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At variance with conventional landslide susceptibility assessment, non-susceptibility analysis aims at selecting
locations in which the likelihood of landslide occurrence is null or negligible. The advantage of this approach is
that it does not require estimating different degrees of likelihood outside of the locations of negligible suscepti-
bility. Thus, it entails the use of simplified classification methods. In this work, we tested and validated the
existing non-susceptibility model with 18 global and regional landslide datasets, as a prior for the global applica-
tion. The existing model was applied previously in Italy and the Mediterranean region, and defined by a non-
linear relief vs. slope threshold curve, below which landslide susceptibility is negligible. Then, we applied a sim-
ilar analysis, and proposed a global map, using relief and slope obtained from global elevation data at about 90-m
resolution. The global map classifies 82.9% of the landmasses with negligible landslide susceptibility. The non-
susceptible areas are broadly consistentwith the “very-low” susceptibility class in existing global and continental
landslide susceptibility maps and a national non-susceptibility map in the conterminous United States.
Quantitative analyses revealed that population and settlements are denser within non-susceptible area than
elsewhere, which makes the map of potential interest for non-exposure analysis, land planning and disaster
responses at a global scale.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Landslide hazard and risk assessment are a relevant scientific and
social issue owing to the global impact of slope failures on human activ-
ities and natural environment. Recently, global landslide studies are be-
coming frequent, and efforts have been made to compile global
landslide datasets and models applicable to global datasets
(Kirschbaum et al., 2010, 2015; Froude and Petley, 2018; Haque et al.,
2019). Global maps of landslide susceptibility (Hong et al., 2007a;
Farahmand and Aghakouchak, 2013; Stanley and Kirschbaum, 2017),
or global landslide hazard and risk assessment (Hong et al., 2006;
Kirschbaum et al., 2009; Nadim et al., 2006, 2013) also exist. Rainfall
thresholds for landslide initiation at a global scale were proposed
(Guzzetti et al., 2008; Hong and Adler, 2008; Jia et al., 2020), as well
Cycle and Related Land Surface
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as global landslide warning systems (Hong et al., 2007b; Kirschbaum
and Stanley, 2018). A link between landslide features and climate
change, mostly through rainfall data, at a global scale was also investi-
gated (Kirschbaum et al., 2015; Gariano and Guzzetti, 2016; Haque
et al., 2019). The reasons for a globally homogeneous landslide analysis
are manifold, including: (a) it is useful in data scarce regions, where de-
tailed information is not available (Jacobs et al., 2020); (b) it allows
finding similarities and differences in the spatial pattern of landslide oc-
currence in different settings (Tanyas et al., 2019a, 2019b; Tanyas and
Lombardo, 2020); and (c) it provides opportunities for different regions
to communicate and compare their disaster prevention and mitigation
strategies with a common baseline (Guzzetti et al., 2020).

Knowledge of landslide hazard requires the assessment of “where”
landslides might occur or re-activate, “when” or how frequently they
can happen, and “how large” they will be (Guzzetti et al., 2005; Alvioli
et al., 2018). The first task entails landslide susceptibility analyses,
i.e., the evaluation of landslide spatial occurrence. During past decades,
a variety of landslide susceptibility analyses have been conducted at dif-
ferent scales with various mapping units, different geo-environmental
conditions, and numerous methods and techniques (e.g., Guzzetti
et al., 2005; Van Den Eeckhaut et al., 2012; Alvioli et al., 2016; Stanley
and Kirschbaum, 2017).
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The aim of landslide susceptibility analyses is to assign different like-
lihoods for landslide occurrence, and classify different spatial locations
in different susceptibility levels. Recently, some authors prepared sys-
tematic reviews on global and regional landslide susceptibility analyses,
and highlighted their definitions, methods, model evaluations, achieve-
ments and limitations (e.g., Budimir et al., 2015; Huang and Zhao, 2018;
Reichenbach et al., 2018). Practical uses of susceptibility analyses are
often limited by large uncertainties and inconsistencies of various
input data, and difficulties to understand the different susceptibility
maps based on numerous methods (Reichenbach et al., 2018).

On the other hand, a few authors considered “non-susceptibility”
analyses, consisting in identifying areaswhere the probability of landslide
occurrence is negligible or null. Godt et al. (2012) first proposed a
threshold-based method to define areas with negligible likelihood of
landslide occurrence, further defined as non-susceptible areas by
Marchesini et al. (2014). These statistically based non-susceptibility anal-
yses establish a morphometric threshold by using geographically consis-
tent data, and provide a simple and practical way to determine non-
susceptible areas by using only morphometric information and accurate
landslide data. Compared with susceptibility analysis, non-susceptibility
modeling reduced the uncertainties from input data and methods.

Non-susceptible areas are landslide-safe areas. Overlaying non-
susceptibility and population or settlement maps provides a way to il-
lustrate the portion of population or settlements that are not exposed
to landslide occurrence (Marchesini et al., 2014), and it provides strate-
gies for decision-making in land planning and disaster mitigation.
Moreover, Godt et al. (2012) highlighted a potential application of
non-susceptibility maps as a proxy for landslide susceptibility analyses
by relating the “not non-susceptible” class with “moderate” or “high”
susceptibility classes. This work provides such a tool in the global
scale, using data available in a homogeneous way.

