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Abstract 

Interannual variability of the terrestrial ecosystem carbon sink is 

substantially regulated by various environmental variables and highly dominates the 

interannual variation of atmospheric carbon dioxide (CO2) concentrations. Thus, it is 

necessary to determine dominating factors affecting the interannual variability of the 

carbon sink to improve our capability of predicting future terrestrial carbon sinks. 

Using global datasets derived from machine learning methods and process-based 

ecosystem models, this study reveals that the interannual variability of the 

atmospheric vapor pressure deficit (VPD) was significantly negatively correlated with 

net ecosystem production (NEP) and substantially impacted the interannual variability 

of the atmospheric CO2 growth rate (CGR). Further analyses found widespread 

constraints of VPD interannual variability on terrestrial gross primary production 

(GPP), causing VPD to impact NEP and CGR. Partial correlation analysis confirms 

the persistent and widespread impacts of VPD on terrestrial carbon sinks compared to 

other environmental variables. Current Earth system models underestimate the 

interannual variability in VPD and its impacts on GPP and NEP. Our results highlight 

the importance of VPD for terrestrial carbon sinks in assessing ecosystems’ responses 

to future climate conditions. 

 

Introduction 

Atmospheric carbon dioxide (CO2) has substantially increased during the 

last century, and the concentration reached almost 410 ppm in 2019 [1]. Terrestrial 

ecosystems, as a major carbon sink, play an important role in regulating the global 

carbon cycle and atmospheric CO2 concentrations [2, 3]. On average, terrestrial 

ecosystems absorbed atmospheric CO2 at a rate of 2.35 Pg C yr
-1

 during 1959-2019, a 

value that was 0.60 Pg C yr
-1

 larger than that of the ocean, another important carbon 

sink for the atmosphere (1). The increased rate of terrestrial carbon sink (0.0415 Pg C 

yr
-1

) was significantly higher than that of the ocean carbon sink (0.0299 Pg C yr
-1

) [1] 
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(Fig. S1a). In particular, the terrestrial carbon sink showed substantially larger 

interannual variability than did the ocean carbon sink (Fig. S1b), and the coefficient 

of variation of the land sink was 3.94 times that of the ocean sink. In addition, the 

land sink substantially regulated the year-to-year variations in the atmospheric CO2 

growth rate (Fig. S2). Thus, understanding interannual variability and environmental 

regulations of the land sink is required for reducing large uncertainties in projections 

of the terrestrial carbon cycle and monitoring global atmospheric CO2 concentrations 

on a year-to-year basis. 

Atmospheric vapor pressure deficit (VPD) has been identified as an 

increasingly important driver of plant functioning in terrestrial biomes and has been 

established as a major contributor to recent drought-induced plant mortality 

independent of other drivers associated with climate change. Physically it is a 

measure of how far the atmospheric water vapor is away from the maximum under a 

given temperature. Specifically, a high VPD would induce the closure of plant 

stomata to prevent extensive water loss [4-6], which subsequently suppresses the 

photosynthesis rate and decreases productivity [5, 7]. In addition, a recent study 

suggested emergence of VPD regulation on the tropical carbon cycle [8]. 

Nevertheless, the global constraints of VPD changes on terrestrial carbon sinks and 

atmospheric CO2 concentrations have not yet been quantified. 

This study first examined the relationship between VPD and global 

terrestrial net ecosystem productivity (NEP) derived from machine learning methods 

in the FLUXCOM product [9] and ecosystem process-based models from the 

TRENDY project [10, 11]. Because these two datasets are independent of each other, 

the VPD-NEP relationships derived from them provide valuable independent 

evidence for the relationship. After removing the seasonal and long-term trends of 

NEP and the corresponding climatic variables, the interannual variation (IAV) in 

global NEP from both of these datasets exhibited high consistency with the variation 
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in VPD at the global scale, implying VPD strongly regulates global terrestrial 

ecosystem carbon uptake and the atmospheric CO2 growth rate (CGR). 

Results 

This study used two global model datasets (i.e., FLUXCOM and TRENDY, 

see Methods) to analyze the impacts of VPD on the interannual variability of 

terrestrial carbon sinks. The detrended monthly global VPD over land showed a 

significant negative correlation with the detrended monthly global terrestrial NEP 

over land derived from both the FLUXCOM and the TRENDY V8 datasets (Fig. 1a). 

