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Water scarcity has become amajor threat to sustainable development under climate change. To reduce the pop-
ulation exposure to water scarcity and improve universal access to safe drinking water are important targets of
the Sustainable Development Goal (SDG) 6 in the near future. This study aims to examine the potential of apply-
ing adaptive inner-basin water allocation measures (AIWAM), which were not explicitly considered in previous
studies, for mitigating water scarcity in the future period (2020–2050). By incorporating AIWAM in water scar-
city assessment, nonagricultural water uses are assumed to have high priority over agricultural water use and
thus would receive more water supply. Results show that global water deficit is projected to be ~3241.9 km3/
yr in 2050, and severe water scarcity is mainly found in arid and semi-arid regions, e.g. Western US, Northern
China, and the Middle East. Future warming climate and socioeconomic development tend to aggravate global
water scarcity, particularly in Northern Africa, Central Asia, and the Middle East. The application of AIWAM
could significantly mitigate water scarcity for nonagricultural sectors by leading to a decrease of global popula-
tion subject to water scarcity by 12% in 2050 when compared to that without AIWAM. However, this is at the
cost of reducing water availability for agricultural sector in the upstream areas, resulting in an increase of global
irrigated cropland exposed to water scarcity by 6%. Nevertheless, AIWAM provides a useful scenario that helps
design strategies for reducing future population exposure towater scarcity, particularly in densely populated ba-
sins and regions. Our findings highlight increasing water use competition across sectors between upstream and
downstream areas, and the results provide useful information to develop adaptation strategies towards sustain-
able water management.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

As a result of increasing in humanwater demand driven by the rapid
global population growth, economic development and rising living
standard, water scarcity has become onemajor threat to the sustainable
development of human society. Water scarcity may result in multiple
social and environmental issues, such as drinking water shortage (Oki
and Kanae, 2006; Vörösmarty et al., 2010), reduction of crop production
(Rockström et al., 2009; Gerten et al., 2011), andwater quality degrada-
tion (Cheng et al., 2009; Liu et al., 2016). Furthermore, globalwater scar-
city will change along with future climate change and socioeconomic
development (Hejazi et al., 2014; Greve et al., 2018). Therefore, it is es-
sential to understand global water scarcity conditions under future
changing environment, which is a prerequisite for developing planning
and management policies to mitigate water scarcity at the global, re-
gional, and local scales.

Current water scarcity projections are mostly based on water avail-
ability and water demand simulations from global hydrological models
(GHMs), taking into account the impacts of both future climate change
and socioeconomic development (Hanasaki et al., 2013a, 2013b; Hejazi
et al., 2015). Furthermore, awealth of studies have addressed the role of
multiple adaptive options in coping with water scarcity conditions, e.g.
irrigation efficiency improvement (Flörke et al., 2018), inter-basin
water transfer infrastructures (Barnett et al., 2015; Yin et al., 2020),
sea water desalination (Hanasaki et al., 2016), and virtual water trade
(Zhao et al., 2015; Pastor et al., 2019). Previous water scarcity assess-
ments often compared water demand with water availability to assess
water scarcity at the local, regional, and global scales. Water demand
was estimated as the sumofwater demands from agricultural, domestic
and industrial sectors in most studies (Wada et al., 2016; Huang et al.,
2018; Joseph et al., 2020), whereas water availability was calculated in
different ways, such as from runoff (e.g. Hejazi et al., 2014), natural
river discharge (e.g. Vörösmarty et al., 2005), and the difference be-
tween natural river discharge and environmental flow (e.g. Hanasaki
et al., 2013b). The allocation of available water resources between up-
stream and downstream regions is important for water scarcity assess-
ments (Yan et al., 2018; Gaaloul et al., 2020). Different treatments of
water abstraction in upstream areas may affect water scarcity assess-
ment to a significant extent. As downstream areas usually rely on
water supply from upstream, ignoring the impacts of upstream water
abstraction on downstream water availability would underestimate
water scarcity in the downstream areas. To overcome this issue,
Munia et al. (2016) conducted the first assessment of water scarcity
by considering upstream water use as the first priority, and analyzed
the effects of upstream water abstraction on downstream water scar-
city. Going beyond this, Liu et al. (2019) further compared the differ-
ences of water scarcity assessment by using different water scarcity
indices which were calculated as the ratios of water demand to locally
generated runoff, to natural streamflow, and to natural streamflow
minus upstream water abstraction.

However, as important adaptive measures to cope with water scar-
city, the inner-basin water allocation measures, which were often de-
signed to redistribute available water resources within a basin in
practice, has not been incorporated in most large-scale water scarcity
assessments. For example, the Yellow River Conservancy Commission
(YRCC) in China implemented a flow regulation rule that sets an
upper limit on upstream water abstraction in order to mitigate down-
stream water scarcity in the Yellow River basin (Cai and Rosegrant,
2004; YRCC, 2013; Yin et al., 2017). Similar inner-basin water allocation
measures have been applied in the Indus River basin (Zawahri, 2009),
the Euphrates and Tigris River basins (Kliot, 2005), and the Middle
East and Northern Africa (Brown, 2000). The inner-basin water alloca-
tion measures aim to cope with water scarcity due to inter-sectoral
water competition between upstream and downstream areas. The con-
cept of inner-basin water allocation measures is within the realm of
integrated water resources management (IWRM), which is designed
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to achieve sustainable use of water resources (Biswas, 2004), and has
been widely used in regional water management and planning (Pires
et al., 2017; Wang et al., 2019; Chang et al., 2020). However, because
inner-basin water allocation measures were often applied at basin and
local scales according to the local governmental development goals,
previous water scarcity assessment, especially large-scale assessment,
often set upstream often have the highest priority to use the available
water resources. Neglecting the inner-basin water allocation measures
may result in significant biases in water availability and water scarcity
estimates. Furthermore, the intensity and frequency of precipitation
will also change under future global warming, leading to significant
changes in local runoff (Tang and Oki, 2016; Yin et al., 2021), which
will affect spatial and temporal distributions of available water
resources (Tang and Lettenmaier, 2012; Zhou et al., 2017; Tang, 2020).
Humanwater demand is also expected to increase alongwith socioeco-
nomic development and population growth (Wada et al., 2016). Thus,
regional water scarcity would show a changing pattern. The adaptive
inner-basin water allocation measures (AIWAM), which largely reflect
the ability of humans to reduce population exposure to water scarcity
to partly achieve the sustainable development goal (SDG) 6 (i.e. clean
water and sanitation), also evolve with a changing human adaptation
capacity under a changing environment. The water scarcity assessment
with AIWAM would provide an adaptation scenario that depicts the
change in water scarcity with reallocated water resources under future
climate change.

