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A B S T R A C T

Improving turbine-height wind-speed forecasting using a mesoscale numerical weather prediction (NWP) model
is important for wind-power prediction because of the cubic correlation between wind power and wind speed.
This study investigates how a surrogate-based automatic optimization method can be used to improve wind-
speed forecasting by an NWP model by optimizing its parameters. A key challenge in optimizing NWP model
parameters is the tremendous computational requirements of such an exercise. A global sensitivity method
known as the Multivariate Adaptive Regression Spline (MARS) method was first used to identify the most
sensitive parameters among all tunable parameters chosen from seven physical parameterization schemes of the
Weather Research and Forecast (WRF) model. Then, a highly effective and efficient optimization method known
as adaptive surrogate modeling-based optimization (ASMO) was used to tune the sensitive parameters. In a case
study carried out over Eastern China, the seven parameters that were most sensitive to wind-speed simulation
were identified from among 27 tunable parameters. Those seven parameters were optimized using the ASMO
method. The present study indicates that the hourly wind-speed simulation accuracy was improved by 8.7%
during the calibration phase and by 7.58% during the validation phase. In addition, clear physical interpreta-
tions were provided to explain why the optimal parameters lead to improved wind speed forecasts. Overall, this
study has demonstrated that automatic optimization method is a highly effective and efficient way to improve
wind-speed forecasting by an NWP model.

1. Introduction

With the rapid growth of the global economy, consumption of tra-
ditional fossil fuels such as coal and oil has soared, leading to an energy
source depletion crisis. The resulting environmental problems such as
air and water pollution are becoming critical (Boffey, 1970). Develop-
ment of renewable energy resources is thought to be the most promising
response because these resources are basically inexhaustible, offer huge
capacity, and are clean, with very little pollution. Due to its wide dis-
tribution, wind energy, as the major renewable energy resource avail-
able, has been widely used to generate electricity around the world
(Grubb and Meyer, 1993; National Renewable Energy Laboratory,
2008; Lu et al., 2009; Moemken et al., 2018).

Wind turbines have usually been built on mountain tops or in
coastal areas with strong wind. The turbine rotor is installed at a height
above the tower bottom (usually the ground surface) ranging from 70 to

110 m, which is called the turbine height in this study. The turbine-
height wind speed is a critical variable affecting the amount of wind-
generated electricity that can be produced. When the turbine-height
wind speed is between 3 and 15 m s−1, wind electricity generation
starts, and the corresponding electric power production is approxi-
mately a cubic function of wind speed (Jaramillo and Borja, 2004; Yang
et al., 2017). This implies that wind-power (i.e., wind-generated elec-
tric power) estimation accuracy relies mainly on the accuracy of tur-
bine-height wind-speed forecasting. Additionally, when the wind speed
is > 15 m s−1, and especially higher than 20–25 m s−1, the turbine
components will be damaged due to excessive power inputs, which
disturb the stable operation of the wind-powered electrical generation
system and cause huge economic losses. The best solution is to shut
down the turbines before strong winds arrive. Therefore, the forecasting
accuracy of turbine-height wind speed is becoming very important for
the accurate evaluation of wind power and the safe operation of wind-
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powered electrical generation systems in wind farms.
Wind-speed forecasting methods include statistical estimation

methods and physical model-based simulation methods. Common sta-
tistical estimation methods include predictive time-series models built
using Kalman filters (Bossanyi, 1985) or autoregressive moving average
functions (Sfetsos, 2002) and correlation models built using artificial
neural networks (Mohandes et al., 1998) or fuzzy logic (Pinson et al.,
2003). The predictive accuracy of these statistical models depends
strongly on the reliability of past data observations and the number of
observed data points. In addition, statistical models tend to have a short
prediction lead time, usually six to eight hours. Unlike statistical
models, physical model-based mesoscale numerical weather prediction
(NWP) models have significant advantages for operational forecasting
of turbine-height wind speed. An NWP model not only is less dependent
on observed data and therefore can compensate for data deficiencies,
especially in complex terrain, but also has a longer forecast period, with
72-h prediction accuracy > 80%. In recent decades, mesoscale NWP
models have been widely used to provide high-resolution wind-speed
forecasts. For instance, Lazić et al. (2010) assessed the performance of
the Eta model on the wind forecasts for the Nasudden power plants at
Gotland Island, Sweden. Dvorak et al. (2010) used the National Center
for Atmospheric Research Mesoscale Model version 5 (MM5) model to
simulate multi-year high-resolution wind speed at 80 m to assess the
wind energy resource in offshore California.

The Weather Research and Forecasting (WRF) model (Skamarock
et al., 2008) is a new- generation mesoscale NWP model developed on
the basis of the MM5 model. It has a modular structure that facilitates
integration of various physical process modules, and each physical
module has been developed by a different group (Dudhia, 2014). Re-
cently, more and more studies have evaluated turbine-height wind
speed using the WRF model. Deppe et al. (2013) evaluated the simu-
lation ability of the WRF model on 80 m turbine-height wind speed at
the Pomeroy, Iowa wind farm site in United States. Hahmann et al.
(2015) found that the biases in mean annual wind speed between WRF
simulations and observations at heights around 100 m were far smaller
than those obtained by using winds directly from the reanalysis at
offshore sites over the North and Baltic Seas. However, small biases in
simulated wind speed have a significant effect on wind-power predic-
tion accuracy because of the cubic relationship between wind power
and turbine-height wind speed. Moreover, the WRF simulation has
significant errors of its own due to its imperfect descriptions of sub-grid
physical processes and topography. Improving the simulation accuracy
of turbine-height wind speed in the WRF model is therefore of critical
importance.

As in other numerical models, there are three main sources of un-
certainty in the WRF model: the specification of initial and boundary
fields, the realism of the model physics representation, and the speci-
fication of model parameters (Di et al., 2015). To reduce initial and
boundary errors, three- and four-dimensional variation data assimila-
tion (3DVAR/4DVAR) methods are used to improve the specification of
initial and boundary fields for the WRF model by ingesting discrete
observational data from diverse sources. Wang et al. (2013) improved
the surface-layer wind forecasting accuracy of the WRF model in a
wind-power farm using the 3DVAR method. Fan et al. (2013) assimi-
lated quick scatterometer ocean-surface wind data into a WRF model
using the 3DVAR method to obtain a high-quality simulation of the
surface wind field in the Chukchi/Beaufort Sea region.