Both Godt et al. (2012) andMarchesini et al. (2014) assumed terrain
slope and relief as key variables for selecting landslide non-susceptible
locations, at pixel level. The key assumption of non-susceptibility anal-
yses is that flat, low-relief regions are not prone to landslides, which is
supported by the fact that topography is the main influencing factor in
landslide susceptibility analysis (Dai et al., 2002; Hong et al., 2007a;
Stanley and Kirschbaum, 2017; Broeckx et al., 2018). Since the model
is data-driven, a standard procedure for performance evaluation is re-
quired. Godt et al. (2012) established their model based on five state in-
ventories with wide spatial and temporal coverage and landslides of all
types, and tested their proposed non-susceptibility map by comparing
with previous susceptibility analysis in the conterminous United
States. Marchesini et al. (2014) conducted model fitting, testing and
comparison by using different landslide inventories and different statis-
tical methods. Their work revealed a low false positive rate (FPR) of
about 0.06 for the quantile non-linear (QNL) non-susceptibility model
based on accurate and complete landslide inventories in Italy and
Spain. The study obtained a well-validated non-susceptibility model.

Existing non-susceptibility analyses are focused on regional scales,
i.e., in the conterminous United States (Godt et al., 2012), Italy andMed-
iterranean region (Marchesini et al., 2014), whereasmany authors have
worked on global landslide susceptibility (e.g., Nadim et al., 2006;
Farahmand and Aghakouchak, 2013; Stanley and Kirschbaum, 2017).
In their review of landslide susceptibility models, Reichenbach et al.
(2018) recommended extending and further testing the “non-suscepti-
ble” terrain zonation in different geographical regions as to validate its
applicability and serve as a proxy for global or regional landslide suscep-
tibility and hazard assessment.

In this study, we first tested and validated the QNL model proposed
by Marchesini et al. (2014) based on available global and regional land-
slide datasets.We used two global datasets, seven national datasets and
nine regional datasets, and obtained relief and slope data from the ~90-
m Shuttle Radar Topography Mission (SRTM) digital elevation model
(DEM). We proposed a global landslide non-susceptibility map
(GLNSM) based on the existing QNL model by Marchesini et al.
2

(2014), and compared the proposed non-susceptibility map with
existing global or continental susceptibility and non-susceptibility
maps. Eventually, we estimated the global population size and settle-
ment area not exposed to landslides as a potential application of this
work. For further extending analyses of non-susceptibility, we investi-
gated new QNL models for several regions and global models based on
different landslide types.

2. Data

2.1. Topography data

The SRTM DEM is a quasi-global terrain elevation dataset, available
between 60°N and 60°S latitude, and widely used in topographical in-
formation extraction. First released in 2003, version 4.1 is now available
(https://srtm.csi.cgiar.org/srtmdata/; accessed on 18 December 2020;
Jarvis et al., 2008). Existing non-susceptibility analyses were conducted
based on SRTM DEM ~90-m data of version 2 (Marchesini et al., 2014),
which is a “finished” product covering the global landmasses, but con-
tains regionswithmissing data (Jarvis et al., 2008). The spatial accuracy
of topographical information is of great importance for non-
susceptibility analysis. In the new version of dataset, void pixels were
filled with available high-resolution auxiliary regional DEMs and a se-
ries of interpolation techniques (Reuter et al., 2007).

In this study, we used DEM data of the latest version, with ~90-m
resolution at the equator, in the original geographical (longitude and
latitude) coordinate reference system (CRS, in WGS84, EPSG: 4326).
Elevation data was used to calculate regional relative relief (R) and
local terrain slope (S), the two morphometric variables used in the
non-susceptibility model.

2.2. Landslide datasets

Landslide data is vital for calibrating and validating susceptibility
and non-susceptibility maps. Despite widely present around the
world, reported and mapped landslides are available only in part of
the landmasses. Detailed landslide information with high accuracy
and completeness is lacking (Guzzetti et al., 2012). The USA National
Aeronautics and Space Administration (NASA) landslide team launched
the Global Landslide Catalog (GLC), in which records are available with
occurrence dates and locations, types, triggers and estimates of location
accuracy since 2007 (Kirschbaum et al., 2010, 2015). To improve the
completeness of landslide dataset, NASA subsequently launched the Co-
operative OpenOnline Landslide Repository (COOLR; Juang et al., 2019),
which is a product of citizen science and original researches, containing
landslide points and related alphanumeric records updated until August
2020 (https://gpm.nasa.gov/landslides/; accessed on 18 December
2020). To ensure the accuracy of the dataset, they added ameasurement
of location accuracy for each landslide event based on multiple sources.
The Global Fatal Landslide Database (GFLD) is another global landslide
dataset, listing landslides that caused deaths from 2004 to 2017, and in-
cluding landslides triggered by different non-seismic causes,
e.g., rainfall and human activities (Froude and Petley, 2018; Petley and
Froude, 2019). The location accuracy in GFLD is estimated based on geo-
graphical units such as villages or states.

