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A B S T R A C T

Using moderate-resolution imaging spectroradiometer (MODIS) data that cover the 15-year period from 2000 to
2014 and a phenology-based classification method, the long-term changes in the wetland vegetation of 25 large
lakes on the Yangtze Plain were obtained. The classification method was developed based on the phenological
information extracted from time series of MODIS observations, which demonstrated mean user’s/producer’s
accuracies of 76.17% and 84.58%, respectively. The first comprehensive record of the spatial distribution and
temporal dynamics of wetland vegetation in the large lakes on the Yangtze Plain was created. Of the 25 lakes
examined, 17 showed a decreasing trend of vegetation area percentages (VAPs) during the study period, and 7
were statistically significant (p < 0.05). The same number of lakes was found to display decreasing trends in
vegetation greenness over this 15-year period, and these decreasing trends were statistically significant
(p < 0.05) for 11 of the lakes. Substantially fewer lakes showed increases in either their VAPs or their vege-
tation greenness values. Analysis using a multiple general linear model revealed that the amounts of chemical
fertilizer used for farmlands surrounding the lakes, precipitation, daily sunshine hours, temperature and water
turbidity played the most important roles in regulating the interannual changes in vegetation greenness in 40%
(10/25), 12% (3/25), 4% (1/25), 20% (5/25) and 12% (3/25) of the lake wetlands, respectively. On average, the
combined effects of these five driving factors above explained 89.08 ± 7.89% of the variation in greenness over
this 15-year period for the 25 lakes. This wetland vegetation environmental data record (EDR) of large lakes in
Yangtze Plain demonstration will provide a crucial baseline information for the wetland environment con-
servation and restoration.

1. Introduction

As one of the most important components of wetland ecosystems,
vegetation plays important roles that include providing food and ha-
bitat for aquatic organisms, maintaining water quality, and storing
carbon (Scheffer et al., 1993; Jeppesen et al., 1998; Xiao et al., 2015).
Changes in wetland vegetation have been considered a key ecological
indicator for transitions in the safety and sustainability of the water
environment (Martin et al., 2010; Feng et al., 2016; Zhang et al.,
2016a). Unfortunately, global wetland vegetation loss is accelerating
(Zhang et al., 2017a), mainly due to stress from anthropogenic activ-
ities, such as aquaculture and reclamation, as well as climate extremes
(floods, etc.) and global warming (Sand-Jensen et al., 2000; Short et al.,
2016), which will cause numerous environmental problems and have

an adverse impact on ecological functions. The wetlands of the inland
lakes on the Yangtze Plain examined in this study are susceptible to
these problems (Han et al., 2015; Song et al., 2016; Zhang et al.,
2016b).

Accurate knowledge of the distribution changes of wetland vege-
tation is the first step in assessing potential changes in the ecological
functions of wetlands. Mapping the spatial patterns of vegetation in
large wetland systems is often challenging, due to the heterogeneous
distributions and compositions of different wetland cover types
(Houlahan et al., 2006; Szantoi et al., 2013). Traditional field surveys
can provide accurate data, but they are always labor and time intensive,
and for the phenological change of wetland vegetation, frequent field
measurements should be taken to obtain updated information to
monitor wetland changes effectively, which will be more time-

https://doi.org/10.1016/j.isprsjprs.2018.04.015
Received 30 January 2018; Received in revised form 13 April 2018; Accepted 20 April 2018

⁎ Corresponding authors at: School of Environmental Science and Engineering, Southern University of Science and Technology of China, Shenzhen 518055, China.
E-mail address: fengl@sustc.edu.cn (L. Feng).

ISPRS Journal of Photogrammetry and Remote Sensing 141 (2018) 148–160

0924-2716/ © 2018 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09242716
https://www.elsevier.com/locate/isprsjprs
https://doi.org/10.1016/j.isprsjprs.2018.04.015
https://doi.org/10.1016/j.isprsjprs.2018.04.015
mailto:fengl@sustc.edu.cn
https://doi.org/10.1016/j.isprsjprs.2018.04.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2018.04.015&domain=pdf


consuming and expensive (Ozge et al., 2009; Han et al., 2015). As such,
it is very difficult to collect spatially and temporally representative
vegetation records for the wetland systems of large lakes across the
entire Yangtze Plain or understand the changes in vegetation in this
region using field surveys.

Given their ability to collect synoptic observations frequently, re-
mote sensing techniques have become effective tools in studying wet-
land vegetation (Li et al., 2013; Han et al., 2015; Luo et al., 2016; Chen
et al., 2018). Satellite remote sensing imagery with spatial resolutions
ranging from<10m (such as Quickbird, IKONOS, Unmanned Aerial
Vehicle, SAR images) to several kilometers have been used worldwide
to map wetland vegetation (Ozge et al., 2009; Laba et al., 2010; Yu and
Hu, 2013; Betbeder et al., 2015; Jing et al., 2017; Liu and Abd-
Elrahman, 2018). The methods used to classify wetland vegetation from
remote sensing images have also evolved from visual interpretation to
computerized methods (i.e., the threshold method, unsupervised and
supervised classification, Object-based classification, principal compo-
nent analysis and hybrid classification) and subsequently to highly
advanced artificial intelligence-based methods (Maxa and Bolstad,
2009; Wang and Bao, 2010; Dronova et al., 2015; Szantoi et al., 2015;
Villa et al., 2015; Liu and Abd-Elrahman, 2018). Several studies also try
to estimate the coverage and community of wetland vegetation using
remote sensing imagery (Ozge et al., 2009; Laba et al., 2010; Dronova
et al., 2015; Villa et al., 2015), and in situ data were used to train model
and validate accuracy.

The lakes, ponds and reservoirs on the Yangtze Plain account for
over three-quarters of the freshwater lake area in the downstream
portion of the Yangtze Basin, where the wetlands can provide water
resources for millions of local people and play critical roles in reg-
ulating the regional environmental and ecological systems (Guo, 2007;
Han et al., 2015). Indeed, considerable efforts have been made to un-
derstand the changes in the surface area, land cover, and water quality
of these lakes, among many other characteristics (Feng et al., 2012a,
2012b; Wang et al., 2014, 2017; Cai et al., 2016; Hou et al., 2017; Xie
et al., 2017). The wetland vegetation of large lakes in this region has
also been studied in a number of pioneering studies starting in the
1970s, such as Poyang Lake, Dongting Lake, etc. (Wu, 1977; Liu et al.,
1981; Deng et al., 2014; Luo et al., 2017; Chen et al., 2018).

