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Abstract
Surface air temperature outputs from 16 global climate models participating in the sixth phase of
the coupled model intercomparison project (CMIP6) were used to evaluate agreement with
observations over the global land surface for the period 1901–2014. Projections of multi-model
mean under four different shared socioeconomic pathways were also examined. The results reveal
that the majority of models reasonably capture the dominant features of the spatial variations in
observed temperature with a pattern correlation typically greater than 0.98, but with large
variability across models and regions. In addition, the CMIP6 mean can capture the trends of
global surface temperatures shown by the observational data during 1901–1940 (warming),
1941–1970 (cooling) and 1971–2014 (rapid warming). By the end of the 21st century, the global
temperature under different scenarios is projected to increase by 1.18 ◦C/100 yr (SSP1-2.6),
3.22 ◦C/100 yr (SSP2-4.5), 5.50 ◦C/100 yr (SSP3-7.0) and 7.20 ◦C/100 yr (SSP5-8.5), with greater
warming projected over the high latitudes of the northern hemisphere and weaker warming over
the tropics and the southern hemisphere. Results of probability density distributions further
indicate that large increases in the frequency and magnitude of warm extremes over the global land
may occur in the future.

1. Introduction

Warming of the climate system is unequivocal, and
according to the Fifth Assessment Report of the Inter-
governmental Panel on Climate Change (IPCC), the
global surface temperature warmed by 0.85 ◦C over
the period 1880–2012 (IPCC 2013). The rising global
temperatures have prompted great concern regarding
the relationship between nature and society. Previous
studies have suggested that the widespread temperat-
ure increases have substantial impacts on the global
hydrologic cycle (Alfieri et al 2017, Sun and Miao
2018, Zheng et al 2019, Gou et al 2020), food produc-
tion (Asseng et al 2015), energy allocation (Mcglade
and Ekins 2015), disease spread (Levy et al 2016,
Colón-González et al 2018), natural disasters (Miao
et al 2010, 2011, Diffenbaugh et al 2017, Sun et al
2020) and socioeconomic development (Burke et al
2015). In addition, warming of 2 ◦C is projected to

lead to an average global ocean rise of 20 cm (Jevre-
jeva et al 2016), and warming of 1.5 ◦C is projec-
ted to lead to glaciers melting in the high moun-
tains of Asia, such that only 64% ± 7% of their
present-day ice mass will remain by the end of the
century (Yao et al 2012, Kraaijenbrink et al 2017).
Hence, it is imperative to study the patterns and
trends in global temperature change and their implic-
ations for sustainable development and future adapt-
ation measurements that may be needed.

Global climate models (GCMs) are regarded as
the primary tools for climate change studies, being
widely used to simulate and project climate change
at global and regional scales. The outputs of GCMs
offer opportunities to analyze the projections for 21st-
century climate change and the potential effects of
those changes at global and regional scales (Su et al
2013, Bannister et al 2017). In response to the chal-
lenges of comprehensive modeling in climate science,
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a more federated structure for the sixth phase of
the coupled model intercomparison project (CMIP6)
has been adopted, with a substantial increase in the
number and scope of experiments that have been per-
formed. In comparison with the previous model gen-
eration (CMIP5), the CMIP6 GCMs have shown sig-
nificant improvements in spatial resolution, physical
parameterizations (in the representation of clouds,
for example) and inclusion of additional Earth sys-
tem processes (such as nutrient limitations on the
terrestrial carbon cycle) and components (such as
ice sheets) (Eyring et al 2016, 2019). A new concep-
tual framework (Moss et al 2010) has been developed
using a diverse range of socioeconomic and tech-
nological development scenarios, named the shared
socioeconomic pathways (SSPs), which are distin-
guished on the basis of anticipated challenges to
adaptation and mitigation, rather than on emissions
pathways as was done for the IPCC Special Report
on Emissions Scenarios (Ebi et al 2013, O’Neill et al
2016). Two main axes of the scenario matrix archi-
tecture are (1) the future climate radiative forcing
level, characterized by the representative concentra-
tion pathways (RCPs) and (2) a set of alternat-
ive plausible trajectories of future global develop-
ment (the SSPs) (O’Neill et al 2013, van Vuuren
et al 2013, Kriegler et al 2014). The SSPs are based
on five narratives describing alternative pathways
for socioeconomic development, including sustain-
able development (SSP1) (van Vuuren et al 2017),
middle-of-the-road development (SSP2) (Fricko et al
2017), regional rivalry (SSP3) (Fujimori et al 2017),
inequality (SSP4) (Calvin et al 2017) and fossil-fueled
development (SSP5) (Kriegler et al 2017). This new
generation of scenarios will facilitate society’s under-
standing of plausible climate and socioeconomic
futures.

