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time and may lead to over-projection of the future Arctic warming.  
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Abstract 

Realistically representing the Arctic amplification in global climate models (GCMs) 

represents a key to accurately predict the climate system’s response to increasing 

anthropogenic forcings. We examined the amplified Arctic warming over the past century 

simulated by 36 state-of-the-art GCMs against observation. We found a clear difference 

between the simulations and the observation in terms of the evolution of the secular warming 

rates. The observed rates of the secular Arctic warming increase from 0.14ºC/10a in the early 

1890s to 0.21ºC/10a in the mid-2010s, while the GCMs show a negligible trend to 0.35ºC/10a 

at the corresponding times. The overestimation of the secular warming rate in the GCMs 

starts from the mid-20th century and aggravates with time. Further analysis indicates that the 

overestimation mainly comes from the exaggerated heating contribution from the Arctic sea 

ice melting. This result implies that the future secular Arctic warming may have been over-

projected.  

 

1 Introduction 

 

The Arctic has experienced a rapid warming during the past decades (Huang et al., 2017). 

Along with such fast-increasing near surface air temperature (SAT), the Arctic climate has 

undergone tremendous changes, such as Arctic wetting, reduction of Arctic sea ice thickness 

and coverage, decrease of snow cover extent and duration, melting of Greenland ice sheet as 

well as thawing of permafrost (IPCC, 2013; Broeke et al., 2016; Chadburn et al., 2017; Box 

et al., 2019). These changes also have thrown impacts on the local ecosystem and the climate 

outside of the Arctic (Greene et al., 2008; Mori et al., 2019). For example, many studies 

indicated that the loss of Arctic sea ice may lead to more frequent occurrence of extreme 

weather and climate
 
at boreal mid-latitudes (Cohen et al., 2014; Chen et al., 2016; Screen et 

al., 2018; Mori et al., 2019).   

 

The warming rate of the Arctic has been found to be more than twice as fast as the global 

average, which is usually called as Arctic amplification (Chylek et al., 2009; Screen & 

Simmonds, 2010). As one of the most significant and well-established global warming 

signatures, the Arctic amplification has gotten a lot of attention (Serreze & Barry, 2011; 

Navarro et al., 2016; Cohen et al, 2014). The feedback effects associated with temperature, 

surface albedo as well as water vapor and clouds have been suggested for the amplified 
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Arctic warming (Pithan & Mauritsen, 2014; Praetorius et al., 2018; Dai et al., 2019; Gao et 

al., 2019). While a number of local and remote positive feedbacks contributed to the Arctic 

warming (Winton, 2006; Screen & Simmonds, 2012; Jeong et al., 2014), sea ice change has 

been identified as one of the key players in the amplification (Screen & Simmonds, 2010; Dai 

et al., 2019). Given the importance of diminishing sea ice over the Arctic to global climate 

system, especially the great concern of its impact on mid-latitude extreme weather and 

climate (Zhang et al., 2018; Mori et al, 2019), reliable future projections of climate change 

rely on the realistic representation of the Arctic amplification in climate models.   

 

The Arctic warming over the past century has been attributed to anthropogenic influence 

(Gillett et al., 2008; Najafi et al., 2015). With the increase of the human emissions, 

anthropogenic influence will continue playing a leading role in the future Arctic climate. 

Therefore, quantitatively examining the contribution of human influence in the past Arctic 

warming will increase our understanding of the representation of the amplified Arctic 

warming in climate models and improve our predictions of future climate change.  

 

In the past, a linear trend analysis method was widely used to calculate the warming  (e.g., 

IPCC, 2013; Fyfe & Salzen et al., 2013). In reality, however, the rate of human emissions is 

time-dependent and the climate system has significant internal variability on various temporal 

scales (IPCC 2013). Thus, the response of SAT to anthropogenic forcings should be varying 

with time (Wu et al., 2007; Ji et al., 2014; Duan et al., 2019). As the linear trend could not 

appropriately represent such nonlinear response of SAT to anthropogenic forcings, a method 

called EEMD (Ensemble Empirical Mode Decomposition) was suggested for such nonlinear 

analysis (Wu & Huang, 2009).  In this study, we focus on the secular Arctic warming 

associated with human influence with the method of EEMD by comparing an observational 

dataset and simulations from 36 CMIP5 (Coupled Model Intercomparison Project Phase 5) 

GCMs (Taylor et al., 2012).  