Unfortunately, published studies of the wetland vegetation of the
Yangtze Plain have several limitations. First, some of these studies use
data from only one to two years, which prevents the analysis of long-
term changes and their potential trends (Luo et al., 2017). Second, some

of the studies conducted with remote sensing data covering longer
periods suffer from nonconsecutive observations, which prevent the
assessment of short-term vegetation variability (Li et al., 2013; Han
et al., 2015). Third, the available information on wetland vegetation
provided by field surveys and remote sensing focuses only on one lake
in the Yangtze Plain, prohibiting comprehensive assessment of the
basin-scale wetland conditions (Luo et al., 2016; Chen et al., 2018; Han
et al., 2018). Prompted by the urgent need for an accurate decadal
environmental data record (EDR) of the wetland vegetation of the in-
land lakes of the Yangtze Plain, the current study is designed to address
the issues described above. The objectives of the study are as follows:
(1) To develop a phenology-based classification method using time
series of the 250-m moderate-resolution imaging spectroradiometer
(MODIS) data and to document the spatial and temporal variability of
the vegetation changes in 25 large lakes on the Yangtze Plain between
2000 and 2014; (2) To explore the potential driving forces of the
changes in greenness in these wetlands using anthropogenic activities
data, meteorological and water quality data obtained through both
ground-based measurements and remote sensing.

2. Study area and datasets

2.1. Study area

The Yangtze Plain, which covers an area of ∼140,000 km2 (see
Fig. 1), accounts for ∼18% of the total area of the downstream Yangtze
Basin (Wang et al., 2014). The freshwater lakes in this region include
those connected with the Yangtze River (such as Poyang, Dongting, and
Shijiu Lake), whose intra-annual changes in their inundation areas are
impacted by the Yangtze River (Feng et al., 2012a; Wang et al., 2014),
as well as those that have no direct interaction with the Yangtze River.
However, due to the increase in anthropogenic activities, many lake
wetlands have experienced significant degradation over the past several
decades (Ma et al., 2008; Zhang et al., 2016a, 2016b). Recently, a new
review paper by Zhang et al. (2017a) stated that of the 35 lakes with
aquatic vegetation loss in China, many were distributed in the Yangtze
Plain. However, hitherto no systematic reports on the long-term wet-
land vegetation changes in the Yangtze Plain are available, while in-
formation on these changes is critical for protection and restoration of
the lake environment. Notably, the words “lake” and “wetland” are
interchangeable in this study, as lake is also one type of wetland ac-
cording to the definition of Ramsar convention (Secretariat, 2013)

Fig. 1. Hydrological map of the Yangtze Plain (pink shaded area) and the spatial distribution of the studied lakes. The locations of meteorological stations are
indicated by the orange markers, where ground-based measurements were used to assess the driving factors affecting the wetlands. The location of the Yangtze Plain
in China is shown in the inset. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Here, we focus on the changes in wetland vegetation that have oc-
curred in the lakes with surface areas of> 50 km2 on the Yangtze Plain
(except for Chaohu Lake), considering the moderate resolution of the
MODIS data and the limited detectability of smaller lakes. A total of 25
lakes were examined, and the surface area of these lakes accounts for
∼87% of the total inland waters in the Yangtze Plain (estimated from
Wang and Dou (1998) and Liu et al. (2008)). Table 1 displays the codes,
names, locations (latitude and longitude), and surface areas (i.e., the
areas with inundation probabilities of> 80% between 2000 and 2014)
of these lakes. The code numbers were assigned to these lakes based on
their longitudes, and the numbers increase from east to west within the
Yangtze Plain (see Fig. 1). Note that Chaohu Lake (which has a surface
area of 769.55 km2) and the western part of Taihu Lake were excluded
from consideration in this study. Heavy algal blooms occur frequently
in these areas (Hu et al., 2010; Zhang et al., 2015), and it is difficult to
discriminate between floating algae and wetland vegetation in those
regions by the method used in this study.

2.2. Datasets

1366 MODIS/Terra 250-m 8-day surface reflectance products be-
tween 2000 and 2014 were downloaded from the NASA Land Processes
Distribution Active Archive Center (https://ladsweb.nascom.nasa.gov/)
and were used to classify the wetland cover types, the Normalized
Difference Vegetation Index (NDVI) was calculated for the data from
each 8-day period, and the Harmonic Analysis of Time Series (HANTS)
method was applied to the annual NDVI series to fill in the gaps caused
by the excluded low quality data and to remove potential noise on the
temporal scale (Verhoef, 1996). 105 Landsat TM, ETM+ and OLI sur-
face reflectance products during both dry and wet seasons from 2000 to
2014 on the Yangtze Plain were obtained from the Landsat Data Access
(https://landsat.usgs.gov/landsat-data-access) and were used to assess
the accuracy of the wetland vegetation classification obtained using the
250-m-resolution MODIS products.

Monthly air temperatures and data on the number of sunshine hours
each day were obtained from the China Meteorological Data Sharing
Service System (http://data.cma.gov), where the data collected from
the nearest meteorological stations (see Fig. 1) were used to represent
the weather conditions for individual lakes. The precipitation data used
in this work represent monthly composites of Tropical Rainfall Mea-
suring Mission data (TRMM 3B43), which were obtained from the
NASA Goddard Distributed Active Archive Center (DAAC) (http://
trmm.gsfc.nasa.gov/). The monthly TRMM data have been validated
in this region, and they show excellent agreement with ground-based
measurements (Duan et al., 2012; Feng et al., 2012a). Each grid cell of
the TRMM data represents an area of 0.25°× 0.25° (∼25× 25 km at
the equator). The cells that overlap with individual lakes were ex-
tracted, and the mean values were used to represent the precipitation
conditions for that lake.

MODIS-derived water turbidity parameters (i.e., the concentrations
of total suspended sediments or TSS) were used to study the responses
of wetland vegetation to water clarity in this study, the data collection
was described in Hou et al. (2017).

The amounts of yearly used chemical fertilizer for farmlands sur-
rounding each lake, represented as the integration of the counties round
the lake, were obtained from the local annual statistical books (Anhui,
2001–2015; Hunan, 2001–2015; Hunbei, 2001–2015; Jiangsu,
2001–2015; Jiangxi, 2001–2015; Zhejiang, 2001–2015) and were used
to investigate the influence of anthropogenic activities on wetland ve-
getation changes.