Recently, some experimental results from the new
generation of GCMs have become available. Howwell
the new generation of CMIP6 GCMs simulate cli-
mate at global and regional scales and how the global
temperature will change under the new emissions
scenarios in the future is of great interest to both
researchers and decision makers. In this study, as a
basis for comparison with observational data sets, we
evaluate the historical variability of the global surface
air temperature simulated by 16 GCMs participating
in CMIP6 and then investigated how the global tem-
perature will change in the 21st century.

2. Models, data andmethods

2.1. Modeled and observational data sets
2.1.1. Modeled data.
We obtained monthly surface air temperature output
from 16 GCMs in the CMIP6 archive, the relevant
details are presented in table S1 (available online at
stacks.iop.org/ERL/15/104056/mmedia). Five sets of
experiments were used focusing on the global land

area and the continental scale: one historical sim-
ulations for the period 1901–2014 were processed
for the performance analysis; Four scenarios (SSP1-
2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) were used for
future projections from2015 to 2099, which provide a
full range of forcing targets similar in bothmagnitude
and distribution to the RCPs as used in CMIP5 (Gid-
den et al 2019). All the models were bilinearly inter-
polated onto a common grid of 1◦ × 1◦ for compar-
ison between simulations and observations.

2.1.2. Observational data.
To ensure that our assessment of model perform-
ance is not biased by our choice of observations,
two different observed data sets of monthly surface
air temperature were used to evaluate the GCMs’
performance. The first is the University of East
Anglia Climatic Research Unit (CRU) Time-Series
(TS) data version 4.03 (Harris et al 2020), gridded to
0.5◦ × 0.5◦ resolution and based on analysis of over
4000 individual weather station records, with data
extending from 1901 to 2014. The second is the Uni-
versity of Delaware Air Temperature (UDEL) v5.01
data set (Willmott and Robeson 1995), based on land
stations from GHCNv2 (Global Historical Climato-
logy Network—Version 2) and a few other sources; it
has the same spatial resolution as CRU, and its time
period also extends from 1901 to 2014. For consist-
ency with the model resolution, we regridded the two
observational data sets to a 1◦ × 1◦ grid.

2.2. Historical climate simulation performance
metrics
To facilitate validation of the GCMs against the obser-
vational data, we simply averaged the temperature
values to define the globally averaged monthly and
annual time series and spatial patterns of GCM simu-
lations and observations. The annualmean temperat-
ure anomalies were calculated as the deviations from
the climatology during the period 1970–1999. Con-
sidering the warming temperature trends observed
during 1901–1940 and 1971–2014 in contrast to a
cooling temperature trend during 1941–1970 (fig-
ure S1), we split the interannual variations of tem-
perature into three time periods, 1901–1940 (period
1), 1941–1970 (period 2) and 1971–2014 (period 3).
Then we calculated the climatological temperature
patterns and linear trends for three time blocks and
compared the consistency between the model and
the observations. To quantify the agreement between
observations and model simulations, we constructed
Taylor diagrams (Taylor 2001), for which we calcu-
lated the Pearson correlation coefficients, standard
deviations of the error and root-mean-square errors
between the CMIP6 models’ data sets and the obser-
vational data sets. We calculated the trends using lin-
ear least-squares fitting. T-test was employed to cal-
culate the statistical significance of the temperature
trends.
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Figure 1. Spatial distribution of annual mean temperature biases (models minus CRU) of the 16 GCMs and observations over the
global land surface during 1901–2014.