This study utilized the hydrological simulations frommultiple GHMs
and performed an assessment of future global water scarcity at the grid
cell level (0.5° × 0.5°) during 2020–2050 by incorporating AIWAM.
The objectives of this study include: 1) to assess the spatiotemporal pat-
terns of future global water scarcity during 2020–2050 under climate
change and socioeconomic development, and 2) to analyze the
effects of AIWAM on global sectoral water scarcity. The remainder of
this paper was organized as follows: the data and methodologies were
represented in “data andmethods” section; findings about future global
sectoral water scarcity under AIWAMwere represented in the “results”
section; a comparison of estimation in this study with previous results,
limitations of themethodologies and broader implications of the results
were discussed in the “discussion” section; lastly, conclusions were
drawn.

2. Data and methods

In this study, to assess global water scarcity under future climate
change and socioeconomic development, the annual natural runoff
and sectoral water demand datasets from GHMs were firstly obtained
(details in Sections 2.2 and 2.3). Then, AIWAM were incorporated into
the assessment of future global sectoral water scarcity (Sections 2.4
and 2.5). To assess the effects of AIWAM on sectoral water scarcity, an-
other simulation was designed, which set upstream water abstraction
as the first priority over downstream water demand, in contrast to the
simulation with AIWAM (details in Section 2.6). A schematic represen-
tation ofwater scarcity assessment in this studywas shown in Fig. 1. The
details of assessment of future globalwater scarcitywere represented in
subsections below.

2.1. Climate change scenario

The representative concentration pathways (RCP) and shared socio-
economic pathway (SSP) framework consider the effects of both climate
change and socioeconomic development in a changing environment,
and has been widely used in future water scarcity projections
(Hanasaki et al., 2013b; Greve et al., 2018). This study adopted themid-
dle of road scenario RCP6.0-SSP2 combination (Fricko et al., 2017). SSP2
depicts the evolution of future socioeconomic development as the so-
cioeconomic trends of recent decades continue. The projected global
population under the middle of road scenario (i.e. SSP2) grows to



Fig. 1. A schematic representation of future global water scarcity assessment under AIWAM. The blue boxes were for the description ofwater availability (in Section 2.2); while green and
orange boxes represented processes of agricultural and nonagricultural water demand (Section 2.3), respectively. After getting local water availability andwater demand, two simulations
were designed, and sectoral water scarcity conditions were estimated based on different calculation rules under two simulations. A detailed example of water scarcity calculation was
shown in Supplementary Fig. S1.
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around 9.2 billion in the 2050s, peaks around 9.4 billion in the 2070s,
and then declines to about 9.0 billion by the end of this century
(Samir andWolfgang, 2017). RCP6.0 is a stabilizationwithout overshoot
scenario inwhich the total radiative forcing level reaches 6W/m2 at sta-
bilization after 2100, which indicates a global warming of about 4 °C by
2100 (van Vuuren et al., 2014).

There are many studies using different RCPs to consider future pro-
jections of water availability (Hanasaki et al., 2013b; Hejazi et al.,
2014; Yin et al., 2017; Ferguson et al., 2018). The global pattern of
water availability change using different RCPs is generally consistent
(Zhang et al., 2018). Water demand was also projected under different
socioeconomic development scenarios in previous studies (Hanasaki
et al., 2013a; Wada et al., 2016). A single scenario would lead to a nar-
row representation of future water scarcity, whereas the inclusion of
multiple SSP-RCP scenarios could provide more insights into future
water scarcity associated with various climate change and socioeco-
nomic development scenarios (O'Neill et al., 2014; Greve et al., 2018).
Since the main purpose of this study was to investigate the effects of
AIWAM on future sectoral water scarcity, only one combined RCP-SSP
scenario (i.e. RCP6.0-SSP2 scenario) was adopted for simplicity. The
RCP6.0-SSP2 scenario represents moderate evolution of future global
water scarcity, which might exclude extreme scenarios that would be
less likely to happenwith the ongoing efforts devoted to climate change
mitigation and adaptation (van Vuuren et al., 2014; Fricko et al., 2017).

2.2. Water availability

The annual total runoff was obtained from the Inter-Sectoral Impact
Model Inter-comparison Project Phase Fast-track (ISI-MIP, https://
www.isimip.org/). This runoff dataset was derived for the period
3

2005–2065 at a global 0.5° × 0.5° spatial resolution from an ensemble
of five GHMs, i.e. H08 (Hanasaki et al., 2008a, 2008b), VIC (Liang et al.,
1994), MPI-HM (Stacke and Hagemann, 2012), PCR-GLOBWB (van
Beek et al., 2011; Wada et al., 2011), and WBMplus (Wisser et al.,
2010). These GHMs were forced by climate projections from 5 general
circulation models (GCMs) in the fifth phase of the Coupled Model
Intercomparison Project (CMIP5, Hempel et al., 2013; Warszawski
et al., 2014), namely HadGEM2-ES, NorES1-M, IPSL-CM5A-LR,
MIROC-ESM-CHEM and GFDL-ESM2M under the RCP6.0 scenario
(details in Supplementary Table S1). These climate datasets from
GCMs were bias-corrected using the WATCH climate data for the
overlapping period using a statistical bias correction method which
was based on transfer functions generated to map the distribution
of the simulated historical data to that of the observations, and the cli-
mate projections reserved the long-term trends in temperature and
precipitation projections (Piani et al., 2010; Hempel et al., 2013).
Parameterizations of hydrological processes were different among
GHMs. H08 considered the energy balance explicitly and used the bulk
formula in the evapotranspiration scheme. VIC estimated snow by
energy balance and used Penman Monteith formula in evapotranspira-
tion module. MPI-HM, PCR-GLOBWB andWBMplus did not include the
energy balance, but used the PenmanMonteith or Hammon formulas in
their evapotranspiration schemes, and a degree-day calculationmethod
or temperature and precipitation based empirical formula in snow
scheme. In terms of the runoff generation, all GHMs used a saturation
excess formula, although the formula varied across GHMs. A detail rep-
resentation of these GHMswas referred to Supplementary Table S2 and
related literature of these models.

Annual total runoff from the GHMs, which has been widely used as
an indicator of renewable water resources in many regional and global

https://www.isimip.org/
https://www.isimip.org/
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water scarcity assessment (Schewe et al., 2014; Yin et al., 2017; Liu et al.,
2019), was considered as the annual water availability in this study. The
total runoff consists of the locally generated surface runoff and
baseflow, as well as the incoming runoff from upstream grid cells fol-
lowing the river routingmap. This study didn't considerwater depletion
from lakes, aquifers and sub-surface reservoirs, and assumed a long-
term equilibrium in the storages of these aquifers, because their water
depletion values were unknown and difficult to measure.