 

The remainder of this manuscript is organized as follows: section 2 introduce the data and 

method. The results are presented in section 3. In section 4, we give the conclusion and 

discussion.  
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2 Data and Method 

In this work, the Arctic is defined as a geographic domain poleward of 60°N and our 

research focuses on the annual Arctic SAT, which is calculated from December of a year to 

the following November. Considering detectable anthropogenic influence on the northern 

mid-high latitudes since the late nineteenth century (Duan et al., 2019) and inclusion of the 

latest change of the Arctic SAT, such as record-breaking Arctic warming during the past 

several years (Richter-Menge et al., 2017) in our work, 1880-2017 is chose here as the study 

period. The observational dataset HadCRUT4.6 (hereafter, HadCRUT) is used in this study, 

which is an updated observed monthly global temperature anomaly on a 5-degree grid 

relative to the reference period 1961-1990. HadCRUT is composed by direct observations 

from land component CRUTEM4 and marine component HadSST3. The CRUTEM4 is the 

observed land surface air temperature dataset provided by the Climatic Research Unit at the 

University of East Anglia, while the HadSST3 is the observed sea surface temperature 

(SST) dataset from the Met Office Hadley Centre (Morice et al., 2012). Relative to its 

previous version, HadCRUT has greatly improved observational coverage in the Arctic 

(Morice et al., 2012). However, the observation still is relatively limited in the Arctic, 

especially in the early times.  

Interpolation is often used to fill the gaps in coverage in the observation datasets. Cowtan 

and Way (2014) used the optimal interpolation to produce a long-term global coverage of 

SAT based on HadCRUT4. However, interpolated Arctic SAT with observations at mid- 

and low- latitudes may also include new bias. Huang et al. (2017) utilized the method 

DINEOF (Data Interpolating Empirical Orthogonal Functions) reconstructed a full coverage 

of Arctic SAT by incorporating ICBP/POLES (International Arctic Buoy Programme/Polar 

Exchange at the Sea Surface) Arctic observations into the global SAT of NOAA (National 

Oceanic and Atmospheric Administration). These researches indicated that incomplete and 

time-varying observational coverage in the Arctic may result in a little cooling bias in the 

recent decades (Cowtan & Way, 2014; Simmons & Poli, 2015; Huang et al., 2017). 

However, interpolated dataset by Cowtan and Way (2014) is only updated to 2014, and the 

reconstructed dataset by Huang et al. (2017) only covers 1900-2014. Furthermore, we 

investigate the effects of incomplete observational coverage on the secular Arctic warming 

we focus on in this work by comparing the results from 36 CMIP5 GCMs simulations with 

full coverage and with observational coverage (here, the coverage of HadCRUT). Our result 

shows that the incomplete observational coverage has a statistically insignificant effect on 
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the secular Arctic warming (the details seen in section 3.3). Therefore, we use HadCRUT as 

the observation in our work. In addition, 100 realizations from the HadCRUT were utilized 

to examine the observed Arctic SAT variation and its uncertainties. These realizations were 

produced by blending 100 SAT members of the CRUTEM4 and 100 SST members of the 

HadSST3 on a one-to-one basis. These members were generated by combining the 

observations with the corresponding errors arising from measurement biases and applied 

bias adjustments. 

 

The 36 CMIP5 GCMs’ monthly SATs (Table S1) come from experiments forced with the 

historical forcings and RCP8.5 (RCP: Representative Concentration Pathway) scenario 

(Vuuren et al., 2011). Most of the historical simulations of the CMIP5 GCMs ended in 

2005. To be aligned with the observation in terms of time period, historical simulations were 

extended to 2017, in which RCP8.5 scenario projections were used after 2005 during which 

period the world’s greenhouse gas emissions are closer to the RCP8.5 than the other RCP 

scenarios (Vuuren et al., 2011; Le Quéré et al., 2016). In addition, the global mean SAT and 

Arctic sea ice extent (north of 70ºN) in the period of 1880-2017 are also analyzed to identify 

their relationship with the Arctic SAT. In order to investigate the contribution of natural 

forcings and greenhouse gases forcings to the evolution of Arctic SAT over the past century, 

we also employed additional forcing simulations from 17 out of the above 36 CMIP5 

GCMs, which include experiments driven with the historical forcings (His), only natural 

forcings (Nat), and only greenhouse gases forcings (GHG) (Table S1). Due to the fact that 

most simulations in Nat and GHG experiments ended in 2005, all of these simulations were 

only analyzed for the period of 1880-2005. Before the analysis, all the simulated monthly 

SATs were firstly converted to anomalies relative to 1961-1990 reference period as same as 

for the HadCRUT, and then the data were regridded to the observational grids and masked 

by the observational coverage to be consistent with the spatial and temporal coverage of the 

observation (HadCRUT). The Arctic SAT series is calculated with available gridded 

observations with area-weight. 