3. Methods

3.1. Determination of lake boundaries

Before the wetlands associated with the studied lakes could be
classified into different cover types, the boundary for each lake needed
to be determined. We defined the wetlands associated with these lakes
using the MODIS time series data as follows. Pixels that had an in-
undation frequency of> 80% in the MODIS 8-day composites (i.e., for
every 100 MODIS composites, 80 were classified as water for that pixel)
over the 15-year study period were classified as wetlands, and the
maximum range of such pixels surrounding a given lake was considered
to represent the wetland boundary of that lake. This definition gen-
erally follows the Ramsar convention (Secretariat, 2013), and the
boundary for each lakes was fixed during the 15 years. The inundation
area for each MODIS 8-day composite was delineated using a semi-
automatic method that employed NDWI (Normalized Difference Water
Index, NDWI= (Rgreen− Rnir)/(Rgreen+ Rnir)) data and a self-devel-
oped graphical user interface (GUI). This approach was similar to the
inundation extraction approach used in Hou et al. (2017). The bound-
aries of the 25 selected lakes are shown in Fig. 1. Note that the
boundary for Taihu Lake was confined to a region of interest (ROI) in
the eastern part of the lake.

3.2. Analysis of the spectral and temporal features of different vegetation
categories

Three major cover types, vegetation, water and mudflats, can be
found in the wetlands associated with the selected lakes, and the first
step of our study was to select an effective method to distinguish ve-
getation from the other two types for all 25 lakes with different changes
in the water environment (i.e., seasonal inundation change). Image
classification methods, such as supervised/unsupervised classification,
had been used to discriminate the wetland vegetation from the other
two types using remote sensing observations (Ozge et al., 2009; Han
et al., 2015). Unfortunately, such methods could not be applied in this
study because the MODIS 250-m 8-day composite includes only two
wavelengths that are centered on 645 and 859 nm, where the spectral
information may not be sufficient to separate three different cover types

Table 1
The codes, names, locations and water areas (which have inundation prob-
abilities of> 80% between 2000 and 2014) of the studied lakes. Also listed are
the 15-year annual mean vegetation area percentages (VAPs), greenness values
and their corresponding standard deviations for each lake, which were derived
from the MODIS data.

Code Name Lon. Lat. Area (km2) VAPs (%) Greenness

Ave. Std. Ave. Std.

L01 Dianshan 120.96 31.12 75.2 24.43 3.09 0.10 0.02
L02 Yangcheng 120.77 31.43 154.9 46.78 6.79 0.20 0.03
L03 Taihu 120.19 31.20 880.3 25.78 2.91 0.14 0.02
L04 Gehu 119.81 31.60 231.7 38.30 7.48 0.18 0.05
L05 Changdang 119.55 31.62 106.8 40.55 5.92 0.20 0.04
L06 Nanyi 118.96 31.11 205.4 33.27 4.13 0.17 0.02
L07 Shijiu 118.88 31.47 248.7 39.74 16.08 0.18 0.07
L08 Caizi 117.07 30.80 213.5 43.99 7.99 0.22 0.04
L09 Shengjin 117.07 30.38 117.9 52.36 8.64 0.24 0.05
L10 Qingcao 116.69 30.28 75.6 38.37 4.28 0.19 0.03
L11 Poyang 116.32 29.08 3497.8 40.45 9.45 0.25 0.04
L12 Bohu 116.44 30.17 147.5 23.64 4.56 0.10 0.02
L13 Huangda 116.38 30.02 279.7 35.09 8.74 0.23 0.08
L14 Longgan 116.15 29.95 293.4 29.31 5.57 0.19 0.04
L15 Saihu 115.85 29.69 58.7 38.92 3.43 0.16 0.02
L16 Chihu 115.69 29.78 50.8 58.89 6.79 0.27 0.04
L17 Daye 115.10 30.10 81.7 46.96 6.36 0.21 0.04
L18 Liangzi 114.51 30.23 342.4 38.38 5.66 0.18 0.03
L19 Futou 114.23 30.02 138.8 41.30 6.22 0.22 0.05
L20 Xiliang 114.08 29.95 96.4 58.49 4.70 0.27 0.03
L21 Huanggai 113.55 29.70 85.1 51.15 8.20 0.22 0.04
L22 Honghu 113.34 29.86 376.5 44.31 9.02 0.23 0.05
L23 Dongting 113.12 29.34 1990.5 52.75 7.70 0.33 0.03
L24 Datong 112.51 29.21 91.1 16.78 1.84 0.08 0.02
L25 Changhu 112.40 30.44 154.4 51.71 4.48 0.22 0.04
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using these computerized classification methods. Additionally, a NDVI
threshold approach could be used to separate vegetation from other
cover types (Patel et al., 2015), as vegetation often shows much higher
NDVI values than water and mudflats. Such methods typically work
well for vegetation in floodplains of some lakes under conditions with
decreased water levels. Unfortunately, low NDVI values may also be
associated with submerged vegetation in some lakes with abundant
water. The NIR band is absorbed much more strongly in water than the
red band, resulting in NDVI values of mixed water and submerged

plants may be smaller than those of exposed mudflats (see Categories
III-2 and Mudflat in Fig. 2a).

The challenges associated with using a single NDVI threshold can be
revealed through examination of the annual noise-reduced NDVI curves
shown in Fig. 2a. These curves in Fig. 2a represent the typical variations
in annual NDVI for the different cover types found in association with
the 25 studied lakes shown in Fig. 1, the magnitudes and patterns may
vary with location and year. Indeed, even if the NDVI values of Cate-
gory III-2 (Figs. 2a and 3d) were very small throughout a year, high-

Fig. 2. (a) Annual NDVI series (derived using MODIS 8-day composites) of different wetland cover types. Categories I to III represent vegetation with different
growing conditions (Fig. 3), Categories III-1 and III-2 showed two typical conditions of Category III. (b) The flowchart of the method used for wetland vegetation
classification. (1) Workflow used to generate the year-based possible vegetation occurrence mask using the NDVI series in each year. (2) Workflow of using the year-
based possible vegetation occurrence mask to perform vegetation classification for each 8-day NDVI composite.
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resolution images collected in the same year indicated the presence of
vegetation in the summer. On the other hand, mudflat showed positive
NDVI values during particular periods (winter), whereas it manifested
as mudflats in high-resolution images over the entire year. As such,
large errors would be expected if a simple NDVI threshold method were
used to delineate vegetation in these images.