Environmental flow requirement (EFR) was taken into consider-
ation in this study. Unlike previous studies in which EFR was calculated
by maintaining a minimum flow, this study predefined a reservation of
fresh water resources for environmental purposes. However, the rela-
tionships between ecological consequences and flow regimes varied
over regions and river ecosystems in large scale assessment. Pastor
et al. (2014) estimated that 25–46% (with 37% in 11 selected rivers) of
annual discharge was required to sustain EFR and that the ratio of EFR
to annual flow did not show strong differences across regions in the
world. This study adopted global EFR estimation from Pastor et al.
(2014) and assumed that 40% of annual local runoff was appropriated
to maintain ecological integrity, which was consistent with previous
studies, e.g. Liu et al. (2019). Therefore, 60% of the locally generated run-
off was calculated for local water availability:

Ri ¼ Rlocal − EFR ¼ 0:6 ⁎ Rlocal, ð1Þ

where Ri was water availability in grid i and Rlocal was locally generated
runoff from multiple GHMs (m3). Local water availability was assessed
at an annual basis for each year during 2005–2065, and the 31-year
moving average value was used to reduce the impact of inter-annual
variability.

2.3. Water demand

Agricultural water demand (WDagr) was estimated by the Global
Change Assessment Model (GCAM) and two of its ancillary modeling
tools, namely Demeter and Xanthos, which can well represent the ef-
fects of future climate and land use changes, especially future changes
in cropland area driven by population growth and socioeconomic devel-
opment (Edmonds et al., 1997; Huang et al., 2019a; Kim et al., 2006;
Vernon et al., 2018) WDagr was calculated by multiplying the crop
water requirement per unit of irrigated area by the area of irrigated
cropland and irrigation efficiency. In this study, climate forcing from 5
GCMs was also served as climate inputs for hydrological model (i.e.
Xanthos in GCAM framework), the same as that for GHMs (see
Section 2.2), and crop specific water requirement per unit of irrigated
cropland were calculated (Huang et al., 2019a). Future land use (espe-
cially irrigated cropland) was projected by GCAM at the regional level
under SSP2 scenario (Calvin et al., 2014, 2018; Chen et al., 2020).
Then, Demeter was applied to disaggregate the cropland area from the
regional to grid scale (West et al., 2014; Le Page et al., 2016; Vernon
et al., 2018). Irrigation efficiency across global major regions under
SSP2 scenario was obtained from Chaturvedi et al. (2015). In general,
global WDagr was generated at a spatial resolution of 0.5° × 0.5° at the
monthly time scale, the monthly WDagr was then aggregated to annual
scale. The 31-yr moving average value of WDagr at the grid level was
used to exclude the impact of inter-annual variability on the changing
signal.

Domestic and industrial water demands during 2020–2050, which
were obtained from the Water Futures and Solutions (WFaS) project
(Wada et al., 2016), were the ensemblemean of thewater demand sim-
ulations by 3 GHMs, namely H08 (Hanasaki et al., 2013a, 2013b), PCR-
GLOBWB (Wada et al., 2014) and WaterGAP (Flörke et al., 2013). In
these models, domestic and industrial water demand was calculated
by time-series regression over individual regions and countries driven
by future socio-economic factors, e.g. population, Gross Domestic
Product (GDP) per capita and technological changes. National or
4

regional domestic and industrial water demand was disaggregated to
0.5° × 0.5° grid cell scale based on gridded population density map or
other socioeconomic factors (e.g. electricity generation) (Hanasaki
et al., 2013a; Wada et al., 2014; Flörke et al., 2013).

2.4. Adaptive inner-basin water allocation measures (AIWAM)

AIWAMwere incorporated into future global water scarcity assess-
ment, which reallocated available water resources within a basin. In
fact, the water allocation mechanism was complex and various alloca-
tion mechanisms were used in practice according to development
goals across countries and regions. The SDG6 (clean water and sanita-
tion) targets to mitigate water scarcity, improve access to safe drinking
water and sanitation services in view of the fact that about 30% of global
population lack access to safely managed drinking water services (UN,
2018). To partly address one of the targets of the SDG 6 and achieve op-
timal benefit at the global scale, this study assumed that nonagricultural
(domestic and industrial) water uses would have higher priority over
agriculturalwater use in AIWAM,which aimed to reduce population ex-
posed to water scarcity. It is to some extent reasonable that limited
water resources are firstly appropriate to improve human life andmain-
tain necessary industry which may have more added-value than agri-
cultural products (Hanasaki et al., 2018). Thus, in the AIWAM,
available water resources are appropriated to grid cells based on the
spatial variation of population density in the future, assuming that the
grid cells with high population would have high water resources
quota within a basin.

As AIWAM changed the spatial distribution of available water re-
sources from natural water availability, water availability quota at grid
scale in a basin was calculated by the following steps. Firstly, the total
water availability in a basin (Q) was calculated as the sum of water
availability in all the grid cells:

Q ¼ ∑
n

i ¼ 1
Ri, ð2Þ

where Riwaswater availability calculated by local generated annual to-
tal runoff minus local EFR (shown in Eq. (1)), and nwas the total num-
ber of grid cells in the basin. Further, water supply in a grid (WAi, m3)
was reallocated proportional to the grid-level population (popi) within
the basin:

WAi ¼ popi= ∑
n

i ¼ 1
popi

� �
⁎Q , ð3Þ

Because the actualwater resources quota in a grid cell also depended
on water availability of the grid cell which consisted of local water re-
sources of the grid cell and water from upstream of the grid cell, actual
water supply under AIWAMmust follow several constraints. Firstly, the
AIWAMwere implemented based on the river channel, i.e. the DDM30
river network (Döll and Lehner, 2002), which indicates water flow di-
rections from upstream and downstream areas. Then, inter-basin
water transfer was not considered here, and water resources were not
allowed to be transferred from downstream to the upstream areas.
Thus, the sum of actual water supply in a grid cell (WAi) and its up-
stream grid cells (WAup, m3)must be lower than the sum ofwater avail-
ability in corresponding grid cells:

WAi ≤ Ri þ Rup −WAup, ð4Þ
where Ri and Rup were water availability in grid i and its upstream grid
cells, respectively. Additionally, actually water supply was lower than
the total water demand. If actual local water supply (WAi) was larger
than local water demand (WDi), the remaining outflow from this grid
cell (Qout, m3) could be used for downstream areas. A detailed example
of calculating water availability under AIWAM was shown in Supple-
mentary Fig. S1.



Z. Huang, X. Liu, S. Sun et al. Science of the Total Environment 783 (2021) 146973
This study adopted the future gridded population dataset under
the SSP2 scenario from NCAR's integrated assessment model (IAM)
group and the City University of New York Institute for Demographic
Research to make AIWAM. These global spatially explicit population
datasets (available at http://www.cgd.ucar.edu/iam/modeling/spatial-
population-scenarios.html), which were developed using a gravity-
type model parameterized to reflect the spatial patterns prescribed by
each SSP, were quantitatively consistent with national population and
urbanization projections in the SSP narratives (Jones and O'Neill,
2016). These population datasets, which cover the period 2010–2100
in a ten-year time step at a spatial resolution of 1/8-degree, were trans-
ferred to half-degree and annual scale by linear interpolation in this
study.

