 60°E-150°E
Reanalysis CFSR 1979-2011 Global
ERA-Interim 1979—present Global
MERRA2 1980—present Global
Satellite PERSIANN-CDR 1983-2015 60°N-60°S
TRMM 3B42 1998—present 50°N-50°S
2.2.2 | Reanalysis data

By assimilating various observation inputs, reanalysis data
provide an opportunity for numerous climate processes to be
studied; however, the inhomogeneity and biases in observa-
tions and models can introduce spurious variability into rea-
nalysis output (Lutz et al., 2014). In our study, three
reanalysis datasets are employed. First, the CFSR is a new
coupled global reanalysis (third generation) from the
National Centers for Environmental Prediction (NCEP,
https://rda.ucar.edu/pub/cfsr.html; last accessed January
24, 2018) that is considerably more accurate than its prede-
cessors because many known errors in the observational data
ingest and the execution of previous reanalysis have been
corrected (Saha er al., 2010). However, relatively few evalu-
ations of CFSR have been conducted, thus its performance is
not well known (Saha et al., 2010; Lutz et al., 2014). Sec-
ond, the ERA-Interim (https://www.ecmwf.int/; last accessed
January 24, 2018) is a successive generation of ERA-40 pro-
duced by the ECMWF. It uses a 4D-variation data assimila-
tion approach for the atmospheric analysis, with an
improved representation of the hydrological cycle, a more
realistic stratospheric circulation, and better temporal consis-
tency on a range of timescales (Dee et al., 2011). Finally,
the = MERRA2 (https://gmao.gsfc.nasa.gov/reanalysis/
MERRA-2/; last accessed January 24, 2018) is produced by
the NASA Global Modelling and Assimilation Office using
the GEOS-5.12.4 system (Bosilovich et al., 2015; Gelaro
et al., 2017). It replaces and extends the original MERRA
reanalysis, and corrects the precipitation within the coupled
atmosphere—land modelling system (Reichle et al., 2017a).
It also includes aerosol data assimilation and improved rep-
resentations of aspects of the cryosphere and stratosphere,
for example, ozone (Gelaro et al., 2017). Nevertheless, fur-
ther improvements in land surface hydrology estimates from
reanalysis systems, including improvements in the approach
used to impose precipitation corrections is needed for
MERRA?2 (Reichle et al., 2017a).

2.2.3 | Satellite data

In comparison to the ground-based observations, satellite
data provide precipitation data with a more complete con-
verge (Nasrollahi et al., 2013; Ashouri ez al., 2015). Besides,
satellite precipitation data are being continuously improved,
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Spatial Temporal

resolution resolution Reference

0.25 x 0.25° Daily Yatagai et al. (2012)
0.5 % 0.5° 6 hr Saha et al. (2010)
0.75 x 0.75° 6 hr Dee et al. (2011)

0.5 x 0.625° 1 hr Gelaro et al. (2017)
0.25 x 0.25° Daily Ashouri ef al. (2015)
0.25 x 0.25° 3 hr Huffman et al. (2007)

and increasing amounts of satellite data are becoming avail-
able (Lutz et al, 2014). Therefore, this provides a new
opportunity for better and deeper research on global rainfall
patterns. First, the PERSIANN-CDR (http://chrsdata.eng.uci.
edu/; last accessed January 24, 2018), developed by the Uni-
versity of California in Irvine, estimates precipitation by an
artificial neural network model which combines infrared
(IR) and passive microwave measurement (PMW) informa-
tion from multiple geostationary Earth orbiting (GEO) and
low Earth orbit satellites. Further, the Global Precipitation
Climatology Project (GPCP) monthly precipitation data are
incorporated to bias adjustment (Sorooshian et al, 2000;
Ashouri et al, 2015; Huang et al., 2016a). As a high-
resolution satellite dataset, PERSIANN-CDR is the only one
to provide a time series of precipitation with sufficient
length, consistency, and continuity to study the global and
regional precipitation patterns and water cycle (Ashouri
et al., 2015; Liu et al., 2017). Second, the TRMM 3B42
(https://trmm.gsfc.nasa.gov/; last accessed January 24, 2018)
has been updated from version 6, combining PMW observa-
tions and IR data from GEO satellites to estimate precipita-
tion, and the bias adjustments have been applied by using
the GPCC monthly data (Huffman et al., 2007; Huang et al.,
2016a; Huffman and Bolvin, 2017). Compared to version
6, the new TRMM 3B42 has advanced with additional satel-
lite input, a new IR brightness temperature dataset, and uni-
formly reprocessed input data using current algorithms
(Chen et al., 2013).