Regional landslide datasets are also available for some specific nations
and areas. These datasetswere compiled by detailed image interpretation
(e.g., McKeon, 2016), disaster reports (e.g., YNDPMC, 2016), newsfeeds
(e.g., Li et al., 2016), and partly aided by field surveys. In USA, the U.S.
Geological Survey leads the landslidemonitoring (USGS, 2020). Statewise
landslide inventories are available in Arizona (Cook et al., 2016), Oregon
(Burns and Madin, 2009), Utah (Elliott and Harty, 2010), Vermont (Clift
and Springston, 2012) and Washington (Slaughter et al., 2017).
Systematic information for landslide occurrence is obtained fromgeologic
maps, aerial photo and imagery interpretation, andGIS/GPS tools. Someof
records are even checked in field, whereas some are just searched and

https://srtm.csi.cgiar.org/srtmdata/;
https://gpm.nasa.gov/landslides/;
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digitized via news or report sources. In Europe, there are pan-European
cooperations in landslide hazard and risk assessment (Wilde et al.,
2018), and landslide inventories are conducted in most of the countries
(Van Den Eeckhaut and Hervás, 2012). However, the datasets are not
publicly available. In Italy, inventory FraneItalia includes events occurring
between 2010 and 2019 (v2.0; Calvello and Pecoraro, 2018). This catalog
is an interpretation product of news, reports and other text-based
sources, presenting the location accuracy with three confidence descrip-
tors named as certain, approximated and municipality (available:
https://data.mendeley.com/datasets/compare/zygb8jygrw/1/2; accessed
on 18 December 2020). Ireland has a long history of landslide inventory
development (Creighton, 2006). The latest version of Ireland national
landslide dataset was derived from high-resolution aerial photo interpre-
tation spanning from 2000 to 2010, with validation in field and a 3D visu-
alisation system (McKeon, 2016). In Oceania, spatial information of the
inventoried landslides was developed in Australia (Osuchowski and
Atkinson, 2008) and New Zealand (Rosser et al., 2017). The Australian
landslide database was recently updated in 2018, and firstly launched
under collaborative efforts of the federal, state and local. A statewise in-
ventory was also developed in Tasmania (Mazengarb and Stevenson,
2010). The majority of the information was sourced from national and
state reports, news and other publications, and adjusted more accurately
based on aerial photograph interpretation and mapping. The New
Zealand landslide database (NZLD) is a combined inventory to hold a
number of existing landslide datasets (Rosser et al., 2017). Some of the
data sources were derived from aerial photo interpretation with high-
quality control. However, the public dataset is sharedwith no accuracy in-
formation. In China, a comprehensive national landslide datasetwas pub-
lished based on official documents, news reports and existing web
databases (Li et al., 2016). The measurement of location accuracy is lack-
ing. In two provinces of China, Guangdong and Yunnan, landslide infor-
mation of about twenty years is available in the printed yearbook of
disaster prevention and mitigation (GDDPMC, 2016; YNDPMC, 2016).
Theuncertainty of theposition canbemeasuredwith twodescriptors: ap-
proximated (village or street) and municipality (town). In Turkey, a fatal
landslide dataset was recently produced and the uncertainty of the loca-
tion varies from district/village to city (Görüm and Fidan, 2021).

Uncertainties exist for landslide datasets, especially the occurrence
location. One reason is resulted from accidental error from data sources
and systematic error from geographical transformation (Guzzetti et al.,
2012; Froude and Petley, 2018). Moreover, the typical characteristics
for certain landslide types make it not easy to accurately locate their lo-
cations such as rapid landslides, whichmay occur quickly and travel in a
longway. To ensure the accuracy of landslide data, preliminary analysis
Table 1
Summary information of global (1–2), national (3–9) and regional (10–18) landslide datasets. R
of datasets. Type: features of landslide data. Record (O): number of landslide records in the orig
dataset. Area: area of region, from wiki pages (accessed on December 18, 2020). NL: number o

# Region Extent Type Record(O) Record

1 COOLR global point 12,685 3377
2 GFLD global polygon 5490 297
3 Australia national point 1974 274
4 China national point 990 815
5 Ireland national point 2778 855
6 Ireland national polygon 1417 736
7 Italy national point 4934 3195
8 New Zealand national point 19,030 5789
9 Turkey national point 389 317
10 Arizona, USA regional polygon 6374 3717
11 Guangdong, China regional point 1491 781
12 Oregon, USA regional point 13,994 2807
13 Oregon, USA regional polygon 44,929 5957
14 Tasmania, Australia regional point 3266 764
15 Utah, USA regional polygon 25,589 1722
16 Vermont, USA regional point 2731 352
17 Washington, USA regional polygon 45,297 7650
18 Yunnan, China regional point 453 203

3

and selection were conducted. For example, data entries with location
accuracy less than 1 km were chosen in COOLR and GFLD datasets. For
regional databases with detailed data sources, records derived from im-
agery interpretation, GIS methods or field check were used, such as
Australian, Oregon and Tasmaniandatasets; for other datasets, landslide
events were selected based on given position descriptors, such as
Italian, Turkish, Guangdong and Yunnan datasets (the “certain” and
“approximated” records were used). For NZLD, we selected landslides
with detailed occurrence time, and discarded these with no occurrence
time. Specifically, all the data entries were used for the Chinese dataset.
Some of datasets (e.g., Ireland and Oregon datasets) are provided with
both point and polygon landslide features, of which recorded landslide
events are not exactly the same owing to the different data sources or
mapping methods. Thus, both of them are used in our validation. All
the datasets were projected in the WGS84 CRS (EPSG: 4326). Table 1
lists summary information of the landslide data used in this work, in-
cluding two global datasets, seven national datasets and nine regional
datasets, six of which include landslides mapped as polygons. Detailed
location accuracy, landslide type and trigger information for each
dataset are available in a supplement excel file. Fig. 1 shows the admin-
istrative geographic extent of national and regional datasets (a global
view and four regional views).