To reduce errors in WRF physical representations, many studies
have analyzed the representativeness of various physical para-
meterization schemes for the simulation of the physical processes re-
lated to wind. Fernández-González et al. (2019) analyzed the WRF
uncertainty associated with the multiphysics and the multiple initial
and boundary condition for the short-term wind speed prediction, and
found that the physical parameterization uncertainty was greater for
short-term wind forecasts. Some studies built WRF ensemble fore-
casting systems to improve the wind speed and direction forecasts using

several sets of parameterization scheme combinations (Traiteur et al.,
2012; Fernández-González et al., 2018; Pan et al., 2018). Noted that the
ensemble forecasting accuracy would be further improved using a more
advanced post-processing technique (Holman et al., 2018); some other
studies focused on the sensitivity of the different boundary layer
schemes to wind forecasts to quantify their suitable boundary layer
schemes (Hariprasad et al., 2014; Avolio et al., 2017; Tymvios et al.,
2018; Xiang et al., 2019).

However, very little research has been done on parameter optimi-
zation to improve turbine-height wind-speed forecasting in the WRF
model. The key challenge includes two aspects: (1) the WRF model has
many tunable parameters, which makes parameter optimization diffi-
cult if all parameters are adjusted; and (2) a WRF run is very expensive,
which makes it difficult to find the optimal parameter values for tra-
ditional optimization methods because of relatively low search effi-
ciency. Therefore, a highly efficient optimization method should be
used to conduct parameter optimization of a complex WRF model. To
perform parameter optimization for the complex dynamic models such
as WRF, two steps are recommended (Di et al., 2015). The first is to
conduct parameter screening using a sensitivity analysis (SA) method to
choose the sensitive parameters to be optimized. Not all parameters are
sensitive to the WRF outputs (e.g., the turbine-height wind speed), and
if the insensitive parameters are calibrated, not only is the WRF simu-
lation accuracy not significantly improved, but also the huge compu-
tation resources are wasted. Many studies have evaluated parameter
sensitivity for complex weather and climate models using qualitative
and quantitative SA methods (Qian et al., 2015; Di et al., 2017). These
results have demonstrated that the Multivariate Adaptive Regression
Spline (MARS) method is a very effective and efficient qualitative SA
method to identify the sensitive parameters.

Once the sensitive parameters have been determined, the next step
involves conducting an optimization of these parameters. However, the
efficiency of traditional optimization methods is still low even for op-
timizing the sensitive parameters as a small proportion of all tunable
parameters. Therefore, a more highly effective and efficient optimiza-
tion method should be used. Wang et al. (2014) proposed an adaptive
surrogate modeling-based optimization (ASMO) method by combining
the more suitable Gaussian Processes regression method and the shuf-
fled complex evolution (SCE-UA) global optimization algorithm. Duan
et al. (2017) first conducted highly efficient parameter optimization for
the WRF model to improve the accuracy of summer precipitation si-
mulation in the Greater Beijing area using the ASMO method developed
by Wang et al. (2014). Finally, the accuracy of precipitation simulation
was improved by approximately 18% using only 127 model runs. More
recently, the ASMO method has been applied to parameter optimization
of complex land and weather models (Gong et al., 2015; Di et al., 2018).
However, the ASMO method has not yet been applied to parameter
optimization for the WRF model to improve the simulation accuracy of
turbine-height wind speed.

The present work intends to implement a highly effective and effi-
cient parameter optimization strategy including MARS-based parameter
SA and ASMO-based sensitivity parameter optimization for the WRF
model to improve turbine-height wind-speed simulation. The reason-
ableness and applicability of the optimal parameters obtained by the
ASMO method will then be assessed.

This paper is organized as follows. Section 2 presents the metho-
dology, including the MARS SA method and the ASMO optimization
procedure. Section 3 describes the experiment design, including the
simulation design, the tunable parameters, and the statistical metrics.
Section 4 first presents the results of the sensitive parameters in brief
and then presents analyses of the optimization results, including the
optimization efficiency and accuracy improvement for wind-speed and
wind-power simulations. Comparisons of validation event simulations
and physical interpretations of why the optimal parameters lead to
improved wind-speed forecasts are also described in this section to
provide further proof of the reasonableness and applicability of the
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optimal parameters obtained. Conclusions are presented in the last
section.

2. Materials and methods

An integrated parameter optimization procedure for complex dy-
namic models such as WRF should consist of two steps. First, parameter
SA should be conducted for all tunable parameters using an SA method
to screen a small number of sensitive parameters. Second, the screened
sensitive parameters should be optimized using a highly effective and
efficient parameter optimization method instead of more traditional
optimization methods.

2.1. Good lattice point (GLP) sampling method

Uniformity is one of the important indices for sampling methods
because uniform samples help to obtain more accurate parametric SA
and optimization results. The uniformities of three categories of quasi-
Monte-Carlo methods, including the GLP method, the Halton sequence,
and the Sobol’ sequence, have been compared by Gong et al. (2016),
who demonstrated that the GLP method has higher uniformity than the
other two methods with the same sample size. Therefore, GLP sampling
methods are recommended to generate uniform samples for further SA
and ASMO methods.

The GLP method was first proposed by Korobov (1959a), and its
design can be briefly described as follows. Let (n; h1, …, hs) be a vector
of integers satisfying 1 ≤ hi < n, hi≠ hj for i≠ j, s < n, such that the
greatest common divisor of hi and n is 1. The components of the sample
are constructed according to Eq. (1):

= = =x kh n
n

i s k n2 (mod ) 1
2

, 1, , , 1, ,ki
i

(1)

The point set Pn= {Xk= (xk1, …, xks), k= 1, …, n} is called the
lattice point set of the generating vector (n; h1, …, hs). If the sequence Pn
has the lowest discrepancy, the set Pn is called a GLP set. Obviously,
finding the best integer vector (n; h1, …, hs) to ensure that the asso-
ciated set Pn has the lowest discrepancy requires a large amount of
computation. To solve this problem, Korobov (1959b) proposed a
power vector instead of an integer vector to easily obtain the GLP set Pn.