2.5. Water scarcity assessment

Water scarcity by different sectors may affect different socioeco-
nomic aspects. For example, water deficit in agriculture leads to losses
in crop production, andwater scarcity in nonagricultural sectors (i.e. do-
mestic and industrial) may affect human daily life and industrial pro-
ductions. Previous studies mostly used the water stress index (WSI)
defined as the ratio of local total water demand to water availability,
to represent water scarcity conditions (Vörösmarty et al., 2000; Wada
et al., 2011; Mekonnen and Hoekstra, 2016; Veldkamp et al., 2017;
Sun et al., 2019), without differentiatingwater scarcity for different sec-
tors. Inter-sectoral water allocation priority was mostly determined by
development goals, and varied across basins and countries (Molle and
Berkoff, 2009). For example, water resources were first supplied to do-
mestic and environmental sectors in USA (Brown, 2000). In Euphrates
and Tigris Basin, Indus river basin, Pearl River basin, water allocation
priorities varied with the development goals of local governments
(Molle and Berkoff, 2009; Yan et al., 2018). However, so far, it is difficult
to collect water allocation priorities of all basins of the world, particu-
larly in transboundary basins where allocation priorities would be
more complex. Thus, the integrated assessment models (IAMs) and
large-scale hydrologicalmodels have implementedwater allocation pri-
orities among economic sectors in different ways. For example, GCAM
model reconciled agricultural, energy, and industrial andmunicipal sec-
tor water demand with water availability in 235 river basins at an an-
nual time step, based on relative prices and price-induced demand
reduction (Kim et al., 2016). But some physical based global hydrologi-
cal model could not consider the feedback of the economic decisions on
water allocation, and they often assumed commonly used water alloca-
tion priorities. For example, the IMPACT model gave priority to domes-
tic, industry, and livestockwater uses before irrigation (Rosegrant et al.,
2012), and H08 model prioritized municipal and industrial water ab-
straction over irrigation water (Hanasaki et al., 2013b). This water allo-
cation priority was also widely used in previous global and regional
water scarcity assessment (Elliott et al., 2014; Yin et al., 2017). To ad-
dressing SDG6, this study used the commonusedwater allocation prior-
ity and assumed that the nonagricultural sectors (i.e. domestic and
industrial water demands) had a higher priority over the agricultural
water demand, that is, water was supplied to agriculture after domestic
and industrial water supplies weremet. Hence, water supplies to differ-
ent sectors were calculated as follows:

WSnonagr ¼ min WDind þWDdom,WAð Þ; ð5Þ

WSiagr ¼ max WA−WDind −WDdom, 0ð Þ; ð6Þ

whereWSnonagr andWSagr were available water supplies to nonagricul-
tural sectors and agricultural sector, respectively (m3); WDdom and
WDind were water demands for domestic and industrial sectors, respec-
tively (m3); WA was the total available water resources to humans in a
given grid cell (m3).
5

Sectoral water deficit was used as an indicator to evaluate sectoral
water scarcity conditions (Bijl et al., 2018; Flörke et al., 2018). This indi-
cator was defined as the difference between sectoral water supply and
water demand, which was calculated as follows:

DEFnonagr ¼ max WDind þWDdom −WSnonagr, 0
� �

; ð7Þ

DEFagr ¼ max WDagr −WSagr, 0
� �

; ð8Þ

where DEFnonagr and DEFagr were water deficit for nonagricultural sec-
tors and agricultural sector, respectively (m3); WDagr was water de-
mand for agricultural sector (m3). A 0 value of water deficit indicated
that water demand was fully met, and positive value of water deficit
meant severe water scarcity conditions. Thus, this study isolated water
scarcity for agricultural and nonagricultural sectors.

Previous studies often defined population exposed to water scarcity
in a grid cell as the total population living in the cell with water deficit
(Mekonnen and Hoekstra, 2016; Veldkamp et al., 2017). However, this
approach may over-estimate population exposed to water scarcity be-
cause the whole population in a grid cell was not necessarily exposed
to water scarcity due to different magnitudes of water scarcity. For ex-
ample, people would suffer different magnitudes of drinking water
shortage with different domestic water deficit volumes. Going beyond
previous studies, this study used the absolute population and irrigation
cropland area exposed to water scarcity to characterize the socioeco-
nomic consequences for nonagricultural and agricultural water scarcity,
respectively. The absolute population and irrigation cropland area ex-
posed to water scarcity were calculated as follows. Firstly, relative
water deficit was calculated as the ratio of water deficit to sector
water demand (Bijl et al., 2018):

Drelnonagr ¼ DEFnonagr= WDind þWDdomð Þ ⁎ 100%; ð9Þ

Drelagr ¼ DEFagr=WDagr ⁎ 100%; ð10Þ

whereDrel
nonag andDrel

agrwere relativewater deficit for nonagricultural and
agricultural sectors, respectively (%). Further, this study defined abso-
lute population exposed to water scarcity (popstress)as the product of
the total population (poptotal)in the grid cell and relative water deficit
for nonagricultural sectors:

popscarcity ¼ Drel
nonagr ⁎ poptotal: ð11Þ

Similarly, the agricultural water scarcity indicator, i.e. irrigated crop-
land area exposed to water scarcity (irrlandstress, km2) was calculated
as:

irrlandscarcity ¼ Drel
agr ⁎ irrlandtotal, ð12Þ

where irrlandtot was the total irrigated cropland area in the grid cell
(km2). If no water scarcity occurred in this grid cell, the values of
popstress and irrlandstress both equaled 0.

2.6. Simulation with and without AIWAM

Two simulations were designed in this study to assess the effects of
AIWAM on water scarcity assessment (Fig. 1). These two simulations
both assessed global sectoralwater scarcity at 0.5° × 0.5° grid resolution
on an annual basis during 2020–2050, but they calculated water avail-
ability in different manners. Water availability in the first simulation,
namely AIWAM, was calculated by applying the rule that the grid cell
with high population would have high water use priority. It was an
amendment to the widely used method in water scarcity assessment
that set the upstream areas to have the higher priority to use the
streamflow. The second simulation (namely NOAIWAM)was a sensitiv-
ity analysis, and assumed that the upstream water use was in the first

http://www.cgd.ucar.edu/iam/modeling/spatial-population-scenarios.html
http://www.cgd.ucar.edu/iam/modeling/spatial-population-scenarios.html
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priority, that is, upstream water availability was firstly used to meet
local water demand. Hence, water availability for a grid i in
NOAIWAM (WA2i) was calculated as:

WA2i ¼ Ri þ ∑
k

i ¼ 1
qoutk, ð13Þ

where outflow from upstreamgrid k (qoutk) was computed as the differ-
ence between its water availability (WAk) and water demand (WDk),
and water would flow into downstream areas only when water in the
upstream grids was larger than their local water demands:

qoutk ¼ max WAk −WDk, 0ð Þ: ð14Þ

Therefore, based on actual water availability estimated by these two
simulations (i.e. AIWAM and NOAIWAM), together with sectoral water
demands (both agricultural and nonagricultural), global sectoral water
scarcity was assessed at 0.5° × 0.5° spatial resolution during
2020–2050. When comparing sectoral water deficits as well as absolute
population and irrigated land exposed to water scarcity between
AIWAMandNOAIWAM, the effects of AIWAMon sectoralwater scarcity
assessment could be analyzed. An example of how to calculated sectoral
water scarcity under these two simulations was shown in detail in Sup-
plementary Fig. S1.