2.3. Landslide susceptibility and non-susceptibility maps

Whereas non-susceptibility represents zero or negligible likelihood
of landslide occurrence, susceptibility classes representwell-defined in-
tervals of likelihood of landslide occurrence in conventional susceptibil-
ity maps. To show a link between the two types of analyses, we
compared non-susceptibility in GLNSM with the lowest susceptibility
class in existing global and continental susceptibility maps. During the
two past decades, large-scale susceptibility analyses have been widely
prepared in Europe, Africa, and the world. Early global susceptibility
maps were proposed by Nadim et al. (2006) and Hong et al. (2007a).
In this study, we used three updated global susceptibility/riskmaps pro-
posed by Giuliani and Peduzzi (2011), Stanley and Kirschbaum (2017)
and Lin et al. (2017), and two continental maps published by Broeckx
et al. (2018) andWilde et al. (2018) for Africa and Europe, respectively.
All the above susceptibilitymaps show five classes (very low, low,mod-
erate, high, and very high susceptibility), although the methods and
criteria to define them are different across different studies.

In the conterminous United States, Godt et al. (2012) proposed a na-
tional landslide non-susceptibility map based on a general linear model
(GLM; S90 = 0.19R90 − 0.16, 6 ° ≤ S90 ≤ 21°), in which R90 and S90
egion: the geographical extent of datasets, the two global datasets are labeled by the name
inal datasets. Record (S): selected number of landslide records with high accuracy in each
f landslide records per 103 km2.

(S) Area (103km2) 103NL (km−2) Reference

– – Juang et al., 2019
– – Petley and Froude, 2019

7692 0.04 Geoscience Australia, 2012
9597 0.08 Li et al., 2016

84 10.18 McKeon, 2016
84 8.76 McKeon, 2016

301 10.61 Calvello and Pecoraro, 2018
268 21.60 Rosser et al., 2017
783 0.40 Görüm and Fidan, 2021
295 12.60 AGS, 2015
180 4.34 GDDPMC, 2016
98 28.64 Burns and Madin, 2009
98 60.79 Burns and Madin, 2009
68 11.24 Mazengarb and Stevenson, 2010

220 7.83 UGS, 2018
25 14.08 Clift and Springston, 2012

185 41.35 WGS, 2020
394 0.52 YNDPMC, 2016

https://data.mendeley.com/datasets/compare/zygb8jygrw/1/2;


Fig. 1.Geographic (administrative) extents of available regional landslide datasets, ofwhich six are national datasets labeled in a, in this analysis. Points in red represent landslide locations
(12,685 points) in a global dataset (COOLR). Regional views (b-e) show four groups of the datasets.
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Fig. 2. Global maps of local terrain slope, S (a) and regional relative relief, R (i) based on the ~90-m SRTM DEM elevation data. Regional maps are shown to provide the enlarged views
corresponding to that in Fig. 1, i.e., most of the Asia (b, j), most of the North America (c, f), Mediterranean region and its surroundings (d, g), and the eastern Australia and New
Zealand (e, h).

G. Jia, M. Alvioli, S.L. Gariano et al. Geomorphology 389 (2021) 107804
represent the 90th percentiles of relief and slope values in each given
landslide feature or pixel cell, respectively. Here we reconstructed the
map based on the GLM model with slope and relief data prepared in
our work to conduct a regional comparison with our global non-
susceptibility map.

3. Methods

3.1. Non-susceptibility model

The existing landslide non-susceptibility model proposed by
Marchesini et al. (2014) provided a minimum threshold curve of relief
5

v.s. slope corresponding to historical landslide events. Below the thresh-
old, landslide susceptibility is expected to be null or negligible, and thus
non-susceptible areas are singled out. The QNL model performed best
among all of the models considered by Marchesini et al. (2014) in
terms of FPR. The analysis considered Italian high-quality regional land-
slide inventories, which were compiled through image interpretation
and field campaigns between 1993 and 2013. The inventories contain
almost all landslide types, and the majority of the landslides are rota-
tional and translational slides, earth flows, complex, and compound
movements according to the Cruden and Varnes (1996) classification
scheme. The inventories cover most landslide-prone physiographical
regions in Italy, which differ in lithological, climatic and land cover
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conditions (Guzzetti et al., 2012; Peruccacci et al., 2017; Alvioli et al.,
2020). The QNL model was validated with an Italian national landslide
inventory (Trigila et al., 2010), and a Spanish inventory. The QNL
model is:

S ¼ αeβR, ð1Þ

where S is the local terrain slope in degrees; R is the regional relative re-
lief inmeters, ranging between 0 and 1000m;α=3.539 andβ=0.0028
are regression parameters. Eq. (1) represents the model's threshold:
pixels whose representative point on the (R, S) plane falls below the
curve are non-susceptible to landslide occurrence with 5% expected
misclassifications. Validation of the model by Marchesini et al. (2014)
revealed a FPR of 0.06 for all landslide types, ranging from0.05 for trans-
lation and rotational slides to 0.21 for lateral spreads.