The interannual variability in the CGR was highly consistent with the simulated NEP 

derived from the two datasets (Fig. S3), confirming the strong regulation of terrestrial 

carbon uptake on atmospheric CO2 concentrations. Therefore, the interannual 

variability in the measured atmospheric CGR also showed a significant negative 

correlation with the VPD (p< 0.05) (Fig. 1b), which implies that the VPD had strong 

regulatory effects on the interannual variability of the CGR. At the yearly scale, the 

correlations between VPD and NEP/CGR were also robust, as shown in Fig. S4. 

 

 

 

We further investigated the impacts of VPD on NEP in terms of global 

patterns. Over 98.8% of vegetated areas, detrended monthly NEP simulations derived 

from FLUXCOM showed a negative correlation with detrended VPD (about 97.5% 

with a significant negative correlation) (Fig. 2e). Similarly, detrended TRENDY NEP 

negatively correlated with VPD over 72.8% of the areas (about 67.8% with significant 

correlation) (Fig. 2f). The response of NEP to VPD in each ecosystem type was also 

examined, as shown in Figure S5. Over almost all ecosystem types, NEP derived from 

TRENDY and FLUXCOM showed negative correlations with interannual variability 

of VPD (Fig. S5). Both NEPs from TRENDY and FLUXCOM indicated that 

evergreen broadleaf forests are most sensitive to VPD change. TREND and 

FLUXCOM disagree about the relationship between NEP and VPD in deciduous 
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needleleaf forests, where TRENDY showed a positive correlation between NEP and 

VPD, whereas FLUXCOM suggested a negative relationship. This difference is also 

evident in the spatial distribution of NEP-VPD correlations (Fig. 2e, f), implying 

uncertainties exist among different data sources. 

Ecosystem NEP is jointly determined by vegetation gross primary production 

(GPP) and ecosystem respiration (TER), and their relationship can be written as NEP 

= GPP - TER. Therefore, we analyzed the impacts of VPD on GPP and TER. The 

simulated GPP derived from the FLUXCOM and TRENDY datasets showed 

relatively consistent correlations with the VPD in the low and mid-latitudes (Fig. 2a, 

b), and a higher VPD constrained the vegetation GPP. In northern high latitudes, the 

GPP derived from the TRENDY dataset revealed a positive sensitivity to VPD 

variation.  

 

 

 

In addition, we used a satellite-based vegetation index (NIRv, near-infrared 

reflectance of vegetation) and sun-induced chlorophyll fluorescence (CSIF) 

measurements to reveal the large‐ scale coupling between VPD and vegetation 

growth. The analyses based on two satellite-based datasets, the NIRv and the CSIF 

datasets, confirm the dominant roles of VPD in regulating global vegetation growth. 

From 1982 to 2015, approximately 69.3% of the vegetation surface showed a negative 

correlation of interannual variability between NIRv and VPD (21.70% with a 

significant correlation; Fig. 3a). Similarly, from 2000 to 2015, the CSIF dataset 

showed that the interannual variability of the VPD was negatively correlated with that 

of the CSIF over 71.40% of vegetated areas (28.50% with a significant correlation; 

Fig. 3b). 
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As highlighted in previous studies [12-19], temperature and land water 

storage substantially regulated the interannual variability of terrestrial carbon sinks 

and the CGR. We further compared the impacts of VPD, temperature, precipitation, 

soil moisture, land total water storage, and downwelling shortwave radiation on NEP. 

The magnitudes of the impacts were estimated using partial correlation analysis to 

exclude the impacts of other variables when investigating the impact of a given 

variable. This analysis reveals that the global VPD-NEP relationship remained 

significant after controlling for the effects of air temperature, precipitation, soil 

moisture, land water storage, and radiation (partial correlations r of -0.76 and -0.69, 

respectively; Fig. 4). The analysis also indicates significant correlations of detrended 

VPD with detrended CGR after excluding the impacts of other environmental 

variables (Fig. 4c). In contrast, controlling for the effect of VPD strongly decreased 

the partial correlations of NEP and CGR with other environmental variables (i.e., air 

temperature, precipitation, land water storage and radiation) (Fig. 4). Spatially, we 

also observed a widespread negative correlation between NEP and VPD, especially 

for NEP from FLUXCOM (Fig. S6 and S7). Simultaneously, relatively high positive 

correlations between NEP and precipitation were also found in a large area. Our 

results highlight that VPD had stronger effects on the interannual variability of NEP 

and CGR than did other environmental variables.  