2.2. MARS SA method

The MARS method (Friedman, 1991) has been widely used to con-
struct the statistical regression model between perturbed parameter
inputs and the corresponding simulated outputs. The process includes
two phases: the forward and the backward pass. The forward pass
usually involves building an overfitted model by repeatedly adding the
basis functions in pairs. The basis function contains three types of ex-
pression: a constant, a hinge function, and the product of several hinge
functions. Then, the backward pass prunes the overfitted model to the
best model by repeatedly deleting the least effective term. The back-
ward pass uses generalized cross validation (GCV) to measure the
performance of model subsets for obtaining the best model. The GCV
formula can be expressed as follows:

= =

+
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where N is the number of samples, Yi is the data point i, Yi is the esti-
mated value of Yi based on the MARS regression model M, d is the
effective degrees of freedom, and c(M) is a penalty factor when adding a
basis function. A lower GCV value represents a better-fitted model.

Once the MARS regression model has been built, GCV can be used as
an SA index to evaluate parameter sensitivity. Each parameter is de-
leted once, one at a time, from the model. When a certain parameter is

deleted from the best MARS regression model, the absolute increment
of GCV is the largest, which indicates that the removed parameter is the
most sensitive. Specifically, the parametric sensitivity scores are ob-
tained as follows. First, the tunable parameter space is sampled using a
sampling method to obtain perturbed parameter values, and the cor-
responding simulation errors are evaluated by substituting the per-
turbed values into the model. Then, the suitable MARS regression
model is built using the perturbed parameter values and their simula-
tion errors, and its GCV value is evaluated using Eq. (2). Finally,
compared with the GCV of the MARS model, the absolute increment of
GCV for each parameter is evaluated when the parameter is removed
from the MARS expression. All parameter GCV increments are nor-
malized by dividing them by the sum of all GCV increments. The nor-
malized GCV increment of the parameter represents its sensitivity score.
The higher the score, the greater is the sensitivity.

2.3. ASMO parameter optimization method

Compared to the traditional parameter optimization method, the
ASMO method (Wang et al., 2014) has higher search efficiency for
finding the optimal parameters. This is because the ASMO method uses
the shape information of the statistical response surface (also called the
statistical regression surface) to help find the optimization area of the
model response quickly. Moreover, searches mainly occur in the sta-
tistical response surface model, reducing the number of physical model
runs. The specific ASMO procedure for WRF parameter estimation can
be summarized as follows:

i. Sample the tunable parameter space to generate representative
parameter sets using suitable sampling methods. Then substitute
these representative parameter sets into the WRF model to run the
model to obtain the corresponding simulation errors of the variable
(e.g., wind speed). Combine the input perturbed parameter sets and
the corresponding output errors to constitute the set of initial
sample points.

ii. Build a statistical surrogate model based on the initial sample points
using a suitable Gaussian Processes regression method. Note that
the curve surface of the statistical surrogate model should pass
through all the initial sample points, ensuring that the statistical
model provides a close approximation to the real WRF response
surface model.

iii. Search for the optimal parameters on the surrogate model using the
global rapid SCE-UA optimization method (Duan et al., 1994). Then
the new parameter set (i.e., the optimal parameters of the surrogate
model) is substituted into the WRF physical model to evaluate the
corresponding output error. Generate a new sample point consisting
of the new parameter set and its WRF output error. Next, update the
initial sample points by adding the newly generated sample point.

iv. Repeat steps ii and iii until the optimization convergence criteria
are met, at which point the globally optimal parameter values of the
real WRF physical model have finally been found. The optimization
convergence criteria is usually defined as the local optimal value
remaining unchanged after a series of searches equal to five to ten
times the parameter dimensionality, or the number of searches
reaching the prescribed maximum number of samples.

3. Experimental design

3.1. Model and simulation design

To obtain high spatiotemporal resolution wind-speed forecasts, a
mesoscale NWP model must be used. This study uses the Advanced
Research Weather Research and Forecasting model Version 3.7.1 (WRF-
ARW Version 3.7.1, http://www2.mmm.ucar.edu/wrf/users).

The study area is located at the junction of five provinces (Henan,
Hubei, Hunan, Anhui, and Jiangxi) within 28.83°–33.80°N and
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111.82°–117.52°E over Eastern China (the d03 area in Fig. 1), where
wind energy resources are abundant, and therefore many wind-mea-
surement stations have been built in regions with many wind farms
(usually on mountain tops). To obtain more accurate turbine-height
wind-speed simulations for the study area, a three-grid, horizontally
nested simulation area has been designed (see Fig. 1). The outer, in-
termediate, and inner layers (i.e., the d01, d02, and d03 domains in
Fig. 1) have horizontal resolutions of 27, 9, and 3 km, with the numbers
of grid cells being 90 × 90, 114 × 114, and 180 × 180 respectively.
The function of the d01 and d02 simulation domains is to provide more
accurate initial and lateral boundary forcing data for simulation of the
d03 domain. Initial and lateral boundary data for the outer layer (i.e.,
the d01 domain) are obtained from the National Center for Environ-
mental Prediction (NCEP). Reanalysis data have 1o × 1o horizontal
resolution and a 6-hourly interval. The vertical domain is divided into
38 sigma layers from the ground surface up to 50 hPa for the three
nested domains. The uniform time step is 180 s.

Thirty-one wind-site stations marked with red dots measuring

turbine-height wind speeds and four sounding stations marked with
blue dots measuring wind and temperature profiles are used to provide
observed data to evaluate the corresponding WRF simulation results
(Fig. 1). In this study, wind data at the turbine heights of 70 or 80 m
from the ground surface are used.