3. Evaluation of model performance

3.1. Spatial climatological means and trends
We start by comparing the spatial patterns of the
bias between the observed and simulated clima-
tological annual mean temperature during 1901–
2014 (figures 1 and S2). In general, most CMIP6
models can capture the climatological temperature
patterns over the global land surface. Almost all
models commonly show demonstrable underestim-
ation in the Tibetan Plateau by more than 5 ◦C.
CESM2-WACCM, CESM2, MIROC-ES2L, MIROC6
and MRI-ESM2-0 show warm biases in most global
land regions but slightly underestimate temperatures
in tropical regions. The warm biases are most pro-
nounced in the simulations by MIROC-ES2L and

MIROC6, especially in western Asia and east of 130◦E
in Asia. However, othermodels tend to underestimate
annual temperature in most global land regions, and
their underestimations in Greenland and the Tibetan
Plateau are considerable. Furthermore, FGOALS-g3
exhibits noticeable cold biases in high northern lat-
itude regions of Eurasia by 5 ◦C–7.5 ◦C. The multi-
model ensemble average show better agreement than
many single models in simulating the spatial patterns
of the annual mean temperature, with most biases
within 2.5 ◦C. But the common cold biases seen in
the Greenland and the Tibetan Plateau and the warm
biases in east of 130◦E in Asia are also evident in
the CMIP6 ensemble mean. These cold biases of the
models in the Greenland and the Tibetan Plateau
is likely linked to the uneven spatial distribution of
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Figure 2. Taylor diagrams for climatological annual temperature over the global land surface and each individual continent
comparing each of the CMIP6 models and the observations for the period 1901–2014. The radial coordinate is the magnitude of
the standard deviation (denoted by black arcs). The concentric green semi-circles denote root-mean-square difference values. The
angular coordinate shows the correlation coefficient (denoted by dotted black lines).

meteorological station, which may introduce some
uncertainties in the interpolated observations in these
regions (Reeves Eyre and Zeng 2017). The spatial
patterns of the annual mean temperature during the
three historical periods (figures S3–S8) suggest there
are similar biases of the models relative to the entire
historical period.

The agreement between model-simulated and
observed temperature was further evaluated through
the Taylor diagrams. Figures 2, S9–S11 show the res-
ults for the climatology of the entire historical period
and three subperiods for individual CMIP6 mod-
els. In general, the performance of the models over
the entire historical period has no obvious difference
from that of the three subperiods. Based on the Taylor
diagrams, there is good agreement between UDEL
observations and CRU observations. This provides
positive evidence that verification against CRU data
is reasonable and appropriate. As with the spatial

pattern of global annual mean temperature, all the
models show good performance, with a correla-
tion coefficient typically >0.98 and a close match
to CRU observations. BCC-CMS2-MR, EC-Earth3,
EC-Earth3-Veg, CESM2-WACCM and CESM2 per-
form somewhat better over the global land surface.
Based on a comparison of the Taylor diagrams for
each continent, the CMIP6 models are generally
more skillful in Asia and North America but per-
form relatively poorly in Africa. There is a more dis-
persed distribution of the results of the 16 mod-
els in Africa than for other continents, indicating
that the models differ widely in their simulation
ability to reproduce the spatial variations of tem-
perature climatology. Furthermore, the correlation
coefficients of six models are below 0.90 for Africa,
while the majority of models show higher correla-
tion coefficients (generally between 0.95 and 0.99).
However, the lower correlation coefficients might be
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Figure 3. Spatial distribution of annual mean temperature trends for the CMIP6 mean and observations over the global land
surface during 1901–2014. Stippled regions indicate statistically significant differences (95% level).

attributable to the poorer availability of CRU obser-
vational data over Africa (Collins 2011, Harris et al
2014). EC-Earth3 and EC-Earth3-Veg exhibit bet-
ter skill in Asia, Europe and North America than in
Africa, South America and Australia. MIROC-ES2L,
MIROC6 and CanESM5 present relatively poor per-
formance compared to other models over global land
and for each continent (except for the performance of
CanESM5 in Australia and Europe and the perform-
ance of MIROC6 in North America). As shown in
figure 1, the poor skill ofMIROC-ES2L andMIROC6
is related to the noticeable overestimation in most
regions of the global land, and CanESM5 largely
underestimates temperature in Greenland, Tibetan
Plateau, Andes and Sahara. Other notable discrep-
ancies include FGOALS-g3 results for Europe, which
differ substantially fromCRU observations due to the
large cold biases shown in Europe (figure 1).