When analyzing the annual NDVI series, the diversity of phenolo-
gical features between the different cover types represent useful in-
formation that can be used to help improve the vegetation classification
accuracy. We examined the wetland vegetation of all 25 lakes, and the
annual NDVI changes of vegetation generally fell into three categories.
As shown in Fig. 2a, these three categories demonstrated prominent
increasing trends in their NDVI values during certain parts of the year.
Category I showed positive NDVI values for most of the year (see Fig. 2a
and 3a), where the NDVI values displayed an increasing trend over the
growing season. Wetland vegetation with this type of growing curve
was generally found in the near-shore regions of the lakes or along bare
lake bottom (Fig. 3a), where the seasonality of the NDVI values was
generally caused by the phenology of the vegetation. The second ca-
tegory (Category II) of vegetation was only found in lakes with sub-
stantial intra-annual changes in their inundation areas (such as Poyang
Lake) (see Figs. 2a and 3b). This category was only observed in the
floodplains of dynamic lakes (i.e., Poyang Lake and Dongting Lake)
where the water retreated during the dry seasons, and the vegetation
became submerged when the water level increased during the wet
seasons, producing negative NDVI values. Category III reflects a rapid
increase in NDVI values during the warm seasons of vegetation growth
and negative NDVI values in the cold seasons (Fig. 2a, Categories III-1
and III-2 and Fig. 3c and d). This category of vegetation was often found
living in or above water, and two types of vegetation might result in
such annual NDVI patterns. (1) The vegetation either died or mani-
fested as submerged plants during the cold non-growing seasons and
then germinated and grew out of the water during the warm growing

seasons. (2) Floating aquatic macrophytes, which generally grew during
the warm seasons and died during the cold seasons, could also be re-
sponsible for this pattern. Therefore, small NDVI values could be found
for Category III, which even appeared in the summer (Category III-2, in
Fig. 3d), due primarily to its proximity to water, while the NDVI values
associated with Categories I and II would show high values when ve-
getation was present. In contrast, the NDVI values of areas permanently
covered by water were negative throughout the year (Water in Fig. 2a),
and no significant increase in the NDVI in the growing season could be
observed for permanent mudflats over the course of the year (Mudflat
in Fig. 2a).

3.3. Classification of wetland vegetation

A possible vegetation occurrence mask was generated for each year
based on the above phenological analysis (Fig. 2b). Specifically, we
would not expect to see any vegetation growth over the course of a year
in areas with NDVI annual patterns that mimic those of water and
mudflat, and the 8-day MODIS composite during the entire year should
be classified as non-vegetation for these areas. Pixels with NDVI patterns
that followed Categories I, II or III were considered to indicate the ve-
getation mask, where green vegetation could be present during certain
parts of the year. and with the year-based vegetation mask, a NDVI
threshold could be used to differentiate the vegetation and the other
cover types in the 8-day MODIS data to obtain the 8-day vegetation
distribution information. The possible vegetation occurrence mask was
generated as follows: Pixels without NDVI values>−0.00081 in four
consecutive 8-day MODIS composites were masked as water in that year
(we assumed that any green wetland vegetation was present for at least
one month). Otherwise, the annual NDVI time series was examined to
determine whether any NDVI peak was present in a given year. Pixels
were masked as possible vegetation if a peak was present; otherwise,
they were considered as unknown. According to the seasonal inundation

Fig. 3. Typical examples to illustrate vegetation Categories I (a, in Qingcao Lake), II (b, in Poyang Lake), III-1 and III-2 (c, d, in Taihu Lake). The spectral profiles of
the cross-located pixels were obtained from Landsat surface reflectance products, and the annual NDVI time series were from MODIS data of the same locations. The
RGB true color images were composed using Landsat data, where acquisition dates were also annotated.
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changes of lakes, the NDVI time series of the possible vegetation pixels
were classified into different categories, and the vegetation classification
methods differed for lakes with and without significant seasonal in-
undation changes. For the former cases, a minimum annual NDVI
threshold (NDVIannual_minima) was used to separate the annual NDVI
curves belonging to Categories I (NDVIannual_minima > −0.00081) and
III (NDVIannual_minima < −0.00081). For the lakes that displayed dy-
namic inundation (i.e., Poyang and Dongting Lakes), if the annual NDVI
peak was located between March and November, and the NDVI values
were>−0.00081 during June and September, the vegetation classifi-
cation was conducted in a similar way to that of the lakes without sig-
nificant inundation seasonality. Otherwise, a maximum annual NDVI
threshold (NDVIannual_maximum) was used to separate the annual NDVI
curves belonging to Categories I (NDVIannual_ maximum > 0.15303) and
mudflat (NDVIannual_ maximum < 0.15303). The workflow of the possible
vegetation occurrence mask is demonstrated in Fig. 2b(1).

This year-based possible vegetation occurrence mask was used to
differentiate the wetland vegetation of the selected lakes from areas of
mudflat and water for each 8-day MODIS composite to obtain the 8-day
vegetation distribution information (see Fig. 2b(2)). Specifically, if a
location was masked as water or mudflat in the possible vegetation
occurrence mask, it would be excluded from further vegetation detec-
tion for all the 8-day MODIS composites corresponding to that year. On
the other hand, although vegetation could be observed in locations that
were masked as possible vegetation (i.e., annual NDVI curves similar to
Categories I, II, and III), the NDVI thresholds used to separate vegeta-
tion from its background, as noted above. In practice, for areas masked
as Categories I and II in the possible vegetation occurrence mask with
the annual NDVI series, if a pixel in a MODIS 8-day composite had a
NDVI value>0.15303, it was classified as vegetation in these 8-day
data. For regions masked as Category III, a NDVI threshold
of>−0.00081 was used to identify the vegetation in each MODIS 8-
day composite.

The thresholds (−0.00081 and 0.15303) used here were de-
termined as follows: pre-classified Landsat maps with three cover types
(water, mudflat and vegetation) were obtained first (see below for de-
tails of the Landsat classification), which were considered error-free
data. Then,> 10,000 random points of both water and mudflats classes
were selected from these Landsat classification maps from all 25 lakes
of both dry and wet seasons. Concurrent MODIS NDVI data of these
points (i.e., same location and time) were used to generate histograms.
The histogram mode of water (i.e., −0.00081) was determined to se-
parate vegetation from the water background and mudflats, while the
mode of mudflats (i.e., 0.15303) was then used for the discrimination of
vegetation and mudflats. Indeed, tests indicated that the vegetation
change trends of all the studied lakes were insensitive to these thresh-
olds.