3 | METHODOLOGY

In this study, an overlap period for all products was selected
from January 1, 1998 to December 31, 2007
(i.e., 3,652 days). Owing to the distinct monsoon (June—
October, wet season) and non-monsoon (November—May,
dry season) seasons in the MB, the following evaluation is
examined for these two seasons. First, we regrid data into a
common 0.75 X 0.75° spatial resolution to match the lowest
resolution dataset for a direct comparison. Three methods of
regridding have been investigated: bilinear, bicubic, and
distance-weighted average remapping by Climate Data
Operators  (https://code.mpimet.mpg.de/projects/cdo/; last
accessed January 24, 2018). To identify eventual differences
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among the three regridding methods, we calculated the cor-
relation coefficient between each pair of the regridded fields
by the three methods, at all the grids at monthly and annual
scale, respectively. Results show that all the correlation coef-
ficients are practically 1.0, indicating that there is almost no
difference in the regridded fields by the three methods.
Therefore, we used the results based on bilinear regridding.

Generally, the analysis is divided into two parts:
(a) spatial averaged temporal variability on both annual and
seasonal scales and (b) spatial variability. All the analyses
on annual and seasonal timescales are conducted on the spa-
tial mean, while the results on spatial variability are made at
the gridded scale.

3.1 | Statistical methods

To evaluate the reliability of the investigated precipitation
data, we employ four statistical measures including correla-
tion coefficient (r), relative bias (RBS), normalized root-
mean-square error (NRMSE), and Nash—Sutcliffe coefficient
of efficiency (NS) (Nash and Sutcliffe, 1970; Moriasi et al.,
2007). Compared to the APHRODITE reference data, r draws
the similarity of spatial distribution of investigated data, with
the higher r the better performance; RBS measures the sys-
tematic overestimation or underestimation of the investigated
data, and the smaller RBS the better performance; NRMSE
measures the mean difference between two datasets, with the
smaller NRMSE the smaller difference; and NS quantitatively
describes the accuracy of the investigated data, with the
higher NS showing the more accurate estimation. These four
statistics are calculated by the following equations (see
Equations 1-4). The correlation coefficient is also applied to
describe the zonal and meridional precipitation anomaly, and
spatial similarity of investigated data with respect to APHRO-
DITE, respectively. Chiefly, a positive and significant
r suggests good performance which resembles a similar pre-
cipitation pattern of reference data over the years and vice
versa. Moreover, the statistical significance of r is tested at
the confidence level of 95% (p < .05).

r= Z?:l (xref,i _xr,ef ) (xinv,i _xi;w) (1)
\/Z?:l (xref,i _xr;f‘)zz:?:l (xinv,i — Xiny )2
RBS= Z?:]xinvr,li_Z;;]xref,i*loo (2)
Zizlxref,i

n 2
§ i—1 (xref,i _Xinv,i)

n

NRMSE=

%100 (3)

Xref

n 2
NS=1- Zi:l(xinv,i _xref,i)
Z?:l (xref,i _)Cr/ef)2

In Equations 1-4, x,¢ denotes the reference data of APH-
RODITE, x;,, denotes the data being assessed, n is the total
amount of data pairs that are calculated in this study, and i is
the ith value of the time series, which is listed along the
time. x¢ and x;,, are the means of the reference and investi-
gated data over the time series, respectively.