In this work, we tested the applicability of the data-driven QNL
model proposed by Marchesini et al. (2014) for a worldwide applica-
tion. The extrapolation of the model, from regional to global scale, indi-
cates a large range of relief values (more than 1000 m), which was the
validity range of theQNLmodel ofMarchesini et al. (2014). Thus,we ap-
plied a maximum slope threshold of 58° (corresponding to the case
when relief in the 15× 15window is equal to 1000m in Eq. (1)), assum-
ing areas with slope values over 58° as highly landslide-prone (Nadim
et al., 2006; Hong et al., 2007a). A maximum slope threshold was also
used in Godt et al. (2012). Moreover, we tried to propose new non-
susceptibility models based on available landslide data for different re-
gions and landslide types, to show their effects on non-susceptibility
zonation.

3.2. Regional relative relief and local terrain slope calculation

Regional relative relief and local terrain slope are two basic inputs in
landslide susceptibility and non-susceptibility analysis, and other
branches of earth sciences. Marchesini et al. (2014) calculated S by ele-
vation gradient within a 3 × 3-pixel moving window, and extracted R,
the difference between maximum and minimum elevation, within a
15 × 15-pixel moving window. The aim of selecting different moving
windows for two variables is to reduce their collinearity and capture
the significantly different morphometric characteristics related to land-
scape evolution.

Pixel size difference at different latitudes was taken into account, for
the calculation of slope, as follows. Firstly, thewidths of each pixel cell in
the longitude (δxi, j) and latitude (δyi, j) direction were calculated based
on the geometry of the earth WGS84 ellipsoid; then the slope compo-
nents in the longitude and latitude directionwere defined by the partial
derivatives of the polynomial to usemost of elevation (zi, j) information
in a moving window, which are defined as follows:

δzi,j
δxi,j

¼ ziþ1,jþ1 þ 2ziþ1,j þ ziþ1,j−1
� �

− zi−1,jþ1 þ 2zi−1,j þ zi−1,j−1
� �

8δxi,j
, ð2Þ

δzi,j
δyi,j

¼ ziþ1,jþ1 þ 2zi,jþ1 þ zi−1,jþ1
� �

− ziþ1,j−1 þ 2zi,j−1 þ zi−1,j−1
� �

8δyi,j
, ð3Þ

Finally, the slope (Si, j) in degree was obtained from its components
in two direction.
Fig. 3. Validation results for available global and regional landslide datasets (Table 1). Green
landslide feature, and black curves the quantile non-linear (QNL) non-susceptibility thresh
(e) Ireland (point features), (f) Ireland (polygon features), (g) Italy, (h) Turkey, (i) New Zeala
USA (polygon features), (n) Tasmania, Australia, (o) Utah, USA, (p) Vermont, USA, (q)Washing
below the threshold curve (false positives, FP) over the total number of landslides (FP and true
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Fig. 2 shows the global distribution of regional relative relief and
local terrain slope, and highlights slope and relief values corresponding
to the extent of landslide inventories in regional views (in Fig. 1), which
also are relevant to most of the mountainous (Sayre et al., 2018) and
landslide-prone regions (Froude and Petley, 2018).

3.3. Validation procedure

The proposed GLNSM map was validated with independent land-
slide datasets (in Section 2.2). For datasets containing polygon features,
we overlaid the vector maps with the global relief and slope maps, and
extracted the 90th percentiles (Godt et al., 2012) of relief and slope
values in each polygon. We assumed the 90th percentiles of S and R
values as corresponding to the landslide-triggering portion of the land-
slide body (Godt et al., 2012).

For each landslide dataset, we calculated the FPR = FP / (FP + TN),
where FP is the number of false positives, i.e., landslides below the R-S
threshold of Eq. (1), and TN is the number of true negatives,
i.e., landslides above the R-S threshold.

To consider the inherent uncertainties associated with the landslide
locations in point datasets, we considered a circular 1-km buffer for
each landslide point, and then conducted the same evaluation of FPR
used for the polygon datasets. We further considered reactivations
within a 1-km buffer as a single record in the landslide datasets, to
avoid artificially increasing the values of FP or TN (Biasutti et al., 2016;
Benz and Blum, 2019).

4. Results and discussions

4.1. Non-susceptibility model: validation against landslide datasets

For each landslide dataset (Table 1), we extracted morphological
characteristics based on location information of landslides and plotted
their relief and slope (Fig. 3). Based on the QNL non-susceptibility
model, FPRs were calculated. Thirteen out of eighteen datasets have
FPR < 0.15, and five have less than 10% of landslides located in non-
susceptible areas (FPR < 0.10). Overall, we grouped the eighteen
datasets into a single one, including all of the records. It turns out that
about 12% of the landslides are located in non-susceptible areas
(Table 2; in total, 39,608 individual landslides were considered). The
percentage is lower for translational/rotational slides, earth flows (FPR
=0.09), andflows (FPR=0.05). The results coincidewith the good per-
formances of QNL non-susceptibility model for translational/rotational
slides and slow flows inMarchesini et al. (2014). By comparison, perfor-
mance is poor for debris flows, mudslides and earth slides. Performance
associated to rapid landslides is poor in Marchesini et al. (2014) as well.
The reasonmay lie in the typical low slope associated to mudslides, and
rapid development of debris flows, which can also travel into nearly flat
areas (travel angle values can be also equal to 4°, Rickenmann, 2005).
Moreover, rapid landslides are always triggered by heavy rain or huge
fluctuations of earth owing to instantaneous strength loss (such as liq-
uefaction of granular soils; Hungr, 2007). Thus, they could occur at
lower slopes.