 

 

 

Having established the significant relationship between VPD and NEP on the 

interannual scale by empirical and ecosystem model data, it would be interesting to 

examine whether the current Earth system models (ESMs) could accurately reproduce 

the interannual variability of VPD and its impact on terrestrial carbon sink. Using 

simulations from 19 CMIP5 ESMs, we find that the interannual variability of the 

VPD simulated by the CMIP5 models shows a strong correlation with the terrestrial 

NEP (Fig. 5a). However, although the models could capture the decadal trend of the 
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observed VPD, they have a poor performance in reproducing the absolute magnitude 

and interannual variability of the VPD in the CRU dataset (Fig. 5b). Therefore, 

although the current ESMs can fairly well reproduce the relationship between VPD 

and the terrestrial NEP, the poor performance for reproducing the interannual 

variability of VPD substantially limit their capability to reproduce the interannual 

variability of the NEP. 

 

 

 

Discussion 

Our results highlight the dominant roles of the VPD in the interannual 

variability of terrestrial ecosystem carbon fluxes (i.e., GPP and NEP) as well as 

atmospheric CGR. Other lines of evidence support our conclusion that VPD has 

profound negative impacts on plant productivity [20-23]. For example, Novick et al. 

[20] decoupled the impact of the soil moisture supply and atmospheric water demand 

(indicated by the VPD) on plant stomatal conductance and suggested a greater 

constraint of the latter than the former on stomatal conductance for many biomes, and 

thus on the ecosystem water and carbon fluxes. Grossiord et al. [23] also suggested 

that, when the VPD exceeds a certain threshold, plant photosynthesis and growth for 

most species will be limited, resulting in a higher risk for hydraulic failure and carbon 

starvation. Recently, Yuan et al. [2] observed an apparent shift in global vegetation 

greenness from greening to browning in the 1990s due to a sharp increase in VPD. 

Although the VPD has few direct influences on TER change, the high VPD associated 

with high temperature and low soil moisture would exert great impacts on TER. We 

observed a contrasting pattern of the VPD-TER relationship between arid and humid 

ecosystems (Figure 2c and 2d). In humid regions, there are positive relationships 

between VPD and TER which majorly result from associated increases of air 

temperature with VPD. On contrary, over the semi-arid and arid ecosystems, water 

availability is the most important dominating variable for TER, and thus water stress 
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accompanying high VPD may limit TER [12, 24-25]. A great regulation of VPD on 

the tropical land carbon cycle was discovered by a previous study [8], implying a 

dominant role of the tropical forest in the established relationship between VPD and 

NEP on the global scale. This study provides profound and direct evidence for the 

impacts of VPD on global NEP and the global atmospheric CGR.  

Several climate variables have been found to substantially regulates the 

interannual variability of carbon uptake by terrestrial ecosystems globally [12-19]. 

The strong sensitivity of terrestrial carbon fluxes to temperature [13,14] and land 

water storage [18] has been documented. However, whether the interannual 

variability of the terrestrial carbon sink responds to temperature or water storage is 

still controversial [12]. An important reason for the current debate is likely that the 

impact of the VPD on terrestrial carbon sinks has been ignored. It is known that soil 

moisture and temperature are closely linked to VPD [26, 27]. Therefore, a link 

between VPD and temperature and soil moisture can be expected. Inevitably, the 

impact of VPD on IAV of NEP is directly or indirectly dependent upon temperature 

and soil moisture conditions [19]. This study highlights the strong and worldwide 

impacts of VPD on the interannual variability of terrestrial carbon sinks, which should 

be adequately considered in order to quantify the role of climate change in the global 

carbon cycle. 