For the reason that the assessed performance of the
investigated data relies heavily on the type and number of
assessment criteria being used (Schaller et al., 2011;
Fu et al, 2013), a score-based method—Rank Score
(RS) (Equations 5 and 6) has been employed to assess the
overall performance of investigated data. In order to inte-
grate the assessment of statistics for each investigated data
at each temporal scale, we first evaluate the relative RS of
the data in each individual assessment criteria (r, RBS,
NRMSE, and NS, respectively). It should be noted that the
RS for RBS and NRMSE are calculated by Equation 5,
while » and NS are computed by Equation 6. This is
because the former two show better performance with
higher values, whereas the latter two show better perfor-
mance with lower values.

Xi,j =X,

-1 M, min
RS;j= L emin_ 5)
Xi,max =X min

Xi,j —Xi, max
RS; ;= L (6)
xi, min —Xi, max

In Equations 5 and 6, i represents the ith data (listing
by CFSR, ERA-Interim, MERRA2, PERSIANN-CDR,
TRMM 3B42), and X; min and x; max represent the data of
minimum and maximum values of each assessment cri-
teria. Thereafter, the four relative RS of the assessment
criteria for each data are summed up to derive total RS at
each temporal scale (annual, wet season, and dry season).
Afterwards, the total RS for all the data at three temporal
scales are obtained. Therefore, the total RS value is
between O and 4, and the lower values means higher
performance.

Meanwhile, the Taylor diagram is applied to visualize
the statistic performance (Taylor, 2001). Besides the SD and
r, the centre root-mean-square errors (CRMSEs) were visual-
ized in the Taylor diagram. CRMSE is similar to the
NRMSE, but has easier visualization characteristics in Tay-
lor diagram which is calculated in Equation 7. Additionally,
to evaluate the daily mean precipitation pattern in the MB
for each dataset, we also evaluate the probability density
functions (PDFs) of each temporal series.

" el — (e — )2
CRMSEz\/Zizl((xref" Xref ) — (Xinv.i —Xinv)) (7)

n
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3.2 | Wavelets analysis

Wavelets analysis is a popular method in analysing the tem-
poral variation of spectral properties in both stationary and
non-stationary time series (Torrence and Compo, 1998;
Taleb and Druyan, 2003; Kang and Lin, 2007). A practical
and easy-to-use guide of wavelet analysis can be found in
Torrence and Compo (1998). Wavelets analysis has been
used for numerous studies in Hydrology (Labat et al., 2005;
Kang and Lin, 2007; Sang, 2013); and Geophysics
(Torrence and Compo, 1998; Whitcher et al., 2000), provid-
ing informations regarding the time frequency of the data.
For example, Partal (2012) applied wavelet analysis to detect
the characteristics and multi-variability of the runoff regime
and precipitation of the Aegean region (Turkey). Taleb and
Druyan (2003) showed that the African wave disturbances
account for only a proportion of the seasonal precipitation in
West Africa by using wavelet analysis. Yano and Jakubiak
(2016) used wavelets for spatial verification of the quantita-
tive precipitation forecasts. In the light of previous studies,
we apply the wavelets analysis (Torrence and Compo, 1998)
to detect the precipitation variability in both scale and time
location of all the investigated data at the daily scale. By
comparison, the reliability of each dataset will be evaluated
by the correlation coefficient method with regard to the scale
averaged time series of APHRODITE.

3.3 | Spatial variability

The spatial variability of the investigated data is evaluated
by focusing on the relative value of precipitation to the range
of precipitation, instead of comparing the absolute value. It
will be described as follows. For the performance on spatial
variability and trends, the relative precipitation at the maxi-
mum and minimum precipitation in the regions is calculated;
the long-term trend and magnitude (unit: percentage to their
annual mean precipitation for the whole MB for 1998-2007)
are conducted using the Sen slope estimator (Sen, 1968) and
Mann—Kendall methods with a confidence level of 95%
(»p < .05) (Kendall, 1938). This has been widely used in
meteorological time series data (Feng and Zhou, 2012; Wu
et al., 2016; Atta-ur-Rahman and Dawood, 2017).