For global datasets, COOLR has a better match with the QNL model
than GFLD. Fig. 3a and b, respectively, show a direct comparison on
points represent the regional relative relief and local terrain slope corresponding to each
old curve (Eq. (1)). Landslide datasets: (a) COOLR, (b) GFLD, (c) Australia, (d) China,

nd, (j) Arizona, USA, (k) Guangdong, China, (l) Oregon, USA (point features), (m) Oregon,
ton, USA, (r) Yunnan, China. False positive rate (FPR) is the ratio of the number of landslides
negatives, TN) in each dataset.



Table 2
Validation results of the proposed quantile non-linear (QNL) non-susceptibility model by
Marchesini et al. (2014) for different landslide types basedonall the landslide data of eigh-
teen datasets (in Table 1). About 31% of the landslides include type information. False pos-
itives (FP): number of landslides below theQNL threshold curve (in non-susceptible area).

Landslide type False
positives (FP)

Total number of
landslides
(TN + FP)

False positive rate
(FPR)

Flows 31 570 0.05
Falls 85 973 0.09
Slides 130 1197 0.11

Complex landslides 107 1029 0.10
Debris flows 271 1507 0.18
Earth flows 83 921 0.09

Translational/rotational
slides

185 2079 0.09

Mudslides 90 773 0.12
Earth slides 763 3302 0.23
(undefined) 2884 27,257 0.11

Total 4629 39,608 0.12
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the (R, S) plane of COOLR and GFLD datasets with the threshold of
Eq. (1). In this case, the reason may lie in the fact that GFLD is a dataset
containing only fatal landslides with lower overall representativeness
and, most importantly, with a relative abundance of rapid landslides
that typically cause more deaths due to their runouts extending on
the flat areas.

In the case of regional datasets, Ireland, New Zealand, Oregon and
Tasmania (Fig. 3e, i, l and n) have good performance, FPR < 0.05,
while Australia and China (Fig. 3c and d) have poor performance, FPR
≥ 0.20. We maintain that the non-susceptibility model works well
with an overall low FPR and good performance.

Marchesini et al. (2014) highlighted the importance of accurate and
complete landslide information for the non-susceptibility zonation.
Here, we used the density of landslide events (NL: number of landslide
records per 103 km2 for each dataset, in Table 1), as a proxy of complete-
ness, exploring the relationship betweenNL and FPR. Global datasets are
excluded from this analysis, due to their manifest poor completeness.
Fig. 4 indicates that a linear relationship exists between FPR and NL. As
NL increases, FPR decreases, suggesting that high landslide density
might improve the performance of validation. The reason of high FPRs
in Australia, China and Arizona (Fig. 3c, d and j) probably lie in the
poor completeness of landslide datasets. Further application of non-
susceptible analyses requires more complete landslide datasets, and
the number of reported landslides per area of Vermont (0.014 km−2)
could be a reference to assess the completeness of landslide inventories
with an expected good FPR (less than 0.10 for point datasets and 0.17 for
polygon datasets based on the linear relationships in Fig. 4b and c,
respectively).
Fig. 4. Relationships between the landslide density (NL represents the number of reported lands
polygon datasets, (b) point datasets, (c) polygon datasets. Black curves are linear fits.
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4.2. Global landslide non-susceptibility map

An overall good performance is illustrated for QNL model proposed
by Marchesini et al. (2014) for available global and regional datasets
in Section 4.1. Thus, we proposed a global landslide non-susceptibility
map to show the distribution of landslide non-susceptible areas in
~90-m resolution (Fig. 5). The map indicates that 82.9% of global land-
masses are located in non-susceptible areas, higher than the percentage
of non-mountainous areas (69.5%; Sayre et al., 2018), suggesting that
some of the mountainous areas are relatively stable. A further overlay-
ing analysis reveals that GLNSM encompasses 80% of the global non-
mountainous areas. Marchesini et al. (2014) quoted 63% for the per-
centage of non-susceptible areas in the Mediterranean region, which
is expected, given that Mediterranean region is highly prone to land-
slide occurrence (Wilde et al., 2018). The corresponding percentages
of non-susceptible areas are also low in Asia (74.8%) and North
America (78.5%; Fig. 5a), corresponding to high fatal landslide incidence
in the Southern, Eastern and Southeastern Asia, and Western North
America (Froude and Petley, 2018). Regional views (Fig. 5 b-e) show
low percentages of non-susceptible areas in the western United States,
Italy, the eastern Australia, New Zealand, and the Himalayas, in agree-
ment with landslide hotspots in previous studies (Kirschbaum et al.,
2015; Haque et al., 2019).

As stated in Godt et al. (2012), landslide susceptibility maps are pos-
sible choices for testing the applicability of GLNSM. For available global
and continental susceptibility maps in Section 2.3, the very-low class of
each map was overlaid with our non-susceptibility map. The compari-
son revealed that worldwide 91.5% of the “very low” susceptibility
pixels are located in non-susceptible areas, and specifically in the
European susceptibility map and the global map proposed by Stanley
and Kirschbaum (2017), more than 99% of the pixels classified with
the very-low susceptibility are located in non-susceptible areas
(Table 3).