The simulation period for turbine-height wind speed using the WRF
model spans eight individual weather processes arranged into four
seasons (spring, summer, fall, and winter) in one year from June 2014
to May 2015. Fig. 2 shows the eight selected wind processes (Fig. 2a–h).
Each season includes two processes (i.e., Fig. 2a and b in summer,
Fig. 2c and d in fall, Fig. 2e and f in winter, and Fig. 2g and h in spring).
For each process, the wind speed experiences a small–big–small varia-
tion, and the wind direction experiences an approximately south–-
north–south variation. To obtain better WRF simulation results, each
weather process lasting 6 days is divided into two 3-day events to be
simulated separately. For example, for weather process in Fig. 2a ex-
perienced from 18 to 24 June 2014, two 3-day simulation events are
defined, one extending from 18 to 21 June and the other from 21 to 24

Fig. 1. The three-grid horizontally nested domain, with d01 containing the outer grids, d02 containing the intermediate grids cell, and d03 containing the inner girds
cells encompassing the junction of the five provinces of Henan (HaN), Anhui (AH), Hubei (HB), Hunan (HN), and Jiangxi (JX) in Eastern China. Red dots represent
the observation stations for turbine-height wind speed, and blue dots represent the sounding stations. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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June. To reduce the effect of initial errors, the simulation of each 3-day
event lasts up to 84 h, including a preceding 12-h initialization period.
Overall, 16 events are simulated, and each event lastes 3 days. Ac-
cording to the sequential order of the eight processes as shown in Fig. 2,
the corresponding 16 events marked as (1)–(16) are determined and
simulated to demonstrate the WRF model parameter optimization re-
sults.

3.2. Tunable parameters from seven physical parameterization schemes

The description of the physical framework of the WRF model in-
cludes seven main physical processes: near-surface physics, cumulus
convection, microphysics, long-wave and short-wave processes, land-
surface physics, and planetary boundary layer physics. Each physical
process can be represented by several parameterization schemes. In this
study, a suite of fixed parameterization schemes is chosen to comply
with the operational forecasting choice of the China Meteorological
Administration for turbine-height wind-speed simulation. The specific
WRF parameterization schemes are the Monin-Obukhow surface-layer
scheme (Dudhia et al., 1999), the Kain-Fritsch (new Eta) cumulus
scheme (Kain, 2004), the Goddard microphysics scheme (Tao and
Simpson, 1993), the rapid radiative-transfer model for the GCM long-
wave/shortwave scheme (Iacono et al., 2008), the Yonsei University
planetary boundary layer scheme (Hong et al., 2006), and the Noah
land-surface scheme (Chen and Dudhia, 2001).Twenty-seven tunable
parameters are selected from the seven fixed parameterization schemes
and are listed in Table A.1 of Appendix A. Note that many parameters
were named according to their parameterization schemes, such as
convection_1, microphys_2, and radiation_3. This has been done because
these parameters are presented in the schemes in the form of added
scale factors or specific values, not to be named by model developers.

The tunable parameters are determined based on a review of the
literature and a careful examination of related program codes. After
this, the parameter ranges are specified as follows. If no guidance is

available, the parameter ranges are determined by multiplying their
default values by factors of 0.5 and 1.5. This method has been used for
specifying parameter ranges in some papers in the literature (e.g.,
Zhang and Anthes, 1982; Yang et al., 2017). Table A.1 shows that most
of the parameters have their ranges determined according to the factors
0.5 and 1.5.

If the parameter ranges could be found in the literature or in related
scheme codes, they are used in this study. For example, the parameter
ranges for the cumulus scheme are obtained based on Yang et al.
(2012), in which the physical interpretations of the parameter ranges
are also given; surface_1 represents the scaling factor of surface
roughness, and its range is set to 1–2 following Mass and Ovens (2010),
who found that WRF generally has a substantial overestimation bias at
low or moderate wind-speed resolution, which could be corrected by
increasing the surface roughness (or surface_1). Here, karman (i.e, the
von Kármán constant) is viewed as a universal constant that applies to
both the surface-layer and planetary-boundary layer schemes, although
it is listed in the parameter set of the surface-layer scheme in Table A.1.
Therefore, the range of karman is set to 0.35–0.4 as suggested by Stull
(1988). The radiation_2 parameter represents the scaling factor related
to cloud single-scattering albedo. If the parameter value is too large,
there will be a high probability that the cloud albedo is > 1, which
leads to a parameter value with no physical significance. Therefore, the
range of radiation_2 is set to 0.5–1.0. The radiation_3 parameter is a
scaling factor related to the diffusivity angle of cloud optical depth, and
its range is set to 0.9–1.08 based on the limits on the range of diffusivity
angle in the program code. The parameter ranges are determined based
on a comprehensive analysis of parameter perturbations and are
therefore thought to be suitable for performing SA under all wind
conditions. Moreover, the sixteen calibration events are selected from
four seasons of one year, which also demonstrates that the parameter
ranges are suitable to different seasons.
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Fig. 2. The eight wind processes, including variations in wind speed and direction.
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3.3. Statistical metrics

The statistical metrics used to evaluate wind-speed simulations are
the root mean square error (RMSE), the correlation coefficient (R), and
the Weibull probability density function. Another statistical metric used
to evaluate average wind power is wind power density (WPD).

RMSE can be expressed as follows:

= = =RMSE
sim obs

MT

( )
t

T

i

M

i
t

i
t

1 1

2

(3)

where simit and obsit represent the simulated and observed turbine-
height wind speed at the ith observation station at time t, and M and T
are the total numbers of observation stations and time steps.

To provide a better optimization result for multi-event cases, the
normalized RMSE (NRMSE) is usually used as the cost function; its
formula can be expressed as follows:
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where RMSEpi represents the RMSE value of the simulation with the
perturbed parameter value for the ith event and RMSEdefi represents the
RMSE value of the simulation with the default parameter value for ith
event. N is the number of simulation events. When NRMSE is < 1, the
optimization works.
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where simt
_____

and obst
_____

represent the average values of simulated and
observed wind speed for all observation stations at time t. To obtain the
total R value, the spatial R value at each time step is first evaluated, and
then the R values of all time steps are averaged.

Generally, wind-speed frequency follows a Weibull distribution
(Mathew, 2006), which is a probability density function (PDF) with a
single peak and two parameters. The Weibull distribution is used to
describe the overall wind-speed distribution. Its PDF can be expressed
as follows:

= > >f v k
c

v
c

v
c

k v( ) exp , ( 0, 0),
k k1

(6)

where v is the wind speed (units: m s−1); k and c are the two
parameters; k is a shape parameter (dimensionless) that determines the
basic shape of the PDF curve; c is a scale parameter (units: m s−1) that
can widen or narrow the curve as its value varies. The parameters k and
c can be estimated using the average and standard deviation of wind
speed. The corresponding expressions are:
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where σ is the standard deviation of wind speed and v is the average
wind speed.