We next compare the spatial patterns of linear
trends during 1901–1940 (period 1), 1941–1970
(period 2) and 1971–2014 (period 3), calculated
using observational data and the CMIP6multi-model
mean simulations (figure 3). A more detailed look at
the performance of individual CMIP6 models dur-
ing the three periods is shown in figures S12–S14.
Overall, the CMIP6 mean can capture the trends of
global surface temperatures shown by the observa-
tional data during the three subperiods (warming in
period 1, cooling in period 2 and rapid warming in
period 3) but with less spatial variability compared
with the observations. During period 1, CRU and
UDEL reveal that there was a fast warming trend in
annual temperatures over the high latitudes of the
northern hemisphere; however, the CMIP6 ensemble
mean underestimates the observed warming trends

by ∼0.1 ◦C–0.5 ◦C per decade. A closer look at the
trends of individual models (figure S12) shows that
some models (e.g. UKESM1-0-LL, CNRM-ESM2-1,
CNRM-CM6-1, CAMS-CSM1-0 and BCC-CSM2-
MR) do not simulate a warming trend similar to that
seen in the observations but instead show a cool-
ing trend in these regions. For low latitudes of the
northern hemispheres and southern hemispheres, the
CMIP6 mean broadly shows a significant warming
trend, whereas the observed warming trend is not sig-
nificant inmany regions. During period 2, the CMIP6
mean underestimates the cooling trend in high lat-
itudes of the northern hemisphere by ∼0.2 ◦C–
0.7 ◦C. Contrary to the cooling trend of obser-
vations, IPSL-CM6A-LR, CNRM-CM6-1, CNRM-
ESM2-1, CESM2 and CAMS-CSM1-0 exhibit warm-
ing trends in high latitudes of the northern hemi-
sphere (figure S13). EC-Earth3, EC-Earth3-Veg and
BCC-CSM2-MR show warming trends in high lat-
itudes of North America, while FGOALS-g3 and
GFDL-ESM4 show warming trends in high latit-
udes of Asia and Europe. The CMIP6 mean does not
reflect the observed warming trend in some regions
of middle-to-low latitudes (northern South America,
Australia and western and central Asia). However,
the warming trends of these regions are reproduced
in some individual models with warm biases. The
CMIP6 mean and the individual models can reason-
ably capture the observed trend patterns with slight
overestimation of less than 0.2 ◦C during period 3.
CAMS-CSM1-0 showsweak underestimation inmost
regions of the global land, whereas the simulations
from UKESM1-0-LL show noticeable overestimation
in high latitudes of the northern hemisphere
(figure S14).
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Figure 4. The heatmap of the annual mean temperature trends during the three historical subperiods over the global land surface
and each individual continent: (a) 1901–1940; (b) 1941–1970; and (c) 1971–2014. Results are shown for the two observational
data sets, the 16 CMIP6 GCMs and the CMIP6 ensemble mean.

Figure 4 further shows the model behavior of
regional average trends simulated by the CMIP6
models over global land and each continent during
the three subperiods. The results suggest that large
biases of CMIP6 models are present in Asia, Europe
and North America in all subperiods, which corres-
pond to the biases in high latitudes of the northern
hemisphere drawn from the previous findings in fig-
ure 3. With respect to the relative performance of the
individual models, we found that (1) EC-Earth3 and
FGOALS-g3 shows overestimation, while UKESM1-
0-LL, CNRM-ESM2-1, CNRM-CM6-1 and BCC-
CSM2-MR shows underestimation during period 1;
(2) CNRM-CM6-1, CNRM-ESM2-1 and IPSL-
CM6A-LR underestimates the cooling trend, while
MRI-ESM2-0 and UKESM1-0-LL overestimates the
cooling trend during period 2; and (3) Most models
show overestimation, especially CESM2-WACCM,
CESM2, CNRM-ESM2-1, CanESM5 and UKESM1-
0-LL, while CAMS-CSM1-0 shows underestimation
during period 3. The magnitude of the multi-model
mean generally shows higher consistency with obser-
vations than for the majority of the CMIP6 models.