We further compared the GLNSM with the national non-
susceptibility map in the conterminous United States. Fig. 6 shows the
two non-susceptibility maps in the region, based on the GLM and QNL
models, respectively. The two maps share similar spatial distribution
of non-susceptible areas. They almost hold the same pattern in the
western and eastern USA, where high incidence of landslides exists.
The two maps coincide with each other in about 80% of the area of the
conterminous USA, while the map of GLM model (Fig. 6b) predicts
less non-susceptible areas in the western and middle USA than that of
QNL model, and the reverse in the eastern USA. The GLM model was
established in a narrow interval, i.e., [6°, 21°], of local terrain slope and
not validated with any landslide dataset. Actually, the slope values
range from 0° to 71° in the conterminous USA (Fig. 2), and only about
25% of the landmasses has a local terrain slope in the interval of [6°,
21°]. Thus, large portion of the landmasses remains undefined within
lides per 103 km2 in Table 1) and FPR for regional landslide datasets in Fig. 3: (a) point and



Fig. 5. A global map of landslide non-susceptibility in ~90-m resolution (a) based on QNL model proposed by Marchesini et al. (2014) in Section 3.1, and percentages of non-susceptible
areas in each continent. Landmass outside the non-susceptible areas is shown in light gray. Non-susceptible areas are alsomapped in regions corresponding to that in Fig. 1, i.e., most of the
North America (b), most of the Asia (c), Mediterranean region and its surroundings (d), and the eastern Australia and New Zealand (e).
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the GLMmodel. The above consideration partly explains the discrepan-
cies between the twomaps. The regional QNLmodel based on available
USA state datasets reveals a lowerR-S threshold comparedwith theQNL
model byMarchesini et al. (2014) (see Section 4.4). Thus, further inves-
tigations are needed to conduct regional non-susceptibility analyses
with more accurate and complete landslide inventories.

4.3. Relevance of the non-susceptibility map

Marchesini et al. (2014) conducted a non-exposure analysis to
estimate sizes of settlement and population to possible landslide
9

occurrence. The non-exposure outputs are relevant for decision-
making in disaster prevention, land management and planning.

We conducted non-exposure analysis by using grid settlement data
in 2014 and population data in 2015 with ~1-km resolution, available
from the Global Human Settlement Layer Data Package (Florczyk
et al., 2019). The human settlement data is a product derived from the
Global Land Survey Landsat image, and the population data were disag-
gregated and resampled from the Gridded Population of theWorld pro-
vided by the Center for International Earth Science Information
Network of Columbia University. Global overlay of these layers with
the GLNSM reveals that 91.2% of built-up areas, and 91.8% of the



Table 4
Statistics of population and human settlement in non-susceptible and “not non-suscepti-
ble” areas in a quasi-global scale.

Not
non-susceptible

area

Non-susceptible
area

Total

Area (106 km2) 20.1 96.9 117.0
Percentage of area 17.1% 82.9% 100.0%

Built-up area (103 km2) 67.5 701.3 768.8
Percentage of built-up

area
8.8% 91.2% 100.0%

Built-up density 0.3% 0.7% 0.6%
Population (106) 594 6632 7226

Percentage of population 8.2% 91.8% 100.0%
Population density

(km−2)
29.6 68.2 61.6

Table 3
Comparison between the lowest susceptibility class in global and continental susceptibil-
itymaps and non-susceptible class in our global landslide non-susceptibilitymap (Fig. 5a).

Extent Susceptibility map Non-susceptible area in “very low” class

Global

Giuliani and Peduzzi, 2011 86.0%
Stanley and Kirschbaum, 2017 99.4%

Lin et al., 2017 89.0%
(Average) 91.5%

Africa Broeckx et al., 2018 97.8%
Europe Wilde et al., 2018 99.2%
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population are located in non-susceptible areas (Table 4), larger than
the percentage of non-susceptible areas itself (82.9%; Table 2). The
majority of people and buildings are located in relatively safe
conditions, and the densities of built-up area and population size in
non-susceptible areas are greatly larger (over two times) than those
in “not non-susceptible” areas.

4.4. Regional and landslide type effects on non-susceptibility analysis

Whereas geological environments may influence the spatial pattern
of landslide occurrence and failure mechanisms vary with landslide
types (e.g., Jia et al., 2020), we try to establish QNL non-susceptibility
models for different regions and landslide types as compared with the
model proposed by Marchesini et al. (2014). We grouped the landslide
datasets as four new datasets based on regional views in Fig. 1, and la-
beled as Region B (Fig. 1b), C (Fig. 1c), D (Fig. 1d) and E (Fig. 1e), respec-
tively. A global model was also established based on the COOLR dataset.
To establishmodels of different landslide types, we only considered the
Fig. 6. Non-susceptibility maps (~90 m) in the conterminous United States based on the QNL m
et al. (2012). Landmasses outside the non-susceptible areas is shown in light gray.
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COOLR dataset to assure consistent landslide information. Here, debris
flows, translational/rotational slides, mudslides, rock falls, complex
landslides and others are considered.