 

EEMD is developed from EMD (Empirical Mode Decomposition) and can decompose data 

time series into intrinsic mode functions (IMFs) and a residual (Wu et al., 2011). IMFs and 

the residual are manifested with oscillatory components on various timescales and a 



 

 

©2019 American Geophysical Union. All rights reserved. 

nonlinear, secular trend (hereafter ST), respectively, and they may reflect specific physical 

processes (Wu et al., 2007; Wu & Huang, 2009; Wu et al., 2011). In contrast to EMD, EEMD 

defines the decomposed components as the mean of an ensemble of decompositions, each of 

which is consisted of the data time series plus a white noise of finite amplitude. This process 

can rule out the influence of noise in the process of decomposition, which may result in 

significantly different decomposition in EMD analysis (Wu & Huang, 2009; Ji et al., 2014). 

Comparing to other methods, EEMD can extract the trend from data series, particularly from 

nonlinear, non-stationary data series without requiring any predetermined basis function. This 

method emphasizes the adaptiveness and temporal locality of the decomposition, implying 

that the decomposition will not change with the addition of new data (Wu et al., 2007; Wu et 

al., 2011). This property of EEMD is consistent with the reality that physical processes 

occurred in specific time intervals should not alter when the time series is extended with new 

data (Wu et al., 2007; Wu et al., 2011). In EEMD analysis, 0.2 standard deviations of the 

annual Arctic SAT series over 1880-2017 was used as the noise and 1000 members were 

produced for each component. The ensemble mean (EM) of these 1000 members was the 

decomposed component of EEMD. Consequently, six intrinsic mode functions (IMFs) and 

one residual are obtained. Here, we adopted EEMD to extract the significant components of 

the Arctic SAT and to examine the performance of CMIP5 GCMs in simulating the 

anthropogenic contribution to the secular Arctic warming. 

 

3 Results 

3.1 EEMD analysis and Secular trend of Arctic SAT  

We decomposed the annual Arctic SAT series into six IMFs and a residual with the method 

of EEMD (Figure S1). Following the methods by Wu et al. (2007) and Wu et al. (2011) 

respectively, both white noise and red noise significance tests consistently show that IMFs on 

the multi-decadal time scale (MDV) and the residual (ST), are statistically distinguishable 

from the corresponding components of pure white noise and red noise (Figure S2, S3). This 

means that these two components most likely represent physically meaningful signals. In 

Figure S4, it is obvious that ST represents the warming on the global scale, while MDV 

describes the multi-decadal oscillation mainly located in the North Atlantic Ocean. The sum 

of MDV and ST is defined, here, as a multi-decadal trend (MDT). As shown in Figure 1a, c, 

MDT can capture well the stepwise rise of the observed Arctic SAT in the past century, while 

ST reasonably represents the nonlinear, secular trend of the observed Arctic warming. 
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Similarly, MDT and ST also can capture the major variabilities of the simulated Arctic SAT 

from the CMIP5 models (Figure 1b, c). 

 

 

 

In climate analysis, multi-model average of simulations from a large number of climate 

models can be used to represent the signal of external forcings due to internal variability 

effectively being averaged out (Frankcombe et al., 2018; Dai et al., 2019). Here, we calculate 

the EM of 17 out of the above 36 CMIP5 GCMs for forcing experiments His, Nat and GHG, 

respectively. From Figure 2a, it is very clear that the anthropogenic forcings almost dictate 

ST of the Arctic SAT during the past century, while the natural forcing has little contribution. 

In respect of MDV, our analysis shows that both natural and anthropogenic forcings have a 

great influence on the evolution of MDV in the past century (Figure 2b). On the other hand, 

previous work (Yamanouchi, 2011; Fyfe & Salzen et al., 2013) indicated that internal 

variability also contributes to the multi-decadal variations of the Arctic SAT, such as the 

warming in the 1940s.  This is also evident in Figure 1c, which shows that the combination 

of natural and anthropogenic forcings cannot totally explain the amplitude of the Arctic 

warming and cooling in the 1920s-1940s and 1940s-1960s respectively. Therefore, it can be 

concluded that the ST of the Arctic SAT almost exclusively stems from anthropogenic 

forcings, which most likely dominates the long-term warming in the Arctic, while MDV can 

be considered the resultant of internal variability and the natural forcings as well as 

anthropogenic forcings.  