3.2. Temporal climatological means and trends
After investigating the spatial performance of the
CMIP6 GCMs in relation to the observations, we
also looked at their temporal performance. Figure 5
shows the time series of the annual mean temperat-
ure anomalies over the global land surface and each
individual continent for the 16 GCMs, along with the
observations for 1901–2014.

As shown in figure 5, the observational time series
(CRU and UDEL) of temperature anomalies over the
global land surface and for each individual contin-
ent exhibit good agreement, especially after the 1950s,
which is probably due to the increase in meteorolo-
gical stations after the 1950s. Both sets of observa-
tions and the CMIP6 results show positive trends in
temperature during the historical period. The warm-
ing trends seen in the multi-model ensemble mean
are closer to the CRU results, but greater than the
trends seen in bothCRUandUDEL observations over
the global land surface and the continents other than
Asia (in Asia, CRU > CMIP6 mean > UDEL). We
quantified the inter-model uncertainty with themean
values and standard deviation from the multi-year
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Figure 5. Time series of annual mean temperature anomalies over the global land surface and for each individual continent. The
gray lines correspond to the individual CMIP6 GCMs, the orange lines represent CRU observations, the blue lines represent
UDEL observations and the annotated trend values correspond to the lines of the same color.

average of 16 CMIP6 models, shown in figure S15.
Comparatively, the CMIP6models showmore uncer-
tainty in Europe (−0.05 ± 0.31), North America
(−0.06± 0.21) and Asia (−0.03± 0.18), and slightly
lower uncertainty in Australia (−0.12± 0.08), Africa
(−0.11 ± 0.07) and South America (−0.13 ± 0.06)
during 1901–2014 (figure S15(a)). In each subperi-
ods, and especially before the 1970s, the uncertainties
for Europe are the largest (figures S15(b)–(d)).

To analyze the annual cycle of the mean climate
over the global land surface and for each individual
continent, figure 6 presents box plots of monthly
mean temperatures from the 16 CMIP6 models.
The monthly variability of the CMIP6 models is
consistent with the observations, but there are still

some biases, varying with the season. From a global
perspective, the median values of the 16 mod-
els are close to the observed values in months
JJA (June–July–August), but they slightly underes-
timate the temperatures in MAM (March–April–
May), SON (September–October–November) and
DJF (December–January–February). The remarkable
consistency between CMIP6 models and observa-
tions in JJA is also apparent in the northern hemi-
sphere (Europe, Asia and North America). For these
three continents, the performance of the CMIP6
models in other seasons is basically the same as the
performance over the global land, except for an over-
estimation during DJF in Asia and a slight overestim-
ation during SON in Europe. In Africa, which spans
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Figure 6. Box plots of monthly mean temperatures during the period 1901–2014 based on CRU, UDEL and individual CMIP6
GCMs over the global land surface and each individual continent.

both hemispheres, the observed values are above the
75th quantile or themedian of the box plots inMAM,
SON and DJF, reflecting the fact that most of the
CMIP6 models underestimate temperatures in these
three seasons. In JJA, by contrast, the observed val-
ues are below the 25th quantile or the median of
the box plots, showing overestimation and a few out-
liers. However, for South America, the models largely
underestimate temperatures in JJA and May, and
observations are close to the median of the model
results in the rest of the seasons, which indicates
better performance than in JJA. The observations
consistently falling below the median or even the
25th quantile of the models in Australia, indicat-
ing that most models are overestimating temperature
throughout the year. There are large impacts of clouds
on the radiation budget and the hydrological cycle,
and even small changes in cloud properties could have

a significant impact on climate (Lauer and Hamilton
2012, Grise and Polvani 2014). In regions that are rel-
atively dry, with high incoming solar radiation (such
as Australia), the large errors in surface downwelling
solar radiation caused by clouds could dry out the
surface, resulting in initial bias of the surface temper-
ature simulations in CMIP6.