Both the generation of the possible vegetation occurrence mask and
the vegetation discrimination were repeated for all the observed years,
and the vegetation coverage was obtained for each of the 8-day MODIS
composites between 2000 and 2014.

3.4. Assessment of the wetland vegetation changes

Two parameters were used to assess the wetland vegetation condi-
tions and the corresponding interannual dynamics in the selected lakes.
The first parameter is the vegetation area percentage (VAP), which is
defined as the percentage of the vegetation cover that accounts for the
total area of a lake wetland (which is the area with an inundation
probability of> 80% between 2000 and 2014; see Table 1). The second
parameter is the vegetation greenness, which is represented by the
mean NDVI value of the area identified as vegetation in a lake in each 8-
day MODIS composite. Note that the VAP mainly represents the vege-
tation coverage, while greenness reflects the growing status. The sea-
sonal VAPs and greenness values were calculated for each lake, and
these values were used to estimate the annual mean conditions. To

avoid impacts of seasonal variations on the analysis of vegetation
change (Helsel and Hirsch, 2002), annual mean VAPs and greenness
values were calculated for each lake to detect interannual changes, and
linear regressions were performed among the 15-year annual mean data
to obtain the annual rates of change in the VAP and the greenness va-
lues during the study period. The rate of change was considered sta-
tistically significant when the p-value associated with the linear re-
gressions was< 0.05 (t-test). The 15-year climatologies of the VAPs
and greenness values were estimated for each lake as the mean values
of the 15 annual means between 2000 and 2014.

3.5. Validation of the wetland vegetation classification

To validate the accuracy of the vegetation delineation obtained
using the 250-m resolution MODIS 8-day composed products, vegeta-
tion classified using concurrent higher-resolution (30-m) Landsat data
was obtained, and the producer’s/user’s accuracies were estimated
(Olofsson et al., 2014). The validation processes were as follows: (1)
Landsat surface reflectance images were first masked using a MODIS-
derived boundary for each lake, and>30 samples for each cover types
within the boundary were selected through visual interpretation of the
RGB true color images (same as MODIS, the Landsat images were
classified into three types: vegetation, water and mudflat), the spectral
profiles, as well as concurrent high-resolution Google Earth images. The
training samples then served as inputs for the Support Vector Machine
(SVM) tool in the ENVI software to train a classifier, which was then
used to classify the Landsat data of the entire region within the
boundary. Indeed, the SVM classifier for Landsat could effectively dis-
tinguish vegetation from the other land cover types with an accuracy
level of> 95% (Han et al., 2015; Feng et al., 2016). (2) Such classifi-
cation processes were repeated for the 25 examined lakes for both dry
and wet seasons. Then, 5000 random vegetation samples were selected
from the Landsat classification maps for each lake, and were used as the
‘truth’ samples to gauge the accuracy of the concurrently (i.e., the same
geographical location and acquisition time) MODIS classified vegeta-
tion with the estimated producer's accuracy and user's accuracy for each
lake (Table 2).

The producer's accuracy ranged between 63.05% and 95.9% for the
25 lakes, with a mean value of 84.58 ± 0.09%, while the mean user's
accuracy was 76.17 ± 0.08%, ranging from 61.19% to 91.23%. The
different accuracy levels between these lakes were generally associated
with the vegetation coverage. The percentage of mix-pixels tends to be
larger for lakes with small areas of vegetation, causing smaller produ-
cer's accuracies. And the opposite is true for lakes with large vegetation
coverage. These accuracy levels appear acceptable, considering the
moderate spatial resolution of MODIS data (250m) and various hy-
drological conditions of different lakes across such a large region. Note
that the vegetation area delineated with the MODIS 8-day products
represented the “mean” vegetation during the 8-day period, whereas
the Landsat-derived results represented the conditions on a single day.
Thus, the temporal differences between the observations made by the
two satellites may lead to discrepancies among the corresponding ve-
getation results. Additionally, the mixing-pixel problem associated with
the coarse resolution of MODIS data may serve as another reason for the
misclassification, and better agreement could be expected once reliable
un-mixing techniques are used.

3.6. Analysis of driving forces

The correlation analyses were performed to reveal the relationships
between the explanatory variables (i.e., precipitation, sunshine hours,
temperature, TSS) and vegetation greenness. The p-values (with t-test)
were also estimated to determine whether the relationships were sta-
tistically significant (i.e., p < 0.05, t-test). Then, a multiple general
linear model (GLM) regression analysis was conducted to quantify the
relative contribution of each variable to interannual changes of the
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vegetation greenness (Tao et al., 2014). Also, a p-value was estimated
for each variable with the multiple GLM model, where a p-value
of< 0.05 shows that the contribution of such variable is statistically
significant.

4. Results and discussion

4.1. Temporal and spatial distributions of wetland vegetation

On average, the coverages of wetland vegetation accounted for
16.78% (Datong Lake) to 58.89% (Chihu Lake) of the total areas of
these 25 lakes during the period 2000 to 2014 (see bar charts in Fig. 4
and Table 1). 24% (6/25) of the climatological VAPs of these lakes
were> 50%, and 72% (18/25) ranged between 20% and 50%. Only
one lake showed a 15-year mean VAP < 20%. Trend analysis revealed

the changing trend of annual VAP for each lake during the study period
(Fig. 5), and the change rates for all the lakes are color shaded in Fig. 4
to show their spatial distributions. When the VAP change rate
is classified into five levels,<−3% yr−1, −3%∼−1.5% yr−1.
−1.5%∼ 0 yr−1, 0∼ 1.5% yr−1,> 1.5% yr−1, the number of lakes
corresponding to each level accounted for 8%, 24%, 36%, 16% and
16% of all 25 of the studied lakes, respectively. Similar to the results for
the greenness, more than half of the lakes (17/25) showed decreasing
trends in their VAPs, and the most significant VAP decrease was also
found for Shijiu Lake (L07, which displayed a rate of change of −7.1%
yr−1). Of the lakes that experienced decreasing trends, 7 were statis-
tically significant (indicated as “↓” in Fig. 4 and as blue arrows in Fig. 5,
p < 0.05), and this number is smaller than the number of lakes that
displayed significant decreases in greenness (11 lakes). In contrast, 3 of
the lakes displayed statistically significant increasing VAP trends (in-
dicated as “↑” in Fig. 4 and as red arrows in Fig. 5, p < 0.05).