Climate projections from five GCMs were used to force the five
GHMs, and thus 25 combinations of water availability projections and
agricultural water demand were obtained. We then conducted 25 runs
of global water scarcity assessments under both AIWAM and
NOAIWAM. The ensemble medians across themwere used to represent
the results, and the interquartile range, i.e., the range between 25th and
75th percentiles, was also calculated to present the spread acrossmulti-
model ensembles.

3. Results

3.1. Spatial and temporal changing patterns of future global sectoral water
scarcity

Fig. 2 shows the spatial distribution of global water deficit by sectors
in 2050 under AIWAM. Due to limited precipitation and huge water
demand by nonagricultural sectors, a large water deficit (>100 million
m3/yr per grid cell) for nonagricultural sectors is found in arid and
semi-arid regions with population concentrations, such as the North
China, the northern India, and some areas in thewestern USA.Moderate
water deficit (2–100millionm3/yr per grid cell) for nonagricultural sec-
tors mainly occurs in northeastern China, the western coast of the Ara-
bian Peninsula, and some areas in western Asia. Furthermore, in spite of
low population density, low water deficit (<2 million m3/yr per grid
cell) can be also found in the Mongolian Plateau, Northern Africa,
Mexico, the western coast of South America and the Orange River
basin in South Africa. As for agricultural sector (shown in Fig. 2(b)), sig-
nificant water scarcity is mainly found in arid and semi-arid regions
where local precipitation cannot meet crop water demand for maxi-
mum food production. For example, in some areas of the Middle East
and Central Asia, agricultural water demandwould continually increase
as the expansion of future irrigated cropland tomeet increasing food de-
mand, leading to severe water scarcity conditions for agricultural pro-
duction. In the North China, Northern India, and Western USA,
limited available surface water resources and large irrigation water de-
mand are responsible for the large agricultural water deficit (Supple-
mentary Fig. S2). In general, high total water deficit (as a sum of
agricultural and nonagricultural water deficit) appears to occur in
areas with large water demand, i.e. either large irrigated agriculture
areas (e.g. the High Plain in the US and North coast of Africa) or dense
population (e.g. large cities in the Western US and Bulgaria), or both
of them (e.g. India, the North China plain, Central Asia and the Arabian
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Peninsula, see Fig. 2(c)). Furthermore, local water scarcity also occurs
due to low surface water availability, e.g. in Sahara and the Mongolian
Plateau (Supplementary Fig. S2).

Considering the effects of future climate change and socioeconomic
development (Table 1), global total water deficit based on AIWAM is
projected to increase by 48.3% from 2186.3 km3/yr in 2020 to 3241.9
km3/yr in 2050, with nonagricultural increasing from 296.2 km3/yr in
2020 to 540.6 km3/yr in 2050 (by 82.5%) and agricultural water deficit
increasing from 1890.1 km3/yr in 2020 to 2701.3 km3/yr in 2050 (by
42.9%). At the regional level, total water deficits for all sectors show a
significant increasing trend in all regions. Water deficit in some devel-
oping and arid regions shows a large increasing trend (e.g. Middle
East, Central Asia, and Northern Africa) where availablewater resources
cannot meet increasing human water demand, and human water de-
mand would significantly increase due to population growth and in-
creasing energy and food production (Supplementary Fig. S2). For
example, totalwater deficit in Central Asia andMiddle Eastwill increase
by 148% and105%during2020–2050, respectively (Table 2). In contrast,
in some developed regions (e.g. Western Europe, North America, and
Oceania), total water deficit shows a slight or moderate increasing
trend as a result of low population growth and improving water-
saving techniques. For example, in spite of a reduced total water de-
mand in USA, a decrease of water availability in the western USA leads
to a moderate increase of total water deficit (by about 20%). As for the
changing pattern of sectoral water deficit at regional level, both nonag-
ricultural and agricultural water deficits would increase continuously
during 2020–2050 in most regions. However, nonagricultural water
deficit in regions like North America, Northern Africa and Middle East
would first increase from 2020 to 2040, and then decrease after 2040.
In contrast, agricultural water deficit also would keep decreasing after
2040 in Eastern andWestern Africa, as well as Southern and Southeast-
ern Asia (Supplementary Table S3).

Global population and irrigated cropland area exposed towater scar-
city were also estimated (Fig. 3 and Table 2). As shown in Fig. 3, about
0.75 billion population and 0.86 million km2 irrigated cropland in the
world would be exposed to water scarcity in 2020 under AIWAM.
Areas with large numbers of population exposed to water scarcity in
2020 are mainly found in North America (95.5 million, mostly in the
western US), Northern Africa (59.1million), Eastern Asia (295.8million,
mostly in Northern China), Southern Asia (132.3 million, mostly in
Pakistan) and Middle East (63.6 million). Irrigated cropland areas ex-
posed to water scarcity are mainly found in Eastern Asia (0.27 million
km2), Southern Asia (0.36 million km2) and the Middle East (0.07 mil-
lion km2). Furthermore, the number of population and size of irrigated
cropland area exposed to water scarcity would increase by about
70.4% and 25.3%, respectively, in 2050 comparedwith that in 2020, indi-
cating that future climate and socioeconomic development would
greatly aggravate global water scarcity. Both population and irrigated
cropland areas under water scarcity would increase continuously dur-
ing 2020–2050 in most regions (Supplementary Table S4). Hotspot re-
gions with significantly aggravated water scarcity during 2020–2050
are mainly found in Northern Africa (with population and irrigated
cropland area exposed to water scarcity increased by 40% and 79%, re-
spectively), Central Asiawith population and irrigated cropland area ex-
posed to water scarcity increased by 62% and 95%, respectively) and the
Middle East (with population and irrigated cropland area exposed to
water scarcity increased by 78% and 86%, respectively).