4 | RESULTS

4.1 | Temporal variability

Overall, all assessed datasets resemble the APHRODITE
precipitation climatology averaged across the whole MB
for 1998-2007, at annual, seasonal, and monthly time-
scales as shown in Figure 2 and summarized in Table 3.
However, large differences in the amount of precipitation
with respect to the reference data are found. To summa-
rize: (a) among the investigated data, both satellite prod-
ucts (PERSIANN-CDR, TRMM 3B42) overestimate

of Climatology

precipitation at all timescales, as shown by the large gaps
in precipitation at the annual and wet season scales
(Figure 2a,b), with insignificant negative trends in annual
and dry season measures (Table 3), whereas both show
similar relative precipitation contributions to annual means
during wet and dry seasons in comparison to the APHRO-
DITE (Figure 2c); (b) for the reanalysis datasets, ERA-
Interim (—8.2 mm yr~') stands out in capturing the annual
precipitation trend, with the lowest gap between the APH-
RODITE reference data (—4.8 mm yr_l) (Figure 2a,
Table 3); (c) interestingly, all the reanalysis datasets over-
estimate annual precipitation, while the MERRA?2 is the
only one which displays the closest precipitation amount
to the APHRODITE reference data, but with a slight
underestimation after 2002 and significant downwards
trends for all timescales (Figure 2a, Table 3); (d) in con-
trast, the CFSR strongly overestimates the precipitation
amount at annual, seasonal, and monthly scales, with sig-
nificant trend declines for the annual and dry season
(Figure 2a, Table 3); (e) seasonal difference exists in
trends of precipitation, with stronger declines in the dry
season than the wet season (Table 3); and (f) finally, com-
pared to the two satellite data (PERSIANN-CDR, TRMM
3B42), both reanalysis data (ERA-Interim and CFSR)
show overestimation which is twice as strong in dry sea-
son than the wet (Table 3).

From the scatter plot of spatial averaged precipitation
between each investigated data and reference data in both
wet (Figure 3a) and dry (Figure 3b) seasons for 1998-2007,
it is noticeable that: (a) all investigated data (except
MERRA?2) overestimate precipitation and (b) correlations to
the reference are higher (and statistically significant) in dry
season than the wet. In fact, for the dry season, the two satel-
lite products (TRMM 3B42 and PERSIANN-CDR), as well
as ERA-Interim, have relatively higher r values than the
other reanalysis datasets (CFSR and MERRA?2). In contrast,
for the wet season, only TRMM 3B42 is significantly corre-
lated (p < .05) to APHRODITE, denoting the higher accu-
racy of TRMM 3B42 in estimating precipitation for both
seasons.

In light of the PDF method, the daily mean precipitation
in each investigated dataset is evaluated in Figure 4. Gener-
ally, light rainfall events occur with high frequency in the
MB, especially at amounts <10 mm. Among the evaluated
data, MERRA2 possesses almost the same shape of the
APHRODITE's PDF, followed by ERA-Interim, TRMM
3B42, CFSR, and PERSIANN-CDR, but with a slight over-
estimation and underestimation at weak (<10 mm) and mod-
erate to heavy (>10 mm) rainfall events, respectively. ERA-
Interim shows the second highest similarity compared to
APHRODITE, but underestimates light rainfall events and
overestimates heavy ones. Both TRMM 3B42 and CFSR
largely underestimate weak rainfall events by around two
times compared to the reference data, while they also
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FIGURE 2  Precipitation for each investigated dataset in the MB for 1998-2007. (a) The annual mean precipitation over the MB along with the regression

equations and coefficients of determination for each dataset. (b) The mean monthly precipitation over the MB. The shaded area represents the +1 unit SD.

(c) The contribution of monthly precipitation (in %) to annual mean precipitation over the MB

overestimate the heavy rainfall events. Finally, PERSIANN-
CDR presents the largest underestimation and overestima-
tion at both weak and moderate to heavy rainfall events,
respectively.