The seasonality of the VAPs for the selected lakes are illustrated in
Fig. 6, with each grid representing the seasonal mean VAP for a parti-
cular lake. In general, for most of the lakes, the VAPs in the second and
third quarters were higher than those that occurred during the first and
fourth quarters. Specifically, the maximum VAPs typically occurred in
the second and third quarters, which accounted for 36% and 56% of the
total number of lakes, respectively. On the other hand, the minimum
VAPs were observed in the first and fourth quarter, which represented
48% and 44% of the lakes, respectively.

4.2. Seasonal and interannual changes in vegetation greenness

The 15-year greenness (estimated from NDVI values) climatology of
each lake is presented both in Table 1 and as a bar chart in Fig. 7.
Specifically, 44% (11/25) of the lakes have 15-year mean greenness
values of< 0.2, 52% (13/25) were between 0.2 and 0.3, and 4% (1/25)
were>0.3. The interannual changes in the vegetation greenness values
are shown in Fig. 8, and the associated annual rates of change are
shown by the colors displayed in Fig. 7. Classifying the rates of change
of greenness into five levels, <−0.03 yr−1, −0.03∼−0.015 yr−1.
−0.015∼ 0 yr−1, 0∼ 0.015 yr−1, and>0.015 yr−1, the percentages
of the lakes that fall into each level are 24%, 16%, 28%, 24% and 8%,
respectively. Well over half of the lakes (17/25) have demonstrated
decreasing trends in their greenness values over the period of
2000–2014, and the most pronounced decrease was observed in Shijiu
Lake (−0.075 yr−1). 11 of the lakes showed statistically significant
decreasing trends in vegetation greenness values during 2000 and 2014

Table 2
The vegetation classification accuracies of each lake using the phenology-based
method.

Lake ID Producer's accuracy User's accuracy

L01 63.05% 87.21%
L02 93.84% 66.47%
L03 92.01% 90.06%
L04 78.14% 78.25%
L05 78.05% 69.12%
L06 88.94% 74.57%
L07 73.02% 76.27%
L08 74.25% 65.13%
L09 91.21% 67.49%
L10 93.94% 65.03%
L11 93.33% 61.19%
L12 83.5% 70.84%
L13 93.9% 83.07%
L14 94.57% 80.25%
L15 78.18% 80.45%
L16 91.31% 84.86%
L17 81.2% 80.98%
L18 75.71% 69.93%
L19 84.54% 71.15%
L20 94.64% 91.23%
L21 86.38% 85.16%
L22 72.98% 80.88%
L23 95.9% 71.51%
L24 82.45% 75.06%
L25 79.34% 78.1%

Mean ± STD. 84.58 ± 0.09% 76.17 ± 0.08%

Fig. 4. The spatial distribution of the rate of change of the vegetation area percentage (VAP) for the 25 lakes examined, where ‘↑’ and ‘↓’ indicate that the VAPs
exhibited statistically significant (p < 0.05) increasing or decreasing trends from 2000 to 2014, respectively. The numbers above the purple bars are the VAP
climatologies of the lakes during the 15-year period. The numbers beside the legend in brackets are the percentages of the lakes that displayed the different rates of
change over the 15-year period.
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(indicated as “↓” in Fig. 7 and as blue arrows in Fig. 8, p < 0.05), and
most of them were located in the eastern Yangtze Plain (Fig. 7). On the
other hand, statistically significant increasing trends in vegetation
greenness values were observed in only 2 of the lakes (indicated as “↑”
in Fig. 7 and as red arrows in Fig. 8, p < 0.05), and these lakes were
found in the middle and western Yangtze Plain.

The seasonal mean vegetation greenness values for each lake are
color coded in Fig. 9. The greenness values in the second and third
quarters (greenish to reddish) are relatively higher than those that
occur during the first and fourth quarters (bluish) for most of the lakes.
The highest greenness values occurred in the third quarter for 84% of
the total number of lakes, whereas the minimum NDVI values were
observed in the first quarter for 68% of the lakes. Pronounced high

vegetation was found in the second and third quarters of 2007 and
2008, especially for the lakes located in the middle and eastern Yangtze
Plain.

4.3. Discussion

4.3.1. Driving forces
The correlations between the aforementioned five driving factors

and the annual mean greenness values of all of the lakes were calcu-
lated (see Table 3). The responses of the annual mean vegetation
greenness to the local fertilizer consumption varied among different
lakes, where 20% (5/25) showed statistically significant (p < 0.05)
positive correlations and 24% (6/25) of the lakes demonstrated

Fig. 5. The interannual vegetation area percentage (VAP) changes for each studied lake ((a)–(y)). The red and blue arrows indicate the lakes with significant
(p < 0.05) increasing and decreasing trends in their VAPs over the 15 years. The numbers in the upper right corners of (a)–(y) represent the 15-year VAP cli-
matologies and their standard deviations. (z) The numbers of lakes (annotated) that display increasing and decreasing VAPs and statistically significant (p < 0.05)
decreasing and increasing trends in the study period of 2000–2014.

Fig. 6. Seasonal mean vegetation area percentages (VAPs) of the 25 lakes examined; each cell represents the seasonal mean VAP of a particular lake. The cells from
top to bottom are consistent with the positions of the lakes from east to the west on the Yangtze Plain, and the codes (i.e., L03) correspond to those in Table 1, which
are arranged by their longitudes.

X. Hou et al. ISPRS Journal of Photogrammetry and Remote Sensing 141 (2018) 148–160

155



negative correlations statistically significant (p < 0.05), respectively.
The positive correlations may resulted from the favoring effects of the
increasing of nutrients availability, while the growths of the vegetation
for lakes with negative correlations could be inhibited by the high
concentration of water fertility (Güsewell and Koerselman, 2002; Green
and Galatowitsch, 2002), yet the exact reason for the different impacts
require further investigation once more detailed regional data (instead
of the total amounts of fertilizer consumption) are available.