 

 

3.2 Contribution of ST and MDV to the Arctic warming 

 

The changes of MDT, MDV and ST were examined for the past century. As shown in Figure 

3a, the Arctic SAT (MDT) has increase 2.900.11ºC and 2.550.78ºC (1 means one 

standard deviation) in 1880-2017 respectively for HadCRUT and CMIP5 GCMs simulations. 

During this period, the ST has contributed 2.330.14ºC to the rise of the Arctic SAT in the 

observation, and the simulated ST shows a comparable contribution (2.260.74ºC, Table S2) 

only with a slight cooling bias of -0.07ºC. However, this goes with a large model spread, 

which indicates that the CMIP5 multi-model EM works well in simulating the 

anthropogenically-induced secular warming over the past century, although large spread still 
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exists among these climate models. In addition, the observed MDV has contributed 

0.570.04ºC (about 20%) to the Arctic warming (2.90ºC) in the period of 1880-2017. This is 

consistent with the above conclusion that the ST dominates the long-term warming. However, 

the simulated MDV has only contributed 0.300.34ºC to the simulated Arctic warming of 

1880-2017, approximately 12% (Table S2). The contribution of the MDV to the Arctic 

warming is much lower in the EM of simulations than the observation, which may be partly 

due to exclusion of internal variability in the multi-model mean.  

 

As shown in Figure 1c and Figure S5, the evolution of the observed Arctic SAT in the past 

century can be divided into three periods: a warming in 1880-1940, followed by a cooling 

from 1941 to 1967, and a subsequently rapid warming in 1968-2017. For the EM of CMIP5 

GCMs’ simulations considered, the cooling is too weak and the recent warming starts four 

years earlier than the observation, from which the simulated MDT becomes positive. Most 

notably, however, the CMIP5 multi-model EM reproduces the most recent Arctic warming 

very well, closely following the evolution of the Arctic SAT in 1968-2017 (Figure 1c). The 

simulated MDT shows a warming of 2.080.66ºC during 1968-2017 with a slight bias of -

0.08ºC for EM relative to the observed MDT change (2.160.03ºC) (Figure 3b). By contrast, 

the simulated ST has a warming of 1.410.46ºC in this period, which is larger than that of the 

observation (0.950.03ºC). The difference between them is statistically significant at the 0.05 

level. Further, most models (27 among the 36 CMIP5 models) produce larger ST changes 

during the period 1968-2017 than all of the 100 realizations of HadCRUT. Therefore, 

although the CMIP5 multi-model EM can reproduce well the Arctic temperature rising in 

1968-2017, it significantly overestimates the anthropogenically-induced secular warming. In 

respect of MDV, the observed MDV has contributed 1.210.04ºC (56%) to the warming 

(2.160.03ºC) in 1968-2017. By contrast, the simulated MDV has contributed 0.670.39ºC 

warming, nearly one-third (32%), to the EM of the simulated Arctic warming in this period. 

The contribution of MDV to the Arctic warming is substantially smaller in the CMIP5 multi-

model EM than in the observation. This also may be partly due to removal of internal 

variability from the multi-model EM. 

 

3.3 Overestimate of Arctic warming rates in the CMIP5 models 

From the above analysis, we can conclude that the CMIP5 multi-model EM can reproduce 
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well the anthropogenically-induced secular Arctic warming of 1880-2017; however, it 

significantly overestimates the secular warming in the recent warming period (1968-2017). 

This may arise from the nonlinear response of the secular Arctic warming to the 

anthropogenic forcings, namely that the ST varies with time. Therefore, we further examined 

the evolution of the ST during the period of 1880-2017. As shown in Figure 4a, the rate of 

the secular warming increases in the observation from 0.14ºC/10a in the early 1890s to 

0.21ºC/10a in the mid-2010s. The simulated secular warming rate also grows but faster 

compared to that of the observation, as indicated by a negligible warming rate in the early 

1890s and a relatively high warming rate of 0.35ºC/10a in the mid-2010s. Evidently, the mid-

20th century  appears to be a turning point for CMIP5 GCMs before which the CMIP5 multi-

model EM underestimates the anthropogenic secular warming rate. After this time point, the 

simulated warming rate exceeds that of the observation and the disparity grows with the time, 

reaching 0.14ºC/10a in the mid-2010s.  