4. Temperature projections for the 21st
century

To assess consistency among GCM projections of
the future, we have divided the 21st century into
three different periods—near term (2025–2049),
mid-term (2050–2074) and long term (2075–2099)
—and looked at four scenarios (SSP1-2.6, SSP2-4.5,
SSP3-7.0 and SSP5-8.5). The multi-model ensemble
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Figure 7. Spatial distribution of changes in annual mean temperature over the global land surface in near-term (2025–2049),
mid-term (2050–2074) and long-term (2075–2099) periods of the 21st century, relative to 1970–1999, under the SSP1-2.6,
SSP2-4.5, SSP3-7.0 and SSP5-8.5 scenarios.

mean has been constructed to analyze the projected
changes.

The spatial distributions of the changes in annual
mean temperature relative to 1979–1999 over the
global land surface for the near-, mid- and long-term
periods of the 21st century under the four scenarios
are shown in figure 7. The results show that there will
be continued warming over the global land surface.
In the simulations, the greatest absolute temperat-
ure increases occur over northern Europe, northern
Asia and north-central North America, while weaker
warming occurs in South America, Africa, Australia
and Southeast Asia. However, lower latitudes dis-
play considerably smaller natural climate variability
than high latitudes, which impedes the identification
of clear changes in warming signal (Mahlstein et al
2012). Following the approach proposed by Hawkins
et al (2020; Text S1), we calculated the signal-to-noise
ratio (SNR) of climate warming under the SSP5-8.5
scenario during 1901–2099 and found that tropical
regions are experiencing the largest SNR of warming
under the forced change (figure S16). For the near-
term period (2025–2049), the different forcing path-
way scenarios do not lead to dramatically different
temperature responses, with temperature increasing
less than 4 ◦C in most areas. By the end of the 21st
century (2075–2099), the warming in Europe, North
America and north-central Asia is 2 ◦C–4 ◦C, while
that in most of South America, Africa, Australia and

Southeast Asia is less than 2 ◦C under the SSP1-2.6
scenario. Compared with SSP1-2.6, ubiquitous tem-
perature increases of 1 ◦C–1.5 ◦C and 2 ◦C–3.5 ◦C
are apparent under the SSP2-4.5 and SSP3-7.0 projec-
tions, respectively. Additionally, under the SSP5-8.5
scenario, the increase exceeds 3 ◦C–5 ◦C over most
of the global land surface, and it exceeds 8 ◦C over
high latitudes of northern hemisphere. The mid-
term period (2050–2074) of the 21st century can be
viewed as a transition period during which the differ-
ent temperature responses under weaker and stronger
forcing pathway scenarios become increasingly
noticeable.

To further investigate the spatial patterns of tem-
perature changes in future scenarios, figure 8 shows
the multi-model-averaged temperature trends and
carries out the statistical significance test in each
grid cell. For the near-term (2025–2049) period of
the 21st century, all the scenario experiments exhibit
significantly increasing temperatures over the global
land surface. The warming trend in the southern
hemisphere is weaker than that in the northern hemi-
sphere.Under the scenarios of SSP1-2.6, SSP2-4.5 and
SSP3-7.0, temperatures in most regions increase by
0.2 ◦C–0.8 ◦C per decade. For SSP5-8.5, the tem-
perature increase in most regions over the global
land surface is more than 0.4 ◦C per decade, and
the fastest warming is in the high-latitude regions of
the northern hemisphere, with a trend of more than

9



Environ. Res. Lett. 15 (2020) 104056 X Fan et al

Figure 8. Spatial distributions of annual mean temperature trends over the global land surface in near-term (2025–2049),
mid-term (2050–2074) and long-term (2075–2099) periods of the 21st century under the SSP1-2.6, SSP2-4.5, SSP3-7.0 and
SSP5-8.5 scenarios. The histograms represent the regional averages for the global land surface and each continent (A= Global,
B= Africa, C= Asia, D= Europe, E= North America, F= South America and G= Australia). The stippling shows 95% level of
significance.