The annual mean greenness values of most of the lakes (21/25)
exhibited negative correlations with the regional precipitation, and this
relationship was statistically significant (p < 0.05) for 32% (8/25) of

the lakes. The vegetation greenness of 76% (19/25) of the lakes ex-
hibited positive correlations with the regional temperature, where the
relationship was statistically significant (p < 0.05) for 32% (8/25) of
the lakes, highlighting the potential role of precipitation and tem-
perature on the growth of vegetation in lake wetlands on the Yangtze
Plain (Han et al., 2015; Zhang et al., 2017b). In contrast, both negative
and positive correlations were found between the vegetation greenness
and the daily sunshine, whereas the relationship appeared to be less
significant than that of precipitation and temperature. On the other
hand, the greenness values of 15 lakes showed negative correlations
with the annual mean TSS, and 20% (5/25) of the lakes demonstrated

Fig. 7. The spatial distribution of the rate of change of the vegetation greenness values of the studied lakes. ‘↑’ indicates lakes that displayed significant (p < 0.05)
increasing trends in their vegetation greenness values, and ‘↓’ indicates lakes that displayed significant (p < 0.05) decreasing trends from 2000 to 2014. The
numbers above the bars are the 15-year vegetation greenness climatologies. The numbers beside the legend in brackets are the percentages of the lakes that displayed
different rates of change.

Fig. 8. The interannual changes in vegetation greenness values for each studied lake ((a)–(y)). The red and blue arrows indicate the lakes with significant (p < 0.05)
increasing or decreasing trends in vegetation greenness values over the 15 years. The number in the upper right corners of (a)–(y) represent the 15-year greenness
climatologies and the standard deviations. (z) The numbers of lakes (annotated) in which the greenness values decreased or increased and the numbers of lakes that
displayed statistically significant (p < 0.05) decreasing or increasing trends during the study period (2000–2014).
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statistically significant (p < 0.05) negative correlations, indicating the
importance of water clarity (e.g., light penetration) in modulating ve-
getation growth.

To further quantify the relative contributions of different driving
factors to the wetland vegetation changes, a multiple general linear
model (GLM) regression (Tao et al., 2014) was conducted using the
associated annual data from 2000 to 2014. The contributions of the five
drivers for all the 25 lakes are illustrated as percentages in Fig. 10 and
Table 3, where the dominant factors for each lake are clearly revealed.
The multiple GLM analyses shows that the amounts of chemical ferti-
lizer consumption, precipitation, sunshine hours, temperature and TSS
played the important roles in determining the interannual changes in
wetland vegetation in 40% (10/25) , 12% (3/25) ,4% (1/25), 20% (5/
25) and 12% (3/25) of the lakes, respectively. The combined con-
tributions of the five factors explained 57.80% (L03, Taihu Lake) to
98.17% (L09, Shengjin Lake) of the interannual changes, with a mean
value of 89.08 ± 7.89%. Indeed, the changes in annual vegetation

greenness values in 17 of the lakes can be significantly (p < 0.05)
explained by one or two of the five driving factors above (see Fig. 10).
On the other hand, the residuals associated with the multiple GLM re-
gressions accounted for over 40% of the variation in vegetation
greenness in the lakes Taihu (L03), indicating that the changes in ve-
getation greenness in this lakes were likely controlled by other drivers.

4.3.2. Limitations and future implications
We acknowledge that the vegetation delineated using the MODIS

data could have some problems with mixed pixels, and the signal as-
sociated with sparse vegetation may not be detectable using data with a
resolution of 250m. On the other hand, higher-resolution satellite
images (such as the 30-m Landsat and 10-m SPOT images) are supposed
to produce much more detailed vegetation classification maps than the
moderate-resolution MODIS. The greater number of spectral bands of
such instruments, rather than the two bands of MODIS, could also be
used to construct more useful aquatic vegetation indices (such as

Fig. 9. Seasonal mean vegetation greenness values of the 25 lakes examined. Each cell represents the seasonal mean greenness of a given lake. From top to bottom,
the cells follow the progression of the lakes from east to the west within the Yangtze Plain. The codes (i.e., L03) correspond to those in Table 1, which are arranged by
their longitudes.

Table 3
Correlation coefficients (r) between the annual total fertilizer consumption amounts/annual mean precipitation/sunshine hour/temperature/ the annual mean water
turbidity (TSS) and the annual mean greenness values of each lake. The contributions (Ctrb., in percentage) of the different driving factors to the interannual changes
in the greenness values are also quantified and listed. Statistically significant (p < 0.05) correlation coefficients and contributions are annotated with an asterisk (*).

Code Precipitation Sunshine Temperature TSS Fertilizer Residuals

r Ctrb. r Ctrb. r Ctrb. r Ctrb. r Ctrb. Ctrb.

L01 −0.15 0.71 −0.54* 0.16 0.51* 21.67* −0.49* 9.74 0.73* 64.93* 2.79
L02 −0.54* 49.25* −0.47* 12.67 0.28 5.06 0.17 1.07 0.47* 23.27 8.68
L03 −0.22 29.23 0.22 16.08 0.14 2.85 −0.04 3.32 −0.12 6.32 42.19
L04 −0.34 0.15 −0.08 0.00 −0.20 9.01 −0.60* 61.81* 0.51* 20.10 8.93
L05 0.15 0.53 −0.08 2.65 0.26 12.45 −0.31 24.81 −0.12 40.03 19.53
L06 −0.39 18.08 −0.15 0.14 0.28 6.46 −0.49* 2.73 −0.58* 62.15* 10.45
L07 −0.55* 9.27 0.42 1.70 −0.07 7.17 0.51* 7.73 0.73* 70.07* 4.07
L08 −0.66* 38.75* 0.03 5.77 0.10 0.00 −0.04 35.86* −0.37 16.94* 2.67
L09 −0.65* 6.49 −0.06 0.07 0.77* 24.79* 0.06 1.98 −0.75* 64.83* 1.83
L10 −0.35 22.88 −0.35 37.55 0.06 16.36 −0.08 2.60 −0.20 7.97 12.65
L11 −0.41 4.24 0.47* 5.61 0.51* 52.64 0.18 2.56 0.242 22.12 12.83
L12 −0.25 1.16 −0.32 7.94 0.66* 72.42* 0.04 0.27 −0.29 9.64 8.57
L13 −0.68* 46.27* −0.02 7.59 0.53* 1.34 0.21 1.13 −0.49* 36.94* 6.73
L14 −0.43 39.50 −0.19 21.73 0.25 4.26 −0.07 1.79 −0.07 18.24 14.49
L15 0.08 1.55 −0.25 0.91 −0.14 0.75 −0.61* 81.81* 0.28 0.32 14.67
L16 −0.44 19.09 0.33 4.30 0.08 3.02 0.46* 48.80 0.04 8.62 16.17
L17 −0.35 31.64 0.26 0.86 0.26 0.14 −0.35 21.66 −0.33 36.30 9.41
L18 −0.34 0.32 0.20 8.30 0.64* 71.38* −0.29 7.35 0.05 3.52 9.12
L19 −0.15 0.11 0.13 7.09 0.50* 10.68 −0.44* 17.17 −0.62* 58.50* 6.45
L20 −0.21 2.20 −0.03 10.97 0.63* 69.10* 0.07 0.05 −0.43 8.17 9.52
L21 −0.49* 30.47 −0.37 11.67 −0.06 3.59 −0.21 9.26 0.50* 38.56* 6.46
L22 −0.51* 36.79 −0.48* 39.61* 0.05 9.66 −0.41 4.49 0.30 1.96 7.50
L23 −0.55* 67.72 0.13 1.70 0.39 10.72 0.20 1.68 0.14 2.48 15.71
L24 0.09 5.44 −0.43 13.45 −0.33 2.50 0.16 0.57 −0.62* 68.16* 9.89
L25 −0.51* 8.93 −0.17 4.79 −0.11 5.24 −0.36 6.63 −0.57* 62.84* 11.57
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NDAVI and WAVI) for wetland vegetation detection (Villa et al., 2014).
The main reason to use MODIS rather than Landsat or SPOT in this
study was because due to the frequent clouds present over the Yangtze
Plain region, the temporal distributions of cloud-free observations in
different years may change significantly. Therefore, the interannual
comparisons of vegetation coverage (VAP) or growing status (green-
ness) could be challenging, since the observed vegetation conditions
among different years may hold various inundation conditions or
phenological stages. In contrast, MODIS has daily global coverage,
where the 8-day composites represent the best possible observational
conditions during each 8-day period (e.g., small viewing angle, without
clouds or cloud shadows, and low aerosol loading), providing statisti-
cally meaningful datasets to avoid potential seasonal sampling bias that
may result from infrequent observations. Indeed, the vegetation clas-
sified using the MODIS and Landsat data agreed well, with an accuracy
level ∼80%, further confirming the fidelity of the results obtained from
moderate resolution data.