WPD is a more effective index than wind speed to express potential
wind energy. It combines the comprehensive effect of wind speed and
air density. The definition of WPD (units: W m−2) is the mean power
available when wind passes through one square meter of swept area of a
turbine. The calculation formula for average WPD can be approximately
expressed as follows:

=
=

WPD
n

v1
2

,
i

n

i
1

3

(9)

where n is the total number of wind energy records, vi is the wind speed
(units: m s−1) for the ith record, and ρ is the air density (units: kg m−3),
which can be expressed as a function of altitude (z, units: m) and time-
varying near-surface temperature (T, units: K) at the observation sta-
tion. The formula is:

= T z T(353.05/ ) exp( 0.034( / )). (10)

4. Results and discussion

4.1. Parameter SA results

The 270 perturbed parameter values in the twenty-seven-dimen-
sional tunable parameter space are obtained by the GLP uniform sam-
pling method. Each of the input perturbed parameters is respectively
substituted into the WRF model to replace the default parameters, and
the variation of hourly turbine-height wind speed is simulated in six-
teen 3-day events [marked (1)–(16)] from June 2014 to May 2015, as
shown in Fig. 2. The simulated hourly wind-speed errors are evaluated
by the RMSE metric of the WRF simulations with default and perturbed
parameters. As the inputs of the MARS SA method, the perturbed
parameter values and the corresponding simulated hourly turbine-
height wind-speed errors are entered into the MARS SA method, and the
sensitivity scores of parameters for turbine-height wind-speed simula-
tion are finally obtained. The parametric SA results are shown in Fig. 3.
Seven sensitive parameters have been screened by the MARS SA
method. Note that the scores of the

insensitive parameters are zero. The reason for this is that 100
MARS SA experiments are conducted, with the samples of each ex-
periment obtained by bootstrapping for 270 sample sets. The final
parameter sensitivity scores are obtained by averaging their SA scores
in the 100 experiments. Therefore, the scores for the insensitive para-
meters are likely to become zero. Table 1 lists the seven screened
sensitivity parameters from the six physical schemes.

Due to length constraints, further details of the parameter SA results
are not discussed in this paper. The aim of this paper is mainly to de-
monstrate the effectiveness and efficiency of the ASMO parameter op-
timization method for improving WRF turbine-height wind simulation
and for assessing the applicability of the optimal parameter values
obtained.

4.2. Optimization efficiency analysis

The ASMO method is used in this study to estimate the seven WRF
sensitive parameter values to improve turbine-height wind-speed si-
mulation. The simulation period and the initial sampling method are
the same as in the previous parameter SA experiments. However, the
objective functions (i.e., the simulated errors) for the optimization is
the RMSE metric of simulated hourly turbine-height wind speed be-
tween WRF simulations and observations. To demonstrate optimization
efficiency more effectively, the NRMSE between simulated and ob-
served hourly turbine-height wind speed is used. The number of initial
sample points before the ASMO method is set to 100, and the samples
are obtained using the GLP method. Based on the time requirements for
computing 16 event simulations using the WRF model, the optimization
criterion is designed as the local optimal value remaining unchanged
after the number of search steps is equal to five times the parameter
dimensionality.

Fig. 4 shows the convergence results for the WRF model adaptive
parameter optimization for hourly turbine-height wind speed using the
ASMO method. The simulation error is improved by ~5% using 100
initial sampling points, and the error is further decreased to 8.7% by
adding another 31 sampling points using the adaptive optimization
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strategy of the ASMO method. For hourly turbine-height wind-speed
simulation, an improvement of 8.7% is highly significant. After 131
parameter samples, the optimal values of the seven WRF parameters
affecting the simulation of turbine-height wind speed are finally found,
demonstrating that the ASMO method is highly effective and efficient
for parameter optimization of a complex dynamic model.

4.3. Analysis of optimization results

After the optimal parameter values are obtained from 131 para-
meter samples using the ASMO method, simulations of the sixteen 3-
day events [(1)–(16)] using default and optimal parameters are com-
pared; Fig. 5 shows the corresponding results. It is apparent that the
overall simulation is improved by 8.7% and that the greatest im-
provement occurs for the simulation of event (4). It is also found that
the optimal parameters evidently improve the turbine-height wind-
speed simulations of most of the 16 events compared with the default
parameters, except for the negative improvement (−0.06%) for event
(2). The reason for this is that the defined objective function considers
the average value of equal-weight NRMSEs for simulations of all 16
events. A few simulations with negative improvement are therefore
unavoidable, although the overall simulation is greatly improved. If a
suite of suitable unequal weights were allocated to the simulation error
of each single event in the total objective function, it would be possible
to improve both the simulation of each event and the overall simula-
tion.

The 72-h variations of observed and simulated turbine-height wind
speed are obtained by averaging the observations and simulations of the
16 events [(1)–(16)]. Fig. 6a shows the results. It is apparent that the
WRF simulation with default parameters overestimates wind speed, but

that the WRF simulation with optimized parameters significantly re-
duces the overestimation trend. The curve of the optimized simulation
results is closer to observations than that of the default simulation re-
sults. In particular, the optimization effect is highly significant for wind
speeds > 6.5 m s−1, and the maximum improvement occurs in the si-
mulation of the strongest wind speed. For wind speeds < 6.5 m s−1, the
optimization decreases the simulation errors, but a large bias remains
between the observations and the default simulation, making its
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Fig. 3. Sensitivity scores of the twenty-seven tunable parameters.

Table 1
List of sensitivity parameters from six physical schemes for WRF model version 3.7.1.