3.2. The role of AIWAM on global sectoral water scarcity assessment

Global water deficit for nonagricultural sectors decreases by about
8.8% in 2050 when considering AIWAM compared with NOAIWAM
(593 km3/yr in NOAIWAM versus 541 km3/yr in AIWAM), while water
deficit for agricultural sector increases about 40.9 km3/yr by 1.5%
(Table 2). Furthermore, water deficit for nonagricultural sectors in
NOAIWAM is higher than that in AIWAMacrossmost regions, especially



Fig. 2. The spatial pattern of globalwater deficit by sectors at global 0.5 × 0.5°grid scale in 2050with consideration of AIWAM: (a)water deficit for nonagricultural sectors, (b)water deficit
for agricultural sector, and (c) total water deficit. The results were the ensemble-median values across these 25 simulations.
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in Southern Asia, theMiddle East and Central Asia, indicating that water
scarcity for nonagricultural sectors is greatly mitigated by AIWAM.
Conversely, water deficit for agricultural sector might increase if
AIWAMare adopted. Fig. 4 shows the difference of sectoral water deficit
between AIWAM andNOAIWAMat the grid level in 2050, where a neg-
ative value represents sectoral water scarcitymitigation by AIWAMand
apositive value indicates sectoralwater scarcity aggravation. For nonag-
ricultural sectors (Fig. 4(a)), a decrease of water deficit (over 5 million
m3) is found in areaswith high population density, such as downstream
of the Yellow River basin, the Hai River basin, the Indus River basin, as
well as some areas in Western US.

Further, some areas with water deficit for nonagricultural sectors in
NOAIWAM (e.g. the downstream of the Yellow River basin and the
Indus River basin, some areas in the western China and western US)
would no more suffer water scarcity when AIWAM is adopted (shown
7

in Supplementary Fig. S3). In terms of agricultural sector, AIWAM
leads to a significant increase of water deficit in Western US, Morocco,
Northeastern China, the upstream of the Yellow River basin, and the
Indus River basin and the Euphrates and Tigris River basin, and some
of these areas would even move into water scarcity for agriculture
(Fig. 4(b) and Supplementary Fig. S3), because part of available water
resources in these areas is reallocated to nonagricultural water demand
in the downstream areas. For example, in the Yellow River basin, 70% of
population resides in the middle and lower sub-basins which only ac-
counts for 32% of total area and 29% of total runoff of the whole basin
(YRCC, 2013; Yin et al., 2017). When taken AIWAM into account, more
available surface water resources are reallocated to downstream areas
with large population to mitigate water scarcity conditions for nonagri-
cultural sectors. As a result, the water deficit for nonagricultural sectors
decreases by about 28% (Fig. 5), but water scarcity for agriculture in the



Table 1
Water deficit by sectors under two simulations (i.e. AIWAM andNOAIWAM) for the years
2020 and 2050 across global regions, which were the ensemble-median values across
these 25 simulations. The areas of these 16 regions are shown in Supplementary Fig. S4.

Water deficit for
nonagricultural sectors
(km3/yr)

Water deficit for agricultural
sector (km3/yr)

AIWAM NOAIWAM AIWAM NOAIWAM

2020 2050 2020 2050 2020 2050 2020 2050

Oceania 0.3 0.6 0.3 0.6 3.8 3.7 3.8 3.6
Central America
and Caribbean

0.1 0.3 0.1 0.3 6.7 9.3 6.7 9.3

North America 59.0 64.4 62.1 68.0 151.9 192.8 148.9 189.1
South America 13.1 21.7 13.8 22.7 37.6 43.8 36.7 42.7
Eastern Africa 0.3 1.9 0.3 1.9 12.2 13.3 12.2 13.2
Northern Africa 10.4 13.4 10.7 13.9 127.0 195.7 126.6 195.4
Southern Africa 2.6 6.0 2.7 6.3 47.0 59.3 46.9 59.1
Western Africa 0.7 5.5 0.7 5.5 9.6 12.3 9.6 12.3
Central Europe 8.4 16.7 8.4 16.6 1.3 4.3 1.3 3.3
Eastern Europe 18.7 32.2 18.7 32.2 4.2 9.4 4.2 9.1
Western Europe 3.2 3.2 3.7 3.5 17.9 18.7 17.5 18.3
Central Asia 14.0 28.1 15.2 32.8 103.2 267.3 101.7 260.3
Eastern Asia 126.0 272.6 138.3 291.8 294.8 375.3 282.5 354.9
Southern Asia 14.8 43.3 19.2 52.6 752.5 821.9 746.4 812.3
Southeastern
Asia

3.3 9.3 3.3 9.3 2.7 2.4 2.7 2.3

Middle East 22.7 21.2 25.4 28.9 326.1 692.2 322.1 683.1
Global 296.2 540.6 322.8 592.7 1890.1 2701.3 1864.8 2660.4
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upstreamareas becomes severer. Similar situations are also found in the
Indus River basin and the Euphrates and Tigris River basin, where water
deficits for nonagricultural sectors decrease by about 41% and 50%,
respectively.

In terms of global absolute population and irrigated cropland area
exposed to water scarcity by AIWAM and NOAIWAM during
2020–2050, AIWAM would mitigate water scarcity for nonagricultural
sectors, and lead to 0.15 (0.13–0.16) billion of global population no
more suffering water scarcity, which, however, at the cost of driving
0.031 (0.027–0.038) million km2 more irrigated cropland area faced
Table 2
Population and irrigated cropland area exposed to water scarcity under two simulations
(i.e. AIWAM and NOAIWAM) for the years 2020 and 2050 across global regions. The re-
sults were the ensemble-median values across these 25 simulations. The areas of these
16 regions are shown in Supplementary Fig. S4.

Population exposed to water
scarcity (million)

Irrigated cropland area
exposed to water scarcity
(1000 km2)

AIWAM NOAIWAM AIWAM NOAIWAM

2020 2050 2020 2050 2020 2050 2020 2050

Oceania 1.0 2.4 1.0 2.5 6.0 6.3 5.8 6.0
Central America
and Caribbean

0.5 1.5 0.5 1.5 3.1 3.5 3.0 3.5

North America 95.5 126.2 100.9 134.7 40.9 52.9 38.8 51.5
South America 54.9 83.1 57.9 86.8 9.3 11.0 9.1 10.4
Eastern Africa 7.4 23.3 7.4 23.5 4.9 4.9 4.9 4.9
Northern Africa 59.1 83.0 61.1 86.8 29.3 52.4 29.0 52.1
Southern Africa 11.3 19.7 12.1 20.5 8.9 9.6 8.9 9.5
Western Africa 10.0 52.0 10.0 52.2 0.5 0.6 0.5 0.6
Central Europe 6.5 13.9 6.5 13.9 1.8 4.6 1.7 3.4
Eastern Europe 22.6 29.2 22.7 29.4 2.1 5.0 2.1 4.8
Western Europe 13.9 15.0 14.8 16.8 13.5 14.3 13.1 14.1
Central Asia 15.6 25.2 17.2 30.9 49.7 97.0 48.2 91.0
Eastern Asia 295.8 415.5 325.7 445.0 275.5 329.5 269.1 321.4
Southern Asia 132.3 301.7 180.9 368.3 363.0 386.1 359.5 379.2
Southeastern
Asia

8.9 27.3 8.9 27.7 4.8 5.4 4.8 5.3

Middle East 63.6 113.5 75.2 134.2 71.8 133.7 70.3 129.4
Global 750.6 1279.2 857.6 1415.4 868.5 1088.6 848.7 1060.6
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water scarcity in 2050 (Fig. 3). Using AIWAM, population exposed to
water scarcity decreases by about 12%, while irrigated cropland area ex-
posed water scarcity increases about 6% in 2050. Furthermore, popula-
tion that no more suffer water scarcity is mainly identified in North
America (8.6 million), Eastern Asia (29.6 million), Southern Asia (66.6
million), and Middle East (20.8 million); while irrigated cropland
areas suffering aggravated water scarcity is mainly found in Central
Asia (6020 km2), Eastern Asia (8090 km2), Southern Asia (6890 km2),
and Middle East (4260 km2) (Table 2). In addition, the effects of
AIWAM on global water scarcity conditions would be enhanced along
with climate change and socioeconomic development.