Floating algae on the water surface may also show high NDVI va-
lues, interfering with the remote sensing-based classification of wetland
vegetation (Oyama et al., 2015; Villa et al., 2015). In particular, when
algae are present in one location for more than one month, the asso-
ciated annual NDVI curve may resemble that of Category III (see
Fig. 2a). The affected pixel could be misclassified as vegetation, leading
to overestimation of the vegetation area during seasons that feature
algae blooms. Such phenomena often occur over the entire extent of
Chaohu Lake and certain portions of Taihu Lake in the Yangtze Plain
(Hu et al., 2010; Zhang et al., 2015). In this study, we excluded Chaohu
Lake and the western portion of Taihu Lake because the study of wet-
land vegetation in these two regions requires more advanced classifi-
cation methods, while for the short-term (no more than one month)
algae blooms in other lakes will be precluded.

The current study treated all vegetation communities as one class, in
fact, using the phenological information to explore the spatial and
temporal variance of different communities could be more important.
For example, accurate assessments of wetland biodiversity changes and
their transitions require community-level vegetation information (Ma
et al., 2008; Luo et al., 2016; Luo et al., 2017). However, the first
challenge in carrying out this task is to develop a sophisticated remote
sensing classification method that includes a comprehensive under-
standing of the phenological features, living conditions, and other

characteristics of different vegetation types in different lakes.
The amounts of chemical fertilizer, three meteorological factors and

water turbidity were taken as the possible driving indicators in this
research and their potential impacts on the interannual change of ve-
getation greenness for all lakes were investigated, however, other ad-
ditional factors, such as levee construction, should ideally be in-
vestigated. In fact, the recent increase in vegetation in the two largest
lakes connected to the Yangtze River (Poyang and Dongting Lakes) may
also be associated with the impoundment of the Three Gorges Dam
(TGD) upstream. Studies have shown that the inundation areas of these
two lakes decreased in the post-TGD period, whereas the exposure time
of the floodplain increased. These changes favor the growth of wetland
vegetation and have led to prominent expansion of the vegetated areas
(Xie et al., 2014; Han et al., 2015; Feng et al., 2016; Han et al., 2018).
And the water level could also serve as another important factor
modulating the growth of aquatic vegetation (Zhao et al., 2012),
however, it appears impossible to obtain historical water level data for
all lakes (as hydrological gauge stations are not available for most
lakes) that cover the 15-year period examined in this study to assess
their effects on vegetation change, thus, more localized efforts are re-
quired to investigate the contribution of water level to vegetation dy-
namics.

5. Conclusions

Using 15 years of NDVI time series data from MODIS and a phe-
nology-based classification method, the spatial distributions and tem-
poral dynamics of wetland vegetation in 25 large lakes on the Yangtze
Plain were documented and analyzed. Phenological information from
annual NDVI datasets were used to classify vegetation within a year,
and then, the inter-annual variability and change trends of vegetation
coverage and greenness between 2000 and 2014 were analyzed. This
study presents two important findings that appear to have been pre-
viously unknown. First, more than half of the 25 lakes showed de-
creasing trends in their vegetation areas and greenness values over the
15-year period of 2000–2014. Seven and 11 of these lakes exhibited
statistically significant decreasing trends in their VAPs and vegetation
greenness values, respectively. In contrast, the number of lakes with
increasing trends in vegetation was much less. Only 2 of the lakes de-
monstrated statistically significant increases in their annual mean

Fig. 10. The contributions of different driving factors (chemical fertilizer consumption, precipitation, sunshine hours, temperature and TSS) to the interannual
changes in greenness values, expressed as percentages. Statistically significant contributions are annotated with an asterisk (*).
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greenness values. Second, changes in consumption of chemical fertilizer
for farmland, precipitation, daily sunshine hours, temperature and
water turbidity played important roles in controlling the variability in
the greenness values in 40%, 12%, 4%, 20% and 12% of the total
number of lakes, respectively. In addition, the interannual trends in
vegetation growth in 17 of the 25 lakes could be significantly
(p < 0.05) explained by one or two of the five driving factors (con-
sumption of chemical fertilizer for farmland, precipitation, daily sun-
shine hours, temperature and water turbidity).

The results of this study provide the first baseline datasets of the
wetland vegetation changes that have occurred in 25 large lakes on the
Yangtze Plain, the findings here could serve as important references for
future environmental monitoring and restoration efforts of these lake
wetlands.
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