The statistical summary of precipitation shown in
Table 3 highlights that both MERRA2 and TRMM 3B42
demonstrate better performance when compared to APHRO-
DITE at all timescales for 1998-2007. Besides the closest
mean values, MERRA2 shows the best performance with
respect to the RBS, NRMSE, and NS. This is followed by
the two satellite data, TRMM 3B42 and PERSIANN-CDR,
which perform better than the other two reanalysis data
regarding the mean, SD, RBS, NRMSE, and
NS. Meanwhile, ERA-Interim behaves with a high reliability
considering the trend and correlation coefficient. More inter-
estingly, large differences in the correlation and bias perfor-
mance between seasons were found. With respect to RBS
and NRMSE, better performance in the dry season than the

wet exists in two satellite data, TRMM 3B42 and
PERSIANN-CDR, whereas two reanalysis data (CFSR and
ERA-Interim) display the opposite performance which is
better in the wet season. In light of the total RS, the overall
performance of the investigated data is leaded by MERRA?2
and TRMM 3B42.

Visualizing the temporal statistic results of SD, CRMSE,
and the correlation coefficient in the Taylor diagram
(Figure 5) verifies the distinguish performance of each prod-
uct. Generally, MERRA2 and TRMM 3B42 lead the reliabil-
ity of gridded precipitation products regarding the statistical
performance, characterized by relatively small SD and
CRMSE, and relatively higher » values at all temporal scales
(annual, wet season, dry season, and daily).

The spatial pattern of correlation coefficients between
the investigated data and the APHRODITE reference at
annual and both seasonal timescales is presented in Figure 6.
Overall, there is a dominance of positive r values (over 76%)
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TABLE 3 Summary of statistics on temporal data series

Statistics Temporal APHRODITE CFSR ERA-Interim MERRA2 PERSIANN-CDR
Mean (mm) Annual 1,031.2 1,658.8 1,617.1 1,012.9 1,480.3
Wet season 214.9 3443 298.2 212.2 299.9
Dry season 87.3 161.3 162.5 87.7 117.1
SD (mm) Annual 147.2 274.1 206.9 224.8 200.7
Wet season 34.9 54.6 38.4 42.6 38.1
Dry season 22.0 51.5 36.4 329 353
Trend (mm yfl) Annual —4.8 —41.0* —-8.2 —47.0* —15.6
Wet season 2.8 —13.8 3.9% —23.8% 2.6
Dry season —13.8 —42.0% —26.2 —31.9* -30.3
Relative difference of precipitation (%) Annual — 60.9 56.8 -1.8 43.8
Wet season — 49.3 423 —4.1 42.7
Dry season — 81.5 84.9 -1.2 38.2
r Annual — 0.5 0.8% 0.5 0.6
Wet season — 0.1 0.6 0.1 0.6
Dry season — 0.9% 1.0* 0.9% 0.9%
RBS (%) Annual — 60.9 56.8 -1.8 43.5
Wet season — 60.2 38.7 -1.3 39.5
Dry season — 84.8 86.2 0.5 34.2
NRMSE (%) Annual — 62.5 57.0 13.9 443
Wet season — 61.7 39.2 13.5 40.2
Dry season — 91.4 86.9 17.4 38.1
NS Annual — -119.7 -99.4 -4.9 —59.8
Wet season — -79.9 -31.6 -2.9 -33.2
Dry season — —27.1 —24.4 0.0 -39
Total RS Annual — 3.7 2.6 1.0 2.4
Wet season — 4.0 1.7 1.0 1.8
Dry season — 4.0 2.8 0.7 1.0
*Statistically significant » were defined as those p < .05.
(a) Wet season (b) Dry season
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FIGURE 3 Comparison of precipitation between investigated data in (a) wet season and (b) dry season across the MB for 1998-2007

across the MB, indicating a general good performance of the

investigated data. Negative r, however, exists in most of the

investigated data over the southeast region at annual scale
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(0.5-13%) and particularly the wet season (1-23.8%). More-
over, differences in the correlations with the APHRODITE
reference are also found between seasons, with a larger
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Taylor diagram of precipitation in the MB for 1998-2007,

respectively

extent of areas of higher (and statistically significant)
r values in the dry season (47.7-80.8%) than the wet season
(19.7-63.2%). In comparison to the other datasets, the
TRMM 3B42 shows better performance when compared to
the reference data by displaying positive and significant
r values (p < .05) over the three temporal scales and across
most of the region.