 

The above analysis is based on SATs from the observation and the CMIP5 model simulations 

with observational coverage in the Arctic region. Both the incomplete data coverage in the 

Arctic region and SAT instead of SST used over open oceans may affect the calculation of 

the Arctic temperature (Cowtan et al., 2016; Huang et al., 2017). To estimate the impact of 

the incomplete coverage on the Arctic temperature change, we performed the same analysis 

based on the 36 CMIP5 GCMs simulations with full coverage in the Arctic region. Figure S6 

and Figure S7 show that full coverage in the Arctic slightly increases MDT, ST and MDV of 

the Arctic warming in both 1880-2017 and 1968-2017 and slightly enhances the secular 

warming rate at present relative to the incomplete coverage. However, their differences are 

not statistically significant at the 0.10 level. In addition, similar results were also obtained for 

the simulated ST in 1880-2017 by using full coverage data in the Arctic and SST instead of 

SAT over open oceans (Figure S8). This demonstrates the robustness of the conclusion that 

anthropogenically-induced secular warming has been overestimated by the CMIP5 GCMs 

during the most recent warming period, and the overestimation is aggravated with time.  

 

3.4 Overestimate of the contribution of sea ice loss 

Recently, Dai et al. (2019) indicated that the Arctic sea ice loss plays a central role in Arctic 

amplification. Without the Arctic sea ice melting, the evolution of the Arctic SAT is similar 
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to that of the global mean SAT (see Fig.6 in Dai et al. 2019) under increasing CO2. Thus, 

the additional warming of the Arctic relative to the global mean can be used to 

approximately represent the contribution from Arctic amplification induced by the Arctic 

sea ice loss. As shown in Figure S9, the departures in the ST of the Arctic SAT relative to 

the global mean SAT grow with time in both the observation (HadCRUT) and 36 CMIP5 

model EM. Likewise, the simulated ST of the annual Arctic sea ice extent also gradually 

rises in the past century. Further analysis shows that the rate of the additional Arctic 

warming relative to the global mean decreases slightly in the observation from 0.11ºC/10a 

in the mid-1890s to 0.09ºC/10a in the mid-2010s (Figure 4b). In contrast, the trend rises in 

the 36 CMIP5 model EM from a rate close to zero to 0.20ºC/10a at the corresponding times. 

Furthermore, the trend from the CMIP5 GCMs EM exceeds that of the observation since the 

mid-20th century.  It is clear in Figure 4a, b that the overestimation of the secular Arctic 

warming rate during the recent decades in the CMIP5 GCMs mainly comes from the 

exaggerated contribution from the Arctic sea ice loss, although it can also be partly due to 

the overestimated global warming rate in the CMIP5 models (Figure S10). A similar 

conclusion is also obtained for the 36 CMIP5 model EM with complete coverage in the 

Arctic region and SST instead of SAT used in the open-water area (Figure S8 and Figure 

S11). Therefore, the above conclusion is robust as it is not affected by the data coverage. 

However, given the limited length of the observed Arctic sea ice, it is hard to figure out 

whether the overestimation of the secular Arctic warming rate mainly comes from the 

inaccurately simulated change of Arctic sea ice extent or effects of associated physical 

process under the increasing anthropogenic emissions.  

 

4 Conclusion and Discussion 

In this work, we found that the response of the Arctic SAT to the time-varying anthropogenic 

forcings is nonlinear, mainly manifested with a nonlinear secular warming trend on the long-

term time scale, based on the observational dataset HadCRUT and the 36 CMIP5 GCMs’ 

simulations. The rate of this secular warming is intensified with time both in the observation 

and climate model simulations. Our results also indicate that CMIP5 GCMs EM 

overestimates the anthropogenically-induced secular warming rate since the mid-20th century 

against the observation and the overestimation aggravates with time, although the GCMs EM 

can simulate well the increase of the Arctic temperature over 1880-2017. This finding implies 
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that the future Arctic warming could have been over-projected by the CMIP5 models. Further 

analysis indicates that the exaggerated heating contribution from the Arctic sea ice melting in 

GCMs may have contributed to this overestimation. Given the important influence of Arctic 

climate change on the local and global environments as well as ecosystem (Greene et al., 

2008; Hanna et al., 2013; Cohen et al., 2014), realistic representation of the nonlinear 

response of Arctic warming to the anthropogenic forcings is considered a key to the reliable 

future climate projection. In particular, accurately simulating the response of Arctic SAT to 

melting sea ice is the key to precisely project the future Arctic temperature.  