Figure 9. Time series of annual mean temperature anomalies for the multi-model mean (gray= historical, green= SSP1-2.6,
blue= SSP2-4.5, red= SSP3-7.0 and purple= SSP5-8.5), CMIP6 mean (black) and the observations (orange) over the global
land surface and for each individual continent. The shaded areas are the spreads of the 5th to the 95th percentiles of the annual
mean temperature.
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Figure 10. Probability density distributions of the annual, DJF and JJA mean temperature over the global land surface and for
each individual continent.

1 ◦C per decade. Most of Africa, South America and
Australia show a relatively small warming trend of
0.4 ◦C–0.6 ◦C per decade. For the mid-term period
(2050–2074), the warming trend starts to slow down
under the scenarios of SSP1-2.6 and SSP2-4.5, due
to the stabilization of the SSP1-2.6 and SSP2-4.5 for-
cings during this time period. Temperature under
the SSP1-2.6 scenario increases less than 0.2 ◦C per
decade in most areas, but only a few areas pass the
trend significance test at 95% confidence interval, and
there is a weak cooling trend in Greenland and the
Sahara. However, the warming trends of SSP3-7.0 and
SSP5-8.5 continue to increase in comparison with
the near-term period, with warming trends greater
than 0.4 ◦C per decade or 0.6 ◦C per decade, respect-
ively. By the end of the 21st century (2075–2099),
under the SSP1-2.6 scenario, the global temperature
began to show a decreasing trend, except for in some
parts of central East Asia and central North America,

while Europe shows the largest decreasing. Compared
with the two earlier periods, the temperature in most
regions slowly increases below 0.4 ◦C per decade
under the SSP2-4.5 scenario. By contrast, the rapid
temperature increases under the scenarios of SSP3-
7.0 and SSP5-8.5 reached the maximum of the three
periods.

Temporal evolution from 1901 to 2099 of the
annual mean temperature anomalies derived from
multi-model mean over the global land surface and
each individual continent are shown in figure 9,
together with their inter-model spreads. The SSP5-
8.5 scenario exhibits the largest increasing trend,
at a rate of 7.20 ◦C/100 yr globally. Continued
increases in annual mean temperature also can be
seen under the SSP3-7.0, SSP2-4.5 and SSP1-2.6 scen-
arios, at a rate of 5.50 ◦C/100 yr, 3.22 ◦C/100 yr
and 1.18 ◦C/100 yr globally, respectively. According
to projected temperature changes for the different
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continents under the four scenarios, the changes of
the warming curves in the different scenarios are
roughly consistent with the changes projected for
global land. Asia and North America show a greater
warming trend than that of the global warming in
all four scenarios. For SSP1-2.6, the warming trend
stays within 1.5 ◦C/100 yr for all continents. Under
the SSP5-8.5 scenario, the warming trends in North
America, Asia and Europe are ∼7 ◦C–8.5 ◦C/100 yr,
while those in Africa, South America and Australia
also exceed 6 ◦C/100 yr.

Probability density distributions are often used
to illustrate how changes in the variability, skew-
ness or shape of the distribution of climate variables
in the real world may change in a changing climate
(Stott et al 2016, Zhang and Zhao 2018). Each subplot
in figure 10 shows the estimated probability density
distributions from the CMIP6 mean under the dif-
ferent scenarios, for the historical (1901–2014) and
future (2015–2099) period, displayed as normalized
curves of annual, DJF and JJAmean temperature over
the whole global land and six continents. Relative to
the historical curves, from SSP1-2.6 to SSP5-8.5, the
curves become flatter, combined with a reduced peak,
increased spread and a mean value shift to the right
for the global land, which implies large increases in
the frequency and magnitude of warm extremes over
the global land in the future. Similar results can also
be found with DJF and JJA mean temperature under
the different scenarios. Further, we notice that these
changes in DJF are greater than in JJA for Asia, North
America and Europe, which suggests larger increases
in the frequency of extremes during DJF in these
regions.