Index Parameter Scheme Default Range Description

P3 surface_1 Surface layer (module_sf_sfclayrev.F) 1 [1, 2] Scaling related to surface roughness
P4 karman 0.4 [0.35, 0.4] Von Kármán constant
P6 convection_2 Cumulus (module_cu_kfeta.F) 1 [0.5, 1.5] Scaling related to entrainment flow
P12 microphys_2 Microphysics (module_mp_gsfcgce.F) 3.29 [1.65, 4.94] Scaling related to ice fall terminal velocity(s−1)
P15 radiation_2 Short wave radiation (module_ra_rrtmg_sw.F) 1 [0.5, 1.0] Scaling related to cloud single scattering
P18 land_2 Land surface (module_sf_noahlsm.F) 1 [0.5, 1.5] Scaling related to soil porosity
P24 planetary_3 Planetary boundary layer (module_bl_ysu.F) 2 [1, 3] Profile shape exponent of the momentum diffusivity
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Fig. 4. Convergence results for the WRF model adaptive parameter optimiza-
tion for hourly turbine-height wind speed using the ASMO method.
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improvement effect weaker than that when wind speeds > 6.5 m s−1.
In addition, it has been demonstrated that WRF model simulations

can better capture the daily variation characteristics of turbine-height
wind speed. By converting Universal Time Coordinates (UTC) into local
time (i.e., Beijing time), it is found that the wind speed is lower in the
daytime and higher at night. More specifically, the lowest wind speed

occurs at ~ 14:00 local time (corresponding to 6:00, 30:00, and 54:00
in UTC, as shown in Fig. 6a), whereas the wind speed at local night time
(corresponding to 12:00–24:00, 36:00–48:00, and 60:00–72:00 in UTC,
as shown in Fig. 6a) is relatively strong and steady. Overall, the rea-
sonable simulation results prove the suitability of the WRF model to
simulate turbine-height wind speed, and the significant improvement of
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Fig. 5. Comparison of wind-speed simulation errors for sixteen events (1)–(16) using the WRF model with default and optimal parameters.
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the hourly simulations demonstrates the effectiveness of the ASMO
parameter optimization method.

Because the 16 optimization events [(1)–(16)] are chosen from the
four seasons of one year (i.e., from June 2014 to May 2015), the
comparisons of optimized and default simulations are conducted for the
four seasons. Specifically, events (1)–(4), (5)–(8), (9)–(12), and
(13)–(16) belonged to summer, fall, winter, and spring respectively.
Fig. 6b shows the comparison results for observed and simulated tur-
bine-height wind speed with default and optimal parameters for the
four seasons. Compared to observations, the simulations with both
default and optimal parameters have the consistent variance char-
acteristic that turbine-height wind speed is highest in spring and lowest
in summer. It is also apparent that the optimal parameters greatly im-
prove the turbine-height wind-speed simulations for the four seasons
compared to the default parameters. The improvement rates in spring
and fall with strong wind are obviously higher than those in summer
and winter with light wind, which confirms once more that the ASMO
method achieves significant improvement for the simulation of strong
wind (see Fig. 6a).

Fig. 7 shows the Weibull PDFs of observed and simulated turbine-
height wind speed. When comparing the median values of the Weibull
PDFs, it is found that the WRF simulations with default parameters
overestimate wind speeds compared to the observed data and that the
simulated values of average wind speed are closer to observations when
ASMO parameter optimization is used. Similarly, the frequency of the
simulated median wind speed is also brought closer to observations by
parameter optimization. Comparing the whole set of Weibull PDFs for
the observations and the simulation with default parameters, it is de-
monstrated that the simulation with default parameters strongly over-
estimates the frequency of strong winds with speeds > 7 m s−1 and
underestimate the frequency of light winds with speeds < 7 m s−1. The
overall result is that the simulated wind speed using the WRF model
with default parameters overestimate the observations. The simulation
with optimal parameters obtained by the ASMO method reduces the
frequency of simulated strong winds and increases the frequency of
simulated light winds, bringing the optimization results closer to ob-
servations.

The optimal parameters obtained by optimizing the turbine-height
wind-speed simulations are also used to evaluate the effects on profile
simulations of wind speed and temperature in the entire atmospheric
layer (i.e., with pressure coordinates from 1000 to 100 hPa). The si-
mulated variables (e.g., wind speed or temperature) are first inter-
polated into vertical pressure layers, and then the variable values for
each pressure layer are horizontally interpolated to the locations of the
four sounding observation points (marked as blue points in Fig. 1).
According to measured data for the specific pressure layers at the
sounding observation points, the RMSE of the 12-hourly simulated
variables for each specific pressure layer is evaluated for the 16 events
[(1)–(16)]. Finally, the profile errors of simulated wind speed and
temperature are respectively obtained by averaging the profile errors of
the corresponding variables at the four sounding observation points.

Fig. 8a shows a comparison of wind-speed profile errors for WRF
simulations with default and optimal parameters. It is evident that the
WRF model with optimal parameters improves the wind-speed simu-
lations below the height with 250 hPa air pressure, but achieves a ne-
gative improvement for heights between 100 and 250 hPa. Similarly,
Fig. 8b shows a comparison of temperature profile errors for WRF si-
mulations with default and optimal parameters. Unlike the wind-speed
profiles, the temperature profile simulations using the optimal para-
meters are distinctly improved in all pressure layers compared to the
simulations with default parameters. Therefore, it can be said that the
optimal parameters have a distinct ability to improve simulated wind-
speed and temperature profiles in the entire atmospheric layer.

R is another common statistical metric for evaluating turbine-height
wind-speed simulations. In this study, the optimal parameters obtained
by optimizing the RMSE of hourly turbine-height wind-speed simula-
tions are tested to examine whether they still can improve the R of the
default WRF simulations. Fig. 9 shows a comparison of R for the WRF
simulations with default and optimal parameters. Overall, the optimal
parameters improve the R of the wind-speed simulations by approxi-
mately 4% compared to the default parameters. This means that the
optimal parameters obtained by optimizing the RMSE of hourly turbine-
height wind-speed simulations not only improve the RMSE of the wind-
speed simulations by 8.7%, but also improve the R of the wind-speed
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Fig. 7. Comparison of the Weibull PDFs of observed and simulated turbine-height wind speed.
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simulations by approximately 4%. Obviously, the applicability of the
WRF optimal parameters obtained using the ASMO method has been
further demonstrated. Note that 14 of the 16 events show improvement
in wind-speed simulation, but two events (2)–(3) do not. The reason for
this is related to the definition of the objective function only using
RMSE. If R is also added into the optimization objective function, the
negative improvements will disappear.

4.4. WPD improvement analysis

WPD is a common metric to assess wind-energy potential. According
to Eq. (9), WPD is proportional to the cube of turbine-height wind
speed. Therefore, when the accuracy of simulated turbine-height wind
speed has been improved, it is desirable to analyze the variation in
WPD. As input data, the heights of the observation stations and the
time-varying air temperatures at 10 m are substituted into Eq. (10) to
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evaluate the time-varying air density values. Finally, WPD is evaluated
as the product of air density and the cube of wind speed.