However, there are also other local and remote feedbacks such as cloud, water vapor 

transport etc (Pithan & Mauritsen, 2014; Praetorius et al., 2018; Winton, 2006; Screen & 

Simmonds, 2012; Jeong et al., 2014; Hao et al., 2018). These feedbacks may also play 

important role in the Arctic warming and need to be studied either. It is also noticeable that 

large spread still exists among the CMIP5 GCMs simulations. Although the CMIP5 GCMs 

EM overestimate the secular warming rate in recent decades, the observed secular warming 

rate still locates in the range of those of CMIP5 GCMs simulations and is close to the lower 

end (Figure 4a). In addition, some research (Fyfe & Gillett et al., 2013) pointed out that the 

overestimation of the global warming in the early of 21st century by CMIP5 models may be 

partly due to errors in the prescribed external forcings. This may also affect the CMIP5 

GCMs simulations. 

 

 

Acknowledgments  

The CMIP5 model outputs are downloaded from https://esgf-node.llnl.gov/projects/esgf-llnl/. 

The HadCRUT4.6 data are available from http://www.metoffice.gov.uk/hadobs/ hadcrut4/. 

Special thanks to Prof. Xiangdong Zhang for his discussions. We also thank Dr. Xin Chen, 

Changui Lin and Peng Zhang for discussing the method of EEMD. We are grateful to Prof. 

Wenyu Huang, Prof. Shiming Xu and Dr. Yanyan Shi for providing the monthly SST of 

FGOALs-g2 RCP8.5 scenario simulation. This work is supported by the Strategic Priority 

Research Program of Chinese Academy of Sciences (Grant No.XDA2006040103) and Key 

Research Program of Frontier Sciences, CAS, Grant No. QYZDY-SSW-DQC021). Supports 

from the Swedish Foundation for International Cooperation in Research and Higher 



 

 

©2019 American Geophysical Union. All rights reserved. 

Education (CH2015-6226), as well as the Swedish National Strategic Research Programs 

BECC and MERGE are also acknowledged. 

 

  



 

 

©2019 American Geophysical Union. All rights reserved. 

Reference 

 

Acosta Navarro, J. C., V. Varma, I. Riipinen, Ø. Seland, A. Kirkevåg, H. Struthers, T. Iversen, 

H. C. Hansson, and A. M. L. Ekman (2016), Amplification of Arctic warming by past air 

pollution reductions in Europe, Nature Geosci, 9(4), 277–281, doi:10.1038/ngeo2673. 

Box, J. E. et al. (2019), Key indicators of Arctic climate change: 1971–2017, Environ. Res. 

Lett., 14(4), 045010–19, doi:10.1088/1748-9326/aafc1b. 

Chadburn, S. E., E. J. Burke, P. M. Cox, P. Friedlingstein, G. Hugelius, and S. Westermann, 

(2017), An observation-based constraint on permafrost loss as a function of global 

warming, Nat Clim Change, 7, 340-344. 

Chen, H. W., R. B. Alley, and F. Zhang (2016), Interannual Arctic sea ice variability and 

associated winter weather patterns: A regional perspective for 1979–2014. Journal of 

Geophysical Research–Atmospheres, 2016JD024769, doi:10.1002/2016JD024769.  

Chylek, P., C. K. Folland, G. Lesins, M. K. Dubey, and M. Wang (2009), Arctic air 

temperature change amplification and the Atlantic Multidecadal Oscillation, Geophysical 

Research Letters, 36(14), 2721, doi:10.1029/2009GL038777. 

Cohen, J. et al. (2014), Recent Arctic amplification and extreme mid-latitude weather, Nature 

Geoscience, 7(9), 627–637, doi:10.1038/ngeo2234. 

Cowtan, K., and R. G. Way (2014), Coverage bias in the HadCRUT4 temperature series and 

its impact on recent temperature trends, Q.J.R. Meteorol. Soc., 140(683), 1935–1944, 

doi:10.1002/qj.2297 

Cowtan, K., Z. Hausfather, E. Hawkins, P. Jacobs, M. E. Mann, S. K. Miller, B. A. Steinman, 

M. B. Stolpe, and R. G. Way (2016), Robust comparison of climate models with 

observations using blended land air and ocean sea surface temperatures,, 1–10, 

doi:10.1002/(ISSN)1944-8007. 