 

Data and methods 

Terrestrial carbon cycle datasets 

Three global land carbon flux datasets, FLUXCOM [9], TRENDY [10], 

and CMIP5, were used to explore the interannual variation in global land vegetation 

gross primary production (GPP), terrestrial ecosystem respiration (TER) and net 

ecosystem production (NEP). The FLUXCOM product was produced by machine 

learning algorithms based on training using in situ flux observations for the period of 

1980 to 2013. The global GPP, TER and NEP were estimated at the monthly scale 
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with a spatial resolution of 0.5°×0.5°. TRENDY is an ensemble of simulations of 

dynamic global vegetation models (DGVMs) from 1900 to the present [10] forced by 

observed climate data. In this study, the multi-model ensemble mean of the simulated 

GPP, TER and NEP from 12 DGVMs (Table S1) in TRENDY v8 were used. A total 

of 17 DGVMs joined the TRENDY project, but 5 DGVMs were excluded here due to 

missing NEP output.  

Historical simulations of CMIP5 (Coupled Model Intercomparison Project 

Phase 5) models were derived from 19 ESMs in this study (Table S2). The estimates 

of land and ocean carbon sink data from 1959 to 2019 used in this study were 

provided by the Global Carbon Budget 2020 (https://doi.org/10.18160/gcp-2020).  

Atmospheric CO2 concentration data 

The monthly atmospheric CO2 concentration time series from 1959 was 

obtained from the Greenhouse Gas Marine Boundary Layer Reference (MBL) of the 

National Oceanic and Atmospheric Administration Earth System Research 

Laboratory (NOAA/ESRL). The time series of CO2 concentrations from 1959 to 1980 

was compiled based on records of the Mauna Loa and South Pole stations, while data 

from 1980 to the present were compiled from records of multiple NOAA/ESRL 

stations. 

The monthly atmospheric CO2 concentration records were obtained from 

the GLOBALVIEW-CO2 product, which provides observations of atmospheric CO2 

concentration over 313 global air-sampling sites with 7-day intervals (NOAA Global 

Monitoring Division, 2013). If the ratio of missing data >20% for a given year, then 

this year was indicated as “missing”. The sites with at least 10 years of observations 

were included in this study to calculate global mean CO2 concentration. Eventually, 

77 sites were included equally in the calculation of global monthly mean CO2 

concentration without any weighting of individual sites.  
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Climate and satellite datasets 

Global air temperature, vapor pressure, and precipitation data derived from 

the Climate Research Unit (CRUv4.02) [28] were used to analyze the impacts of the 

interannual variability of climate variables on the terrestrial carbon cycle. CRU 

provides monthly climate variables with a spatial resolution of 0.5×0.5° from 1900 to 

the present. The monthly downwelling shortwave radiation data with a spatial 

resolution of 0.5°×0.625° from 1980 to the present was collected from the MERRA2 

reanalysis product [29]. In addition, this study included historical simulations of 

climate variables from 18 models of CMIP5 (Table S1). 

The VPD was calculated based on CRU and CMIP5 climate datasets. The 

method [30, 31] for calculating the VPD was as follows: 

                        (1) 

        (         (
         

          
)           (

         

          
)) (2) 

where SVP and AVP are the saturated vapor pressure and actual vapor pressure (kPa), 

respectively. Tmax and Tmin are the maximum air temperature and minimum air 

temperature (°C), respectively. 

Equation (2) should ideally be calculated using daily maximum and 

minimum temperatures, but the CRU dataset provides only monthly averages of these 

variables. This is however not a problem because the relationship between 

temperature and saturated water vapor pressure is close to linear for a small range of 

temperature fluctuations. A comparison of monthly VPD anomalies calculated using 

daily and monthly data from ERA5 

(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5) confirms that 

using daily and monthly data produces similar results, see Figs. S8 and S9. 

Global terrestrial water storage (TWS) data for the period of 1980-2016 

were provided by Humphrey et al. [32]. This TWS series was reconstructed based on 

TWS measurements derived from the Gravity Recovery and Climate Experiment 
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(GRACE) relying on a statistical model, which was forced by daily precipitation and 

temperature data [32]. 

The daily soil moisture with a spatial resolution of 0.25° for the period 

1980–2018 was obtained from the Global Land Evaporation Amsterdam Model 

(GLEAM v3.3a) [33]. 