Relief-slope thresholds in the globe and four regions (Fig. 7), for six
landslide types (Fig. 8) are lower than the QNL model proposed by
Marchesini et al. (2014) (denoted by Model_Ma). The minimum slope
threshold values (α) for regions vary from about 1.2 to 3.7 (Table 5),
less than that of Model_Ma except for Region E. The threshold curve of
Region E (Fig. 7e; based on Australia, New Zealand and Tasmania
datasets) is the closest to Model_Ma. Region C (Fig. 7c; based on
China, Guangdong and Yunnan datasets) and D (Fig. 7d; based on
Ireland, Italy and Turkey datasets) share the same scale value (β).
There are big differences between the models of Region B (Fig. 7b;
based on USA state datasets) and other models. Significant differences
odel (a) proposed byMarchesini et al. (2014) and the linear model (b) proposed by Godt



Fig. 7. Regional QNL non-susceptibility models based on the groups of landslide datasets.Model_Ma: QNLmodel proposed byMarchesini et al. (2014). Model_re: regional QNLmodels for
(a) COOLR dataset, (b) Region B (grouped datasets in Fig. 1b), (c) Region C (grouped datasets in Fig. 1c), (d) Region D (grouped datasets in Fig. 1d), and (e) Region E (grouped datasets in
Fig. 1e).
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exist among models of different landslide types. The curve of complex
landslides (Fig. 8e) is most similar to Model_Ma, while debris flows
and mudslides give rise to lower minimum slope thresholds (Table 5).
We concluded that the influence of geological and type factors cannot
be ignored for further extending analyses of non-susceptibility, though
the non-susceptibility models for different regions and landslide types
in this study are not enough to conduct regional or global non-
susceptibility analyses.
5. Conclusions

This study aimed at preparing a global landslide non-susceptibility
map to highlight the areas where expected landslide susceptibility is
11
null or negligible, by extending the model trained in Italy and applied
to the Mediterranean region by Marchesini et al. (2014), with a maxi-
mum slope threshold of 58°. Non-susceptible areas were singled out
by means of a relief-slope QNL threshold, with expected 5% misclassifi-
cations. Our findings are as follows:

1) TheGLNSM(Fig. 5) obtained here covers 82.9% of global landmasses.
2) The QNL model proposed by Marchesini et al. (2014) shows good

classification performance against global and regional datasets,
with overall FPR = 0.12 (Table 2). Some regional landslide datasets
(Fig. 3) and datasets grouped by landslide types (Table 2) score
with lower FPRs (better performances) with respect to the global re-
sult. We maintain that the non-susceptibility model works well
when uncertainty on landslide location is reduced.



Fig. 8.QNL non-susceptibility models for different landslide types based on a global landslide dataset (COOLR). Model_Ma: QNLmodel proposed byMarchesini et al. (2014). Model_type:
QNL models for landslide types of (a) debris flows, (b) translational/rotational slides, (c) mudslides, (d) rock falls, (e) complex landslides, and (f) others.
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3) TheGLNSM is generally consistentwith the “very-low” susceptibility
class in existing global and continental susceptibilitymaps (Table 3),
and shares a similar spatial distribution with the national non-
susceptibility map in the conterminous United States (Fig. 6).

4) The GLNSM is promising for decision-making in land planning and
disaster responses. Globally, 91.8% of the population lives, and
91.2% of the settlements are located, in non-susceptible areas
(Table 4). The population and built-up densities are significantly
higher in non-susceptible areas compared with that outside the
non-susceptible areas.
12
5) Non-susceptibility analyses are significantly influenced by landslide
types (Fig. 8). Moreover, quantilemodels obtained in different regions
(Fig. 7) are significantly different. This suggests that considering the
variability of geological setting, and landslide type, is mandatory for
further extending regional non-susceptibility analyses.

The GLNSM proposed in this work, or analogous local maps derived
fromhigher-resolutionDEMs, can be a useful tool to illustratewhere the
likelihood of landslide occurrence is zero or negligible. We suggest that
themap can be used for a priori exclusion of non-susceptible areas from



Table 5
Parameters of QNL models for the globe and different regions corresponding to regional
views in Fig. 1 and landslide types based on the COOLR dataset. The models are defined
as Eq. (1) in Section 3.1. Datasets: Region B (grouped datasets in Fig. 1b), Region C
(grouped datasets in Fig. 1c), Region D (grouped datasets in Fig. 1d), Region E (grouped
datasets in Fig. 1e).

Dataset α β

Regions

COOLR 1.938 0.0030
Region B 2.326 0.0026
Region C 1.246 0.0036
Region D 1.431 0.0036
Region E 3.686 0.0029

Landslide types

Debris flows 1.725 0.0033
Translational/ rotational slides 3.800 0.0022

Mudslides 1.796 0.0035
Rock falls 3.521 0.0024

Complex landslides 2.686 0.0029
Others 1.846 0.0030
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susceptibility zonation (Alvioli et al., 2016). Moreover, for landslide
earlywarning systems, an easy-to-interpretmap of areaswith zero like-
lihood of landslide occurrence could simplify decision making, to focus
on areas outside the non-susceptible areas. Indeed, the map of
Marchesini et al. (2014) served to that purpose for national landslide
warning system in Italy (Guzzetti et al., 2020). We maintain that our
global map might be useful for a global knowledge of landslide hazard
and risk assessment.
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