Dai, A., D. Luo, M. Song, and J. Liu (2019), Arctic amplification is caused by sea-ice loss 

under increasing CO2, Nature Communications, 1–13, doi:10.1038/s41467-018-07954-9. 

Duan, J. et al. (2019), Detection of human influences on temperature seasonality from the 

nineteenth century, Nature Sustainability, 1–7, doi:10.1038/s41893-019-0276-4. 

Frankcombe, L. M., M. H. England, J. B. Kajtar, M. E. Mann, and B. A. Steinman (2018), On 

the Choice of Ensemble Mean for Estimating the Forced Signal in the Presence of 

Internal Variability, J. Climate, 31(14), 5681–5693, doi:10.1175/JCLI-D-17-0662.1. 

Fyfe, J. C., K. von Salzen, N. P. Gillett, V. K. Arora, G. M. Flato, and J. R. McConnell 

(2013), One hundred years of Arctic surface temperature variation due to anthropogenic 

influence, Sci Rep, 3(1), 2067–7, doi:10.1038/srep02645. 

Fyfe, J. C., N. P. Gillett, and F. W. Zwiers (2013), Overestimated global warming over the 

past 20 years, Nature Publishing Group, 3(9), 767–769, doi:10.1038/nclimate1972. 



 

 

©2019 American Geophysical Union. All rights reserved. 

Gao, K., A. Guan, D. Chen, and G. Wu (2019), Surface energy budget diagnosis reveals 

possible mechanism for the different warming rate among the three poles on Earth in 

recent decades, Science Bulletin, 10.1016/j.scib.2019.06.023. 

Gillett, N. P., D. A. Stone, P. A. Stott, T. Nozawa, A. Y. Karpechko, G. C. Hegerl, M. F. 

Wehner, and P. D. Jones (2008), Attribution of polar warming to human influence, 

Nature Geosci, 1(11), 750–754, doi:10.1038/ngeo338. 

Greene, C. H., A. J. Pershing, T. M. Cronin, and N. Ceci (2008), Arctic climate change and 

its impacts on the ecology of the North Atlantic, Ecology, 1–15. 

Hao, M. et al. (2019), Contribution of atmospheric moisture transport to winter Arctic 

warming, Int J Climatol., 39: 2697– 2710. https://doi.org/10.1002/joc.5982 

Hanna, E. et al. (2013), Ice-sheet mass balance and climate change, Nature, 498(7452), 51–

59, doi:10.1038/nature12238. 

Huang, J. et al. (2017), Recently amplified arctic warming has contributed to a continual 

global warming trend, Nature Climate Change, 7(12), 1–6, doi:10.1038/s41558-017-

0009-5. 

IPCC: Climate Change 2013 (2013), The Physical Science Basis. Contribution of Working 

Group I to the Fifth Assessment Report of the Intergovern- mental Panel on Climate 

Change [Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, 

Xia Y, Bex V & Midgley PM (eds.)]. Cambridge University Press, Cambridge, United 

Kingdom and New York, NY, USA, 2013; 1535 pp. 

Jeong, J.-H., J.-S. Kug, H. W. Linderholm, D. Chen, B.-M. Kim, S.-Y. Jun (2014), Intensified 

Arctic warming under greenhouse warming by vegetation-atmosphere-sea ice interaction, 

Environmental Research Letters 9(9), 094007. 

Ji, F., Z. Wu, J. Huang, and E. P. Chassignet (2014), Evolution of land surface air 

temperature trend, Nature Climate change, 4(6), 462–466, doi:10.1038/nclimate2223. 

Le Quéré, C. et al. (2016), Global Carbon Budget 2016, Earth Syst. Sci. Data, 8(2), 605–649, 

doi:10.5194/essd-8-605-2016. 

Mori, M., Y. Kosaka, M. Watanabe, H. Nakamura, and M. Kimoto (2019), A reconciled 

estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling, Nature 

Publishing Group, 1–9, doi:10.1038/s41558-018-0379-3. 

Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones (2012), Quantifying uncertainties 

in global and regional temperature change using an ensemble of observational estimates: 

The HadCRUT4 data set, J. Geophys. Res., 117(D8), n/a–n/a, 

doi:10.1029/2011JD017187. 

Najafi, M. R., F. W. Zwiers, and N. P. Gillett (2015), Attribution of Arctic temperature 

change to greenhouse-gas and aerosol influences, Nature Climate change. 