Specially, the absolute population and irrigated cropland area ex-
posed to water scarcity in 2050 for major basins were compared be-
tween two simulations (Fig. 6). For basins under severe water scarcity
conditions, e.g. the Yellow River basin, the Indus river basin, and the Eu-
phrates and Tigris River basin, where local water availability is not able
to meet the large water demand, AIWAM would reallocate water to
areas with dense population, resulting in a significant reduction of pop-
ulation exposed to water scarcity by shiftingwater supply from agricul-
tural to nonagricultural uses. However, in some humid regions, such as
the Yangtze River basin and the Mississippi River basin, AIWAM do not
have a significant effect on water scarcity condition.

4. Discussion

4.1. Comparison with previous studies

The spatial pattern of global water scarcity in the future in this study
agreed with previous water scarcity assessment, e.g. Wada et al. (2014)
and Greve et al. (2018), with water scarcity mainly found in the areas
with intensive irrigated cropland or dense population. For example,
India, Northern China, the Middle East, and Mexico were highlighted
as water scarcity hotspots across historical and future periods in all
cases (Hanasaki et al., 2013b; Hejazi et al., 2014). Furthermore, in
terms of changing patterns of future water scarcity, results from this
study showed consistency to previous water scarcity projections (e.g.
Schewe et al., 2014). As future population growth and socioeconomic
developmentwould greatly increase humanwater demand,water scar-
citywould increase significantly inmost regions of theworld, especially
in developing regions. In addition, this study suggested that sectoral
water scarcity would increase slightly or non-significantly in some de-
veloped regions, e.g. Oceania andWestern Europe, which was also con-
sistent with previous projections (Cui et al., 2018; Graham et al., 2020).
However, it is difficult to conduct a detailed comparison of water scar-
city projections due to differences in water scarcity metrics and meth-
odologies in water scarcity assessment (Liu et al., 2017).

4.2. Limitations of this study

A few limitations of themethodologies, whichmay introduce uncer-
tainties into water scarcity assessment, need to be taken into account in
future analysis. Firstly, the human impacts on hydrological processes
were not fully represented in this study. Water availability was simu-
lated by GHMs regarding future climate change but without consider-
ation of human impacts. Actually, human activities, e.g., human water
use, human induced land use and land cover change and urbanization,
would affect hydrological processes upstream and downstream to dif-
ferent degrees and further lead to changes in water availability
(Veldkamp et al., 2017; Liu et al., 2019). Neglecting the impacts of
human activities on futurewater availabilitywould lead to uncertainties
in water scarcity projection. Second, the AIWAMwere not fully coupled
into hydrological models, i.e., this study was based on off-line simula-
tions. This largely limits the representation of the interactions among
human activities regarding water withdrawal, e.g., the competition be-
tween different water users. The coupling of AIWAMwith hydrological
processes would improve the modeling of the interactions and might



Fig. 3. Global (a) population and (b) irrigated cropland exposed to water scarcity under two simulations (i.e. AIWAM and NOAIWAM) during 2020–2050: The columns are ensemble-
median values, and the uncertainties bar represents the interquartile range (q25-q75).
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reshape the patterns of water scarcity in some regions. Then, the offline
simulationsmake it difficult to include returnflow (i.e., the part ofwater
withdrawal returns to river channels) in the estimation of water avail-
ability. Although return flow was not fully available to humans,
neglecting return flow in water scarcity assessment would result in
lower water availability in downstream areas and overestimation of
Fig. 4. Differences of sectoral water deficits between AIWAM and NOAIWAM (AIWAMminus
value represents water scarcity mitigation by AIWAM and a positive value indicates sectoral w
simulations.
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their water scarcity conditions (Munia et al., 2016). As this study only
used water withdrawal (including agricultural, domestic and industrial
sectors) to assess water scarcity, the use of both water withdrawal and
water consumption in water scarcity assessment could provide impor-
tant information. However, this study only used water withdrawal
due to absence of water consumption dataset (Vanham et al., 2018).
NOAIWAM) in 2050 for (a) nonagricultural sectors and (b) agricultural sector. A negative
ater scarcity aggravation. The results were the ensemble-median values across these 25



Fig. 5. Water deficits for global major basins in 2050 under two simulations (i.e. AIWAM and NOIAWAM) for (a) nonagricultural sectors and (b) agricultural sector. The columns are
ensemble-median value, and the uncertainties bar represents the interquartile range (q25-q75). The location of these nine river basins is shown in Supplementary Fig. S5.
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Furthermore, upstream human water uses would often affect water
quality, which may reduce the available water resources in the down-
stream areas (Ma et al., 2020; Van Vliet et al., 2021). Neglecting the
water quality aspect may result in an underestimation of downstream
water scarcity (Liu et al., 2016; Jiang, 2009). Moreover, inter-basin
water transfer was not considered in this study. As reported by Yin
et al. (2020), the South to North Water Diversion project in China
would significantly alleviate water scarcity in Northern China (particu-
larly Beijing) and thus increase the agricultural production and have
more economic benefits. The large cities often extend theirwater supply
via inter-basin water transfer (Flörke et al., 2018). Thus, not taking into
account inter-basin water transfer would lead to overestimation of
water scarcity in water transfer destination and would underestimate
water scarcity in source areas. The total runoff from the GHMs includes
groundwater recharge and fast surface and subsurface runoff
(Portmann et al., 2013). From the hydrological perspective, river flow
and groundwater would recharge each other in different seasons
(Huang et al., 2019b). Thus, the renewable groundwater dynamics has
been reflected in the river flow and this study actually considered
renewable water availability including both renewable surface water
and groundwater in a long-term period for which groundwater and
river flow recharges were balanced. However, in a short-term
Fig. 6. Comparison of (a) population and (b) irrigated cropland area exposed to water scarcity
columns are ensemble-median values, and the uncertainties bar represents the interquartile ra
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perspective (e.g., monthly), the explicit inclusion of groundwater re-
charge inwater availability would reduce the uncertainty in water scar-
city assessment. The nonrenewable groundwater was not explicitly
considered due to a lack of related information, which may also lead
to underestimation of water availability in regions that heavily rely on
this water source. Nevertheless, it was noted that nonrenewable
groundwater could only be unlimitedly pumped for a specific period
but it is not a sustainable water source, thus, including it in water avail-
ability may underestimate water scarcity in these regions, e.g., North
China and Northern India (Turner et al., 2019).