5. Summary and concluding remarks

Based on the simulations of 16 climate models from
the CMIP6 set of experiments during the period of
1901–2099, the models’ performance in simulating
the historical temperature over the global land surface
was assessed and the projected temperature changes
for the 21st century were then investigated. Themajor
results are summarized below.

Most CMIP6 models reproduced the spatial pat-
tern of climatological annual mean temperature over
the global land surface well (correlation coefficient
typically >0.98), but with large variability across
models and regions. Further, The CMIP6 mean cap-
ture the trends of global surface temperatures shown
by the observational data during the periods 1901–
1940 (warming), 1941–1970 (cooling) and 1971–
2014 (rapid warming). As has also been noted from
previous studies for CMIP5 (Kumar et al 2013), both
generations of CMIP models have limited capabil-
ity to capture the spatial variability of the observed
trends. Among these three periods, the CMIP6 mean
produces trend patterns that are most consistent
with observations during 1971–2014. However, the

CMIP6 mean underestimates the observed trends
(warming trend during 1901–1940, cooling trend
during 1941–1970) in high latitudes of the northern
hemisphere.

The temperature time series of observations and
model results over the global land surface and
each individual continent exhibit good agreement,
with more inter-model uncertainty in Europe, North
America and Asia. Kumar et al (2014) found that
CMIP5 models show a warm bias with respect to
reanalysis data sets for almost all regions during
months JJA. The bias seems improved in CMIP6,
especially for the three continents in the north-
ern hemisphere, although there is still a warm
bias in Africa and Australia and a cold bias in
South America.

Future temperature projections show that there
will be continued warming over the global land
surface. By the end of the 21st century, the global
temperature is projected to increase under the
different scenarios by 1.18 ◦C/100 yr (SSP1-2.6),
3.22 ◦C/100 yr (SSP2-4.5), 5.50 ◦C/100 yr (SSP3-
7.0) and 7.20 ◦C/100 yr (SSP5-8.5). Spatially, the
annual mean temperatures show a strong (moderate)
warming in the high (middle) latitudes of the north-
ern hemisphere and weaker warming in the tropics
and the southern hemisphere. Similar results have
also been seen in the future warming distribution
projections of CMIP5 (Feng et al 2014). For the near
term (2025–2049), all the scenarios exhibit significant
increases over the global land surface. But the warm-
ing trends start to slow down under the SSP1-2.6
and SSP2-4.5 scenarios during the period 2050–2074
and even show a decreasing trend under the SSP1-2.6
scenario during 2075–2099. This indicates the effect-
iveness of anticipated climate mitigation and adapt-
ation strategies, while largely reflecting the design of
the SSP-RCP scenarios in terms of socioeconomic
development and radiative forcing projections: SSP1-
2.6 has consistent downward trajectories, and SSP2-
4.5 results peak in 2040 and then decrease in mag-
nitude (Thomson et al 2011, van Vuuren et al 2011,
2017, Fricko et al 2017, Gidden et al 2019). The SSP3-
7.0 and SSP5-8.5 scenarios exhibit a steady increase in
annual temperature during the 21st century. Under
the highest emission scenario (RCP8.5) in CMIP5,
Feng et al (2014) found 3 ◦C–10 ◦C of warming over
the global land area by the end of the 21st century.
But for SSP5-8.5 in CMIP6, the warming in most
regions increases by 4 ◦C–12 ◦C, which may be due
to the higher climate sensitivity compared with pre-
vious versions of CMIP5 (Flynn andMauritsen 2020,
Zelinka et al 2020). Furthermore, from SSP1-2.6 to
SSP5-8.5, the frequency and magnitude of the warm
extremes would largely increase over the global land
in the future. Our analysis here provides a prelimin-
ary understanding of the new generation of CMIP6
models, providing a foundation for future research
on CMIP6.
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