A wavelet power spectrum of APHRODITE daily precipi-
tation across the MB for 1998-2007 is presented in Figure 7;
and the investigated data present similar wavelet power spec-
trum (figures are not shown). Overall, an annual dominating
scale of the precipitation variation is clearly captured. Besides,
a number of small significant scales variabilities (<10 days)
also exists. Power spectrums for the investigated data resemble
similar features of the APHRODITE reference data. Moreover,

for comparing the averaged variance of small scales, the scale-
average variance time series of all gridded data are displayed in
Figure 8. With respect to APHRODITE, all of the evaluated
data are significantly correlated to the reference data, with the
highest r value in decreasing order by TRMM 3B42,
MERRA?2, ERA-Interim, CFSR, and PERSIANN-CDR.

Table 4 presents the correlation coefficient of zonal and
meridional precipitation anomaly between APHRODITE
and each investigated dataset at annual, wet and dry season
scales for 1998-2007. Precipitation anomalies in all the data
are significantly correlated to the reference data (p < .05) at
the three temporal scales. Moreover, large seasonal differ-
ences were found with much higher r values in the dry sea-
son than in the wet. Among the investigated data, both
satellite datasets (TRMM 3B42 and PERSIANN-CDR)
highly and significantly correlate to APHRODITE, whereas
the three reanalysis datasets (MERRA2, ERA-Interim, and
CFSR) show roughly the same significant correlation to
APHRODITE. Overall, all the assessed gridded data are able
to capture the characteristics of precipitation variability
across the MB, with the TRMM 3B42 showing better
performance.

4.2 | Spatial variability

The patterns of spatial variability of mean precipitation in
annual, wet, and dry seasons for 1998-2007 are shown in
Figure 9. For the APHRODITE reference (Figure 9al-a3),
the precipitation increases from the northwest to the south-
east of the region. In the LMB, there is a distinct west to
east gradient with higher rainfall occurring in the east (Lao
PDR) and lower rainfall occurring in the west (Thailand).
During the wet season, a large area experiences high pre-
cipitation. Meanwhile, during the dry season such precipi-
tation shrinks to a small area in the southeastern part of the
region.

In terms of similarity, both TRMM 3B42 (Figure 9fl-
f3) and CFSR (Figure 9b1-b3) show almost the same spatial
distribution of precipitation when compared to APHRO-
DITE at all timescales, denoting their ability to capture the
spatial variability of precipitation across the MB. For other
investigated datasets, PERSIANN-CDR (Figure 9el-e3)
resembles the high precipitation area over the centre of the
region, but shows a larger area of high precipitation in the
southeastern part when compared to the reference data;
MERRA?2 (Figure 9d1-d3) somehow underestimates precip-
itation in most of the region, with high precipitation centres
in the southwest and southeast; and finally ERA-Interim
(Figure 9c1—c3) has an abnormal precipitation centre in the
west part of the middle MB.

Besides the spatial variability in mean precipitation, the
distribution of trends in mean precipitation over the 10-year
study period is also analysed in Figure 10. For the APHDO-
DITE reference data, the precipitation trend is not statisti-
cally significant at the 95% confidence level over the basin
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for all timescales; except for some negative trends in the
northernmost part of the region. However, a distinct pattern

of trends in precipitation is found between the UMB (nega-
tive) and the LMB (positive) at both annual and wet season
scales. For the dry season, a negative trend over most part of
the basin is found which is of high magnitude but not signif-
icant in the southern part.