Pithan, F., and T. Mauritsen (2014), Arctic amplification dominated by temperature 

feedbacks in contemporary climate models, Nature Geosci, 7(3), 181–184, 

doi:10.1038/ngeo2071. 

https://doi.org/10.1002/joc.5982


 

 

©2019 American Geophysical Union. All rights reserved. 

Praetorius, S., M. Rugenstein, G. Persad, and K. Caldeira (2018), Global and Arctic climate 

sensitivity enhanced by changes in North Pacific heat flux, Nature Communications, 1–

12, doi:10.1038/s41467-018-05337-8. 

Richter-Menge, J., J. E. Overland, J. T. Mathis, and E. Osborne (2017), Arctic Report Card 

2017,, 1–96. 

Screen, J. A., and I. Simmonds (2010), The central role of diminishing sea ice in recent 

Arctic temperature amplification, Nature, 464(7293), 1334–1337, 

doi:10.1038/nature09051. 

Screen, J. A., C. Deser, and I. Simmonds (2012), Local and remote controls on observed 

Arctic warming, Geophysical Research Letters, 39(10), n/a–n/a, 

doi:10.1029/2012GL051598. 

Screen, J. A., C. Deser, D. M. Smith, X. Zhang, R. Blackport, P. J. Kushner, T. Oudar, K. E. 

McCusker, and L. Sun (2018), Consistency and discrepancy in the atmospheric response 

to Arctic sea-ice loss across climate models, Nature Geosci, 98(3), 1–10, 

doi:10.1038/s41561-018-0059-y. 

Serreze, M. C., and R. G. Barry (2011), Processes and impacts of Arctic amplification: A 

research synthesis, Global and Planetary Change, 77(1-2), 85–96, 

doi:10.1016/j.gloplacha.2011.03.004. 

Simmons, A. J., and P. Poli (2014), Arctic warming in ERA-Interim and other analyses, 

Q.J.R. Meteorol. Soc., 141(689), 1147–1162, doi:10.1002/qj.2422. 

 

Taylor, K. E., R. J. Stouffer, and G. A. Meehl (2012), An Overview of CMIP5 and the 

Experiment Design, Bull. Amer. Meteor. Soc., 93(4), 485–498, doi:10.1175/BAMS-D-

11-00094.1. 

van den Broeke, M. R., Enderlin E. M., Howat I. M., Munneke P. K., Noël B. P. Y., van de 
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Figure 1 The annual Arctic SAT anomalies over 1880-2017 and MDT (Multi-decadal 

Trend), ST (Secular Trend) of the annual Arctic SAT based on EEMD analysis, for (a) 

the HadCRUT and (b) the CMIP5 GCMs historical simulations. Grey curves represent 100 

realizations from the HadCRUT in (a) and the 36 CMIP5 GCMs’ simulations in (b), 

respectively; the black curves are their ensemble mean; red thick dash and solid lines 

represent corresponding MDT and ST, respectively. The MDVs and STs from (a) and (b) are 

collected in (c) separately with black and red colors. SAT anomalies are relative to 1961-

1990. 
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Figure 2 The ensemble mean of STs and MDVs from the 17 CMIP5 GCMs’ simulations over 

1880-2005, respectively for the historical, only Natural forcings, only greenhouse gases forcing 

experiments. 
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Figure 3 The warming respectively represented by the changes of MDT (Multi-decadal 

Trend), ST (Secular Trend) and MDV (Multi-decadal Variability) in the periods of (a) 

1880-2017 and (b) 1968-2017. The blue and red columns represent contributions from the 

changes of MDT, ST and MDV respectively for the HadCRUT and 36 CMIP5 GCMs’ 

simulations.  The vertical bars show the range of MDT, ST and MDV changes respectively 

from 100 realizations of HadCRUT and 36 CMIP5 GCMs’ simulations. 
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Figure 4 The rates of (a) the Arctic secular warming and (b) the departure of Arctic 

SAT ST from the global SAT ST during 1880-2017, estimated with their 7-point moving 

linear trend. The black and red solid lines represent ensemble mean of (a) the secular 

warming rates and (b) the rates of the departure for the 100 realizations of the HadCRUT and 

36 CMIP5 GCMs’ simulations, respectively. The black (red) dash lines denote their 10th-

90th percentiles for 100 HadCRUT realizations and 36 CMIP5 GCMs’ simulations, 

respectively. 

 