The strategy of AIWAM in this study aimed to move water away
from agriculture to uses with higher economic value (i.e. nonagricul-
tural sectors), and grid cell with high non-agricultural water demand
(e.g. the populous areas) would have high water resources quota. In
this study, AIWAM partly addressed the SDG 6 by reallocating water
availability according to population density and setting a high priority
for nonagricultural uses to mitigate water scarcity for nonagricultural
sectors. However, the uniform allocation priority in AIWAM may not
be proper in some basins and thus may lead to uncertainty in water
scarcity assessment. AIWAMwould be useful in the basins with signifi-
cant competition of water resources among sectors between upstream
and downstream, e.g., the Yellow River basin, the Hai River basin and
under two simulations (i.e. AIWAM and NOIAWAM) for global major basins in 2050. The
nge (q25-q75). The locations of these nine river basins is shown in Supplementary Fig. S5.
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the Indus River basin. More and high-quality water availability for
human life is an essential goal in these basins. The high priority of indus-
trial water use in AIWAMmay not be applicable in some regions, e.g., in
European countries andUSA,where industrialwater usemay have a rel-
atively low priority (Molle and Berkoff, 2009). This assumption may be
not the reality for some basins (particularly transboundary ones)where
agricultural water use has a high priority over downstream nonagricul-
tural water demands. Thus, various priority of water uses between up-
stream and downstream and among sectors across global basins and
countries should be considered in AIWAM in the future studies, which
may also improve the feasibility over the world.

4.3. Implications

This study projected future global water scarcity conditions during
2020–2050 and provided insights on the effects of AIWAM on global
water scarcity over time, which was of great significance for both re-
vealing mechanisms behind water scarcity and decision making. The
water scarcity assessment with AIWAM provides a scenario analysis
that shows the tradeoff between nonagricultural and agricultural
water scarcity across downstream and upstream areas by reallocating
water resources between sectoral water demands.

In this study, available water resources were reallocated to areas
with large population. AIWAM would alleviate global water scarcity
for nonagricultural sectors, but in turn aggravate global water scarcity
for agricultural sector. Although the AIWAM appeared different to rep-
resent water allocation practices in the real world case, the results
were useful in guiding the water management policy to cope with fu-
ture increasing water scarcity conditions. Mitigation in nonagricultural
water scarcity in the downstream area would achieve more economic
benefit as agriculturewater usewas usually inefficient both in technical
(it incursmany losses) and economic terms (water productivity is low).
Aggravation in agricultural water scarcity in the upstream area would
promote the design and provision of mechanisms to compensate
farmers for losses and deprivation, aswell as development ofwater con-
servancy facilities, such as or desalination or inter-basin water transfer
projects (e.g. the South to North Water Diversion project in China).
Recent studies have showed that decreased irrigation water use inten-
sity have widespread slowdown of the growth rates of agricultural
water use in China (Zhou et al., 2020). However, this study did not con-
sider water use efficiency improvement. AIWAM lead to aggravated
water scarcity in agricultural sector in this study,which implies that sec-
toral water use competition would pose great challenges for meet agri-
culture water use, and regions with agricultural water use constraints
are encouraged to explore options to reduce water use intensity of irri-
gation in the future investigation, e.g., scenarios of higher water use
efficiency to achieve universal access to affordable water resource in
all sectors and better integrated agricultural water management for
reducing agricultural water scarcity.

The AIWAMhas been employed inwater resources allocation in pre-
vious literatures. For example, in the Yellow River basin, water man-
agers implemented a flow regulation rule that reduced upstream
irrigation water abstraction in order to guarantee the nonagricultural
water supply in the downstream areas (Cai and Rosegrant, 2004; Yin
et al., 2017).Water resourceswere first allocated tomeetwater demand
from domestic and environmental requirements in the USA (Brown,
2000). Different inner-basin water allocation measures were adopted
by the local governments according to the development goals in the
Euphrates and Tigris Basin, the Indus river basin, and the Pearl River
basin (Molle and Berkoff, 2009; Yan et al., 2018). For these areas
where inner-basin water allocation measures have been already
adopted, the AIWAM in this study could provide a reference for coping
with future water scarcity, and the government would improve the on-
going inner-basin water allocation measures under future changing
environment and development goals. In addition, some areas haven't
applied the inner-basin water allocation measures, leading to
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upstream-downstream conflicts, especially in a few transboundary ba-
sins. Limitless upstream water use would exacerbate downstream
water scarcity conditions in a few transboundary basins, whichmay fur-
ther lead to serious conflicts (Munia et al., 2018), and the competition of
water use between upstream and downstream areas would more seri-
ous under future changing environment (Munia et al., 2020). Therefore,
the AIWAM could provide a useful strategy to improve international co-
operation as well as the adaptation to future water scarcity, and further
avoid potential upstream-downstream conflicts. In general, the findings
in this study reflected the competition of water use between upstream
and downstream among sectors, and in this case, serve as a scenario
for a trade-off analysis ofmeeting the nonagriculturalwater useswithin
a basin from. Thus, the AIWAM in this study can provide a reference for
water scarcity assessment andwater managementwith human adapta-
tions in the future a precautionary perspective when both agricultural
and nonagricultural water uses are projected to increase worldwide.

5. Conclusions

In this study, AIWAM was incorporated into future global water
scarcity assessment. The results show that future water scarcity would
mainly occur in arid and semi-arid areas with either large irrigated
cropland (e.g. the High Plain in the US and North coast of Africa) or
dense population (e.g. large cities in the Western US and Bulgaria), or
both of them (e.g. India, the North China Plain, Central Asia and Arabian
Peninsula). Future climate change and socioeconomic development
would aggravate global water scarcity. The global water deficit is likely
to increase by 48.3% during 2020–2050, and the number of absolute
population and irrigated cropland area exposed to water scarcity in
2050 are projected to increase by 82.5% and 42.9%, respectively, in com-
parison to those in 2020. It is found that the adaptive measures that re-
allocatewater resources in the river basinwouldmitigatewater scarcity
for nonagricultural sectors, particularly in the downstream areas with
intensive population. AIWAM result in a decrease by 12% of global pop-
ulation exposed to water scarcity in 2050 when compared with that
without the consideration of AIWAM. At the same time, the adaptive
measures might intensify agricultural water scarcity in the upstream
of these basins. This study emphasized the importance of considering
AIWAM in water scarcity assessment under future climate change. The
findings in this study would be helpful in developing policies to reduce
population exposure to water scarcity and achieve the goals of sustain-
able water management.
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