Based on the evident variations in turbine-height wind speed over
the seasons (see Fig. 6b), an analysis of average WPD is conducted in
each season. Fig. 10 shows a comparison of simulated and observed
WPD for the four seasons and the whole year. The observed WPD values
are obtained by evaluating Eq. (9)–Eq. (10) using observed air-tem-
perature data at 10 m, turbine-height wind speed, and the heights of the
observation stations. Fig. 10 illustrates that the WPD calculated using
the optimal wind speed shows significant improvement and is closer to
the corresponding observations for the whole year and the three sea-
sons of summer, fall, and winter compared with the WPD calculated
using the default wind speed. The improvement is especially significant
for fall and winter. Moreover, the negative improvement of the opti-
mization simulation in spring does not change the fact that the WRF
simulation with optimal parameters improves WPD estimation by ap-
proximately 36% for the whole year compared to the WRF default si-
mulation. In accordance with the distribution of average turbine-height
wind speed in the four seasons (see Fig. 6b), the WPD is also highest in
spring and lowest in summer, demonstrating that WPD variation is
mainly affected by variation in turbine-height wind speed. Note also
that the ranking of improvement rates for WPD is inconsistent with that
of wind speed, which may be related to the variations in air density
across the seasons.

To obtain a better assessment of the spatial distribution of wind
energy, the spatial distribution of the simulated WPD with optimal
wind speed is evaluated, and the results are shown in Fig. 11. It is clear
that the strongest wind-energy resources are mainly distributed along
the border between Henan and Hubei Provinces and that between
Anhui and Hubei Provinces, where the terrain is mainly high mountains
and the average WPD is > 500 W m−2. For the northern provinces, the
average WPD ranges from 200 to 300 W m−2. For the southern pro-
vinces, the average WPD ranges from 100 to 200 W m−2. Fig. 11 also
shows the positions of the observation stations marked with red aster-
isks. From the positions of the observation stations and the WPD spatial
distribution, it is clear that most of the observation stations are built in
the regions with high wind energy, but a few are built in regions with
low wind energy (see the bottom right corner in Fig. 11). Therefore,
from the viewpoint of wind-energy simulation, it can be concluded that
the locations of some already-built observation stations are

inappropriate.

4.5. Validation analysis of WRF optimal parameters

Compared with the default parameters, the superiority of the op-
timal parameters obtained by the ASMO method for improving WRF
turbine-height wind-speed simulation has been demonstrated in the
optimization period. However, for the validation period when new
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Fig. 11. Spatial distribution of simulated WPD with the optimal wind speed.
The red asterisks represent the positions of the observation stations. (For in-
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ferred to the web version of this article.)
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events must be simulated, the question whether the optimal parameters
are still effective deserves to be investigated. Six new validation events
are selected from June 2014 to May 2015, as shown in Table 2. The
designs of the domain and simulation, the variation characteristics of
wind speed and direction, the simulation duration, and the forcing data
source are the same as in the parameter optimization experiment.

Fig. 12a compares the RMSE of simulated hourly turbine-height
wind speed using the WRF model with default and optimal parameters
for the six validation events. Overall, compared with the WRF simula-
tions with default parameters, the average improvement percentage of
RMSE in the WRF wind-speed simulations is 7.58% using WRF simu-
lations with optimal parameters. Moreover, all validation event simu-
lations are improved using the WRF simulations with optimal para-
meters, and the wind-speed simulations are improved by percentages
varying from 2.63% to 12.29%. Fig. 12b shows a comparison of R for
the simulated hourly turbine-height wind speed using the WRF model
with default and optimal parameters. Overall, the average improvement
percentage of R in the WRF wind-speed simulations with optimal
parameters is 6.49%, demonstrating that the optimal parameters can
also improve the correlation of WRF turbine-height wind-speed simu-
lations in the validation events. Note that one of the six single-objective
simulations experiences negative improvement, which may be related
to the parameter values obtained by optimizing RMSE.

Note that the observed wind evolution for the calibration and va-
lidation periods follows two pattern variations: one is that when the
wind speed increases (light to strong), the wind direction experiences a
south-to-north variation, and the other is that when the wind speed

decreases (strong to light), the wind direction experiences a north-to-
south variation. However, it is unknown whether the optimal para-
meters still work when other wind patterns are simulated. In this sec-
tion, two opposite wind patterns are selected for simulation to validate
further the superiority of the optimal parameters. Each pattern includes
three 3-day wind events. Fig. 13a–c shows the first pattern, in which
when wind speed decreases (strong to light), the wind direction var-
iation is approximately south-to-north; Fig. 13d–f shows the second
pattern, in which when wind speed increases (light to strong), the wind
direction variation is approximately north-to-south. Fig. 13a–f illus-
trates the new events (A)-(F), respectively.

The two categories of simulations are separately compared to ex-
amine whether the optimal parameters work for simulations of other
wind patterns. Fig. 14 shows the comparison results. It is apparent that
the optimal parameters improve the simulations of all six wind events
compared with the default parameters. Overall, using WRF simulations
with optimal parameters, the average improvement percentages in
RMSE in hourly turbine-height wind-speed simulation for the two
newly simulated wind patterns are 6.68% and 4.66%, respectively. This
demonstrates that the optimal parameters are reasonable for simulating
different wind patterns, and the method is therefore effective in im-
proving WRF turbine-height wind-speed simulation.

Overall, the optimal parameters obtained by optimizing the RMSE of
turbine-height wind-speed simulations using the ASMO method not
only improve the R of wind-speed simulations in the optimization
period, but also improve the RMSE and R of wind-speed simulations in
the validation period. In addition, the optimal parameters can be used
to simulate other wind patterns. These analyses demonstrate compre-
hensively that the optimal parameters can be used to improve turbine-
height wind-speed simulations in the study area. Therefore, the optimal
parameter values are thought to be reasonable and effective.

4.6. Physical interpretation and verification of the optimal parameter values

The values of the default and optimal parameters are normalized
within their ranges to provide a clearer illustrate of the variations be-
tween them. Fig. 15 shows a comparison of the normalized optimal and
default parameter values. All the optimal parameter values show

Table 2
The six validation events from June 2014 to May 2015.