For the investigated data, both satellite products exhibit a
high similarity of precipitation trends compared to the APH-
DODITE reference data; listed by TRMM 3B42
(Figure 10f1-f3) and PERSIANN-CDR (Figure 10el-e3).
For the reanalysis datasets, CFSR (Figure 10b1-b3) and
MERRA?2 (Figure 10d1-d3) show an overestimation of the
magnitude and statistical significance of negative precipita-
tion trends, especially in the LMB. Specifically, CFSR has
high negative trends in Myanmar and northern Thailand,
while MERRA?2 shows significant negative trends in north-
ern Lao PDR, Cambodia, and Vietnam. Finally, ERA-
Interim (Figure 10c1—c3) presents an inconsistent spatial pat-
tern in comparison to APHRODITE, with negative and posi-
tive precipitation trends in most parts of LMB and middle of
the basin respectively.
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TABLE 4 Correlation coefficients of zonal and meridional precipitation anomalies of investigated data with APHRODITE

Zonal Meridional
Spatio-temporal scale Annual Wet season Dry season Annual Wet season Dry season
CFSR 0.47% 0.37* 0.74%* 0.44% 0.29* 0.76*
ERA-Interim 0.48%* 0.42 0.73 0.41 0.33 0.73
MERRA2 0.48 0.45 0.81 0.37 0.15 0.83
PERSIANN-CDR 0.57 0.57 0.79 0.55 0.56 0.86
TRMM 3B42 0.68 0.68 0.86 0.67 0.66 0.89

*Statistically significant » were defined as those p < .05.

5 | DISCUSSION

From the above assessment, most of the investigated datasets
are able to capture the precipitation climatology of the MB
for 1998-2007 when compared to the APHRODITE refer-
ence data. Among the investigated data, MERRA?2 shows a
good

ability in estimating the absolute amount of

precipitation and its seasonal variability. It also performs
well at resembling the precipitation distribution at the daily
scale, with high similarity of PDF to APHRODITE. The pre-
cipitation corrections algorithm in MERRA?2 (Gelaro et al.,
2017; Reichle et al., 2017a; 2017b) could be the reason for
its good performance. However, it is not reliable at seizing
the spatial variability of precipitation in the MB because it
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does not capture the precipitation centre in the study area,
and also overestimates the significant negative precipitation
trend in a large part of the region for 1998-2007. The reason
behind this finding could be that MERRAZ2 does not include
a land surface analysis, not counting precipitation correc-
tions (Reichle et al., 2017a).

CFSR does not show high reliability in assimilating the
temporal variability of precipitation in the MB over the
study period, and has the largest overestimations at annual
and wet season periods. It also presents a rare significant
negative trend of precipitation in most of LMB. According
to Higgins et al. (2010) and Lorenz and Kunstmann (2012),
an overactive diurnal cycle in the atmospheric component of
CFSR may be a reason for the overestimation. Surprisingly,
the spatial variabilities of mean precipitation at annual, wet,
and dry season scales are well characterized by this reanaly-
sis product. Though CFSR is a new coupled global reanaly-
sis from NCEP, its performance is not well known because
only a few evaluations have thus far been conducted (Saha
et al., 2010; Lutz et al., 2014). Meanwhile, the ERA-Interim
displays a relatively unreliable ability in estimating both the
temporal and spatial variability, although it is good at resem-
bling daily precipitation distribution and estimating the pre-
cipitation tendency over the study period. Both CFSR and
ERA-Interim show a stronger overestimation in the dry sea-
son than PERSIANN-CDR and TRMM 3B42. The relatively
poor performance of CFSR and ERA-Interim in this study
coincides with Lauri ef al. (2014) who comment that both
cannot reproduce reliable spatial precipitation distribution,
compared to APHRODITE and TRMM 3B42. Conse-
quently, they do not provide accurate results for discharge
modelling (Lorenz and Kunstmann, 2012; Lauri et al.,
2014). The unsatisfactory performance of reanalysis could
be explained by the following: (a) the quality of reanalysis
precipitation datasets relies heavily on the assimilated obser-
vation data, however, both the amount and spatial distribu-
tion of these observations change over time (Lorenz and
Kunstmann, 2012) and (b) the observations for long-term
climatological analysis in the MB remains questionable
(Lutz et al., 2014).