Global near-infrared reflectance of terrestrial vegetation (NIRv, [34]) data 

from 1982 to 2015 were derived from the Advanced Very High Resolution 

Radiometer (AVHRR) with red (ρ_r) and near-infrared (ρ_nir) band reflectance: 

     
       

       
                 (3) 

In each year, the yearly NIRv data were the mean value of monthly 

cloud-free NIRv during the growing season (defined as the period when the monthly 

mean air temperature is higher than 0°C). 

Global solar-induced fluorescence (SIF) data were obtained from a 

contiguous solar-induced fluorescence (CSIF) dataset [35]. The yearly SIF data were 

the average number from all the CSIF all-daily data during the growing season. 

The global land cover map was derived from the MODIS land cover 

product (MCD12C1) with a spatial resolution of 0.05° 

(https://modis.gsfc.nasa.gov/data/dataprod/mod12.php), and the map of 2012 was 

used for the analysis. Global continents were divided into eight main types of 

ecosystems (Fig.S10) according to LAI/fpar classification scheme. 

Analysis of interannual variability 

In line with previous studies, the monthly atmospheric CO2 growth rate 

(CGR) was defined as the difference in the CO2 concentrations between two 

successive months. Then, the seasonal cycle and long-term trends were removed by 

subtracting the historical mean value and applying a simple linear regression 

according to [13, 18]. Finally, a twelve-month running sum was used to convert the 

month value to annual CGR. Similarly, the seasonal cycle and long-term trends of 

environmental and carbon variables (GPP, TRE, NEP) were excluded, and the annual 
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values were obtained. Noted that, a twelve-month running average rather than the sum 

of 12 months was used to obtain annual value of environmental variables except 

precipitation.  

 

Supplementary Data 

Supplementary Data are available at NSR online. 
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Fig. 1. Correlations between the interannual variation in land carbon sinks (NEP), 

atmospheric CO2 growth rate and vapor pressure deficit (VPD) at the monthly scale. 

(a) Interannual variations in NEP and VPD over global lands from 1980 to 2013; NEP 

simulations from FLUXCOM (green line) and TRENDY (black line) were used. (b) 

Interannual variation in the atmospheric CO2 growth rate (blue line) and the VPD 

over global lands from 1980 to 2013. The numbers in the figure show the correlation 

coefficients (r) of the VPD with FLUXCOM-NEP (green), TRENDY-NEP (black) 

and CO2 growth rate (blue), and * indicates statistical significance at p < 0.05. 
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Fig. 2. Spatial patterns of correlations of vapor pressure deficit with gross primary 

production (a, b), ecosystem respiration (c, d) and net ecosystem production (e, f) 

derived from FLUXCOM and TRENDY. The left column indicates FLUXCOM, and 

the right column indicates TRENDY. The insets show the relative frequency (%) 

distribution of significant negative correlations (Neg*; p < 0.05; dark green), negative 

correlations (Neg; light green), positive correlations (Pos; light red), and significant 

positive correlations (Pos*; p < 0.05; dark red). 
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Fig. 3. Spatial patterns of correlations between vapor pressure deficit and 

satellite-based NIRv (a) and CSIF (b). The insets show the relative frequency (%) 

distribution of significant negative correlations (Neg*; p < 0.05; dark green), negative 

correlations (Neg; light green), positive correlations (Pos; light red), and significant 

positive correlations (Pos*; p < 0.05; dark red). 
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Fig. 4. Correlation of environmental variables with global mean net ecosystem 

production (a, b) and atmospheric CO2 growth rate (c). Net ecosystem production is 

derived from FLUXCOM (a) and TRENDY (b). The correlation analysis includes 

black bars indicating the correlation coefficient and white bars indicating the partial 

correlation excluding other variables. VPD: vapor pressure deficit; TMP: air 

temperature; PRE: precipitation; SM: soil moisture; TWS: terrestrial water storage; 

SR: downwelling shortwave radiation. 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/advance-article/doi/10.1093/nsr/nw

ab150/6355462 by guest on 04 D
ecem

ber 2021



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

 

 

Fig. 5. Interannual variations in the net ecosystem production (NEP) and vapor 

pressure deficit (VPD) simulated by CMIP5. The numbers in the figure show the 

correlation coefficients (r ). 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/advance-article/doi/10.1093/nsr/nw

ab150/6355462 by guest on 04 D
ecem

ber 2021