Events Duration

I 2014/09/26–2014/09/28
II 2014/09/29–2014/10/01
III 2014/12/28–2014/12/30
IV 2014/12/31–2015/01/02
V 2015/03/14–2015/03/16
VI 2015/03/17–2015/03/19
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Fig. 12. Comparisons of simulation errors of hourly turbine-height wind speed using WRF model with default and optimal parameters for: (a) RMSE (b) R.
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inconsistent variations. For the karman (the von Kármán constant) and
radiation_2 (scaling related to aerosol single scattering) parameters,
their values are basically unchanged and remained the same as the
default parameter values. For the surface_1 (scaling related to surface
roughness) parameter, the value varies from the minimum for the de-
fault parameter to the maximum for the optimal parameter in its range.
For the other four parameters, their optimal values are lower than their
default values.

It has been found from previous analyses (e.g., Fig. 6) that the de-
fault simulation parameters generally overestimate wind-speed values
compared with observations and that the optimal simulation para-
meters reduce this overestimation. The specific physical interpretation
of the parameter variation is the following. Larger values of surface_1
mean a greater roughness length to be defined in the surface layer,
which elevates the zero-plane displacement height and therefore re-
duces wind speed at turbine height. Larger values of karman enhance
the magnitude of the turbulent length scale in the planetary boundary
layer, leading to stronger vertical mixing during daytime. However,
larger values of karman also lead to increases in the exchange coeffi-
cient for momentum near surface, causing a reduction of wind speed.
Smaller values of convection_2 (scaling related to entrainment flow) lead
to lower ratios of entrainment to updraft flux, which enhances the
updraft, leading to decreases in horizontal wind speeds. The micro-
phys_2 parameter (scaling related to ice fall) directly affects the con-
version rate from cloud ice to rainwater in the description of the mi-
crophysics parameterization scheme. Therefore, smaller values of
microphys_2 eventually brings about reductions in precipitation, leading
to decreases in evapotranspiration or turbulence and reductions in
turbine-height wind speed. Larger values of radiation_2 lead to more
scattering of solar radiation reflected to the sky, which reduces the
amount of shortwave radiation reaching the surface, further suppres-
sing evaporation and ultimately leading to decreases in wind speeds.
Small values of land_2 (scaling related to soil porosity) lead to lower soil
porosity, which suppresses the conveyance of soil water and heat up-
ward from groundwater to the surface and thus decreases the difference
between surface energies at different locations, blocking the develop-
ment of wind speed. The planetary_3 parameter (profile shape exponent
of the momentum diffusivity) has a positive effect on the momentum
diffusivity coefficient. When planetary_3 decreases, the eddy turbulence
diffusivity intensity is weakened, inducing lower wind speed at turbine
height.

5. Conclusions

This study first uses the global SA method to identify the seven

sensitive parameters from 27 tunable parameters in seven WRF physical
parameterization schemes and then optimizes the seven sensitivity
parameters from the six WRF physical parameterization schemes using
the ASMO method to improve turbine-height wind-speed simulation
over Eastern China. The WRF model simulations with default and op-
timal parameters are compared from five aspects, including the varia-
tion of turbine-height wind speed over a 72-h lead time and the four
seasons, the Weibull frequency distribution of wind speed, wind-speed
and temperature profiles from 1000 to 100 hPa, the correlation of si-
mulated wind speed, and the spatial and temporal distribution of WPD
in the study area. In addition, the applicability of the optimal para-
meters obtained by the ASMO method is examined in new simulations
of the six validation events to show their superiorities to the default
parameters for improving turbine-height wind-speed simulation.

The optimization results demonstrate that parameter optimization
for the complex WRF model, which has very time-consuming calcula-
tion requirements, can be conducted using the ASMO method. In par-
ticular, the optimal values of the seven parameters in this study are
obtained using 131 samples, including 100 initial and 31 adaptive
samples obtained using the ASMO method. This approach greatly re-
duces the number of WRF model runs and demonstrates that the ASMO
method is a highly effective and efficient optimization method and is
well suited to optimize the parameters of other complex weather and
climate models.

By comparing the WRF model simulations with default and optimal
parameters, it is found that the hourly turbine-height wind-speed si-
mulation is improved by 8.7% using ASMO optimization. Variation
analyses of wind-speed time series show that the WRF simulation with
default parameters overestimates wind speed, whereas the WRF simu-
lation with optimized parameters greatly reduces the overestimation
trend. By comparing the simulated Weibull frequency distributions, it
has been found that the WRF model with optimal parameters reduces
the frequency of simulated strong winds and increases the frequency of
simulated light winds, bringing the optimization results closer to ob-
servations. Besides improving turbine-height wind-speed simulation,
the WRF model with optimal parameters also improves the simulation
of wind and temperature profiles from 1000 to 100 hPa. Similarly, it
also improves the R of turbine-height wind-speed simulation by ap-
proximately 4% in addition to improving RMSE by 8.7% as the cost
function. Based on the WPD formula, it has been demonstrated that the
WRF model with optimal parameters improves WPD estimation by
36%. By examining the spatial distribution of WPD simulations with
optimal wind speeds, it has also been found that the locations of a few
observation stations built in regions with low wind energy are in-
appropriate, although most of the stations are built in high-wind-energy
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regions. Finally, the applicability of the optimal parameters is also
demonstrated by comparing turbine-height wind-speed simulations for
two categories of new validation events: one is the same pattern as the
calibration events, whereas the other represents an opposite pattern.
The results show that the WRF model with optimal parameters im-
proves the RMSE and R of wind speed simulations for the same pattern
of six validation events by 7.58% and 6.49% respectively. For the two
different patterns, the average RMSE improvement percentages of
wind-speed simulations for the three valiation events are 6.68% and
4.66%, respectively. This fully demonstrates the reasonableness of the
optimal parameters.

However, it should be noted that generally the wind-speed simula-
tions are improved by the WRF model with optimal parameters, but
that several single simulations show negative improvements. These
phenomena are caused by the definition of the single-objective cost
function, which allocates equal weight to each single simulation and
then averages all the simulation errors. If the suitable weights are used
to construct the multi-objective cost function, it will be possible to
improve all the single simulations using multi-objective optimization
methods such as NSGA-II (Deb et al., 2002) and ASMO-PODE (Gong and
Duan, 2017). In addition, the same approach can be migrated to other
multi-variable joint optimization problems such as wind speed, tem-
perature, and pressure.
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