Compared to the reanalysis data, both satellite products,
PERSIANN-CDR and TRMM 3B42, have the ability to esti-
mate precipitation at both temporal and spatial scales which
agrees with previous studies (Rana et al., 2015; Tan et al.,
2017). TRMM 3B42 shows better performance compared to
PERSTIANN-CDR because it has more propinquity to APH-
RODITE on temporal variability (at annual and monthly
scales), proven by the statistical results in Table 3. Further-
more, it is also better at capturing the spatial variability and
trends of precipitation across the study area. Regarding the
underestimation of precipitation in APHRODITE (Yatagai
et al., 2012; Lauri et al., 2014), and the underestimation of
MERRA?2 compared to APHRODITE, TRMM 3B42 is more
reliable at estimating the absolute amount of precipitation.

of Climatology

Because the LMB has suffered from increasing and
long-lasting drought events (Delgado et al., 2010), precipita-
tion is extremely important for sustaining water supply in
the MB. For instance, over the study period, a drought in
2003-2005 caused considerable agricultural losses in North
East Thailand, Cambodia, and Lao PDR (Te, 2007; Risinen
et al., 2013). As projected by Hoang et al. (2016), the
increasing trend of droughts and floods over recent decades
is going to continue in the future for part of the region.
Drought events, however, are also about the timing of pre-
cipitation which means that particular atmospheric events
could also induce extreme events (Te, 2007). Therefore, it is
crucial that high resolution gridded precipitation datasets are
able to grasp extreme precipitation features, which deserves
to be deeply assessed in future research. However, the corre-
lation coefficient of zonal and meridional precipitation
anomaly between APHRODITE and each investigated data-
set at annual, wet and dry season scales for 1998-2007
shown in Table 4, evaluates the performance of the investi-
gated data in capturing the precipitation variability. Since
they all significantly correlate to APHRODITE, it indicates
that all the assessed datasets are able to estimate both of the
zonal and meridional precipitation anomalies. Among them,
TRMM 3B42 possesses the highest ability. As TRMM 3B42
has been widely used in TC rainfall studies (Chen et al.,
2013), it explains part of the high performance of TRMM
3B42. Meanwhile, TRMM 3B42 could yield equally good
modelled discharge results by using ground observed precip-
itation data (Lauri et al., 2014).

In view of our findings, the selection of precipitation
datasets should be based on the aim of each study. APHRO-
DITE could be a good choice for hydroclimate analysis;
however, it is not available after 2007. PERSIANN-CDR
has slightly less accuracy compared to TRMM 3B42, but
offers an opportunity to study climatology over the globe by
using satellite data since 1983 (Ashouri et al., 2015). All
three reanalysis datasets have long-term temporal coverage,
which is crucial for hydro-climatological studies. Though
TRMM started from 1998 and terminated in 2014, a new
Global Precipitation Measurement project was launched to
follow the highly successful TRMM (Huffman ez al., 2017).
In addition, TRMM 3B42 has been proved to be able to esti-
mate rainfall induced by TC (Chen et al., 2013), which is a
common event in the MB during the wet season (MRC,
2010). This also confirms the reliability of TRMM 3B42 in
resembling precipitation in the MB.

6 | CONCLUSION

An evaluation on the reliability of both satellite and reanaly-
sis precipitation datasets for the MB have been conducted in
this study. The following major findings are drawn:

(1) Most of the evaluated gridded datasets are able to
capture the spatio-temporal variability of precipitation in the
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MB for 1998-2007. Specifically, MERRA?2 is reliable in
terms of precipitation temporal variability with the lowest
bias, but underestimates when compared to APHRODITE;
TRMM 3B42 and PERSIANN-CDR show reliability in the
variability of temporal series, while CFSR and ERA-Interim
strongly overestimate the precipitation, especially in the dry
season.

(2) Both satellite datasets (TRMM 3B42 and
PERSIANN-CDR) present high reliabilities in capturing
mean precipitation, as well as precipitation trends over the
study period. Though CFSR overestimates precipitation on a
temporal scale, it is able to describe the spatial pattern of
precipitation, while both CFSR and MERRA2 present a
large significant negative precipitation trend; and ERA-
Interim has an inconsistent spatial variability when com-
pared to APHRODITE.

(3) Overall, the TRMM 3B42 is the most reliable dataset
in estimating precipitation in the MB, followed by the
PERSIANN-CDR.
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