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Abstract
The Middle East (ME), as an arid and semi-arid region, is prone to environmental risks and stresses, such as drought are
inseparable phenomena of the region. In this study, an approach for identifying sustained vegetation cover (SVC) is suggested
to identify the connection between SVC and drought. Normalized difference vegetation index (NDVI) and land surface temper-
ature (LST) were used to filter zones of rich vegetation cover from poorly vegetated or non-vegetated regions of the ME. The
change detection of vegetation cover was computed by the NDVI differencing technique, and the vegetation condition index
(VCI) and normalized vegetation supply water index (NVSWI) were used to derive drought indices. The standardized precip-
itation index (SPI) and rainfall anomaly index (RAI) were used to monitor the intensity of meteorological drought events. A
comparison of the estimates of vegetation change, remote sensing-based VCI, and meteorological drought indices revealed that
the highest SVC is concurrent with the occurrence of drought. Moreover, it was found that the most severe meteorological
drought and VCL-based drought condition occurred in 2008 and that the highest percentage of SVC was also obtained for this
year. The results suggest the possibility of using the SVC instead of other spectral indices, such as the NDVI, VCI, NVSWI, and
NVSWI, for the superior assessment and detection of environmental stresses such as drought.
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1 Introduction

Drought and other environmental stresses are common threats in
theMiddle East (ME). Drought occurs frequently in many coun-
tries of this region and affects the lives of millions of people
(Shetty 2006; World Bank, 2014). It is also an important

controlling mechanism for the management of water resources
(Kaniewski et al. 2012; Van Lanen et al. 2013; Zarei et al. 2020).
Several studies have indicated increasing temperatures and shifts
in precipitation patterns that lead to extremeweather events, such
as severe droughts, heat waves, sandstorms, and vegetation cov-
er degradation (Kafle and Bruins 2009; Al-Qinna et al. 2011).
The reduced rainfall and severe heat extremes in the ME, as in
many other regions of the world, havemade the region a hot spot
for climate change issues (Giorgi and Lionello 2008). A drying
trend has been forecasted from model projections for much of
this region due to predictions of large elevations in temperature
and reductions in precipitation in the near future (Bucchignani
et al. 2018). The climate of most counties in this region is arid
and semi-arid, and the vegetation cover is highly sensitive to
drought (Abbas et al. 2014; Barlow et al. 2016). Barlow et al.
(2016) explained that the vegetation cover condition in theME is
strongly controlled by the distribution of precipitation and that
droughts have an obvious influence on the vegetation cover and
its variability over the region. Additionally, Zaitchik et al. (2007)
revealed a quick and considerable response of vegetation cover
to climate variability, such as droughts and heat waves. Several
remote sensing-based indices, such as the vegetation condition

* Arash Malekian
malekian@ut.ac.ir

Elaheh Ghasemi Karakani
ghasemi.elaheh.k@ut.ac.ir

Soroush Gholami
s.gholamy@modares.ac.ir

Junguo Liu
liujg@sustech.edu.cn

1 University of Tehran, Tehran, Iran
2 Tarbiat Modarres University, Tehran, Iran
3 School of Environmental Science and Engineering, Southern

University of Science and Technology, Shenzhen 518055, China

https://doi.org/10.1007/s00704-021-03543-x

/ Published online: 4 February 2021

Theoretical and Applied Climatology (2021) 144:299–315

http://crossmark.crossref.org/dialog/?doi=10.1007/s00704-021-03543-x&domain=pdf
http://orcid.org/0000-0001-8174-6784
https://orcid.org/0000-0002-5745-6311
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/climate-change
mailto:malekian@ut.ac.ir


index (VCI), temperature condition index (TCI) (Kogan 1995),
and vegetation supply water index (VSWI) (Carlson et al. 1994),
have already been developed to represent drought effects under
different climatic and environmental conditions (Wan et al.
2004; Abbas et al. 2014; Dutta et al. 2015; Sruthi and Aslam
2015; Trisasongko et al. 2015; Khosravi et al. 2017). The nor-
malized difference vegetation index (NDVI) is the most widely
operational vegetation index among the large number of indices
(Bannari et al. 1995; Sruthi and Aslam 2015). This method has
been used to extract differences in vegetation cover (Richards
and Jia 2006), which can be defined simply to analyze seasonal,
annual, and long-term vegetation cover, as well as structure,
variation, etc. (Xie et al. 2008). The fraction of absorbed photo-
synthetically active radiation (FAPAR) anomaly is a drought-
related MODIS image indicator that has been used to identify
and recognize the influences of agricultural drought on the
growth and productivity of vegetation in Europe (Sepulcre-
Canto et al. 2012). The NDVI differencing is another vegetation
index obtained by subtracting the NDVI of two consecutive
dates of images that can represent the vegetation change and its
relationship with drought indices (Cakir et al. 2006). Moreover,
the strong correlation between NDVI and land surface tempera-
ture (LST) enables much more accurate detection of drought
events (Karnieli et al. 2010; Sruthi and Aslam 2015). In most
studies, the NDVI is considered to be in the range of −1 to +1
(Myneni et al. 1995). However, satellite-derived drought index
values in most parts of arid regions have corresponded to very
low values of NDVI, such as those of various geomorphic fea-
tures (e.g., deserts and water bodies) or areas without notable
vegetation cover. In other words, such features are categorized
by negative or low values of VLC and VSWI, which are not
significant for representing drought indices, and show NDVI
values lower than 0.2, whereas the general range for green veg-
etation cover is between 0.2 and 1 (Al-doski et al. 2013; Gandhi
et al. 2015; Qader et al. 2016). Therefore, this study attempted to
focus on areas where NDVI values are greater than 0.2, and each
pixel greater than the 0.2 threshold is to be consecutive over the
available long-term MODIS satellite data. Such pixels meeting
these two criteria are referred to as sustained vegetation cover
(SVC) in this study and used to identify the relationship between
the time series of SVC and the spectral parameters of vegetation
cover and rainfall deficiency-based drought indices for possible
replacement of other indices by SVC.

2 Materials and methods

2.1 Study area

The Middle East (ME) is a diverse geographical region with a
total area of approximately 7.2 million km2 located in south-
western Asia and northeastern Africa. The topography of the
region is complex, including several deserts and high

mountains in Iran and Turkey, and most of the land is classi-
fied as arid or semi-arid (Gophen 2008; Barlow et al. 2016).
This region extends from northeast Africa, through Egypt, the
east coast of the Mediterranean Sea through Iran, and
throughout the Arabian Peninsula (Fig. 1). It has an estimated
population of about 450 million (UN 2015). Temperature and
precipitation vary considerably throughout the region and
even within countries. The Black Sea in Turkey and the
Caspian Sea coasts in northern Iran receive about 2000 mm
of annual precipitation, whereas the central desert regions of
the ME often receive no or very low rainfall. This indicates
that the distribution of precipitation is closely dependent on
topography, especially in mountainous areas where precipita-
tion occurs mostly during the cold season due mainly to the
orographic effects of eastward storms (Barlow et al. 2016).
Climate conditions in the ME vary greatly based on the geog-
raphy and season. Some areas have a Mediterranean-type cli-
mate, and the well-watered highlands of Turkey and the Iran
mountains are important as resources for the major rivers of
this region. The hot and arid, or desert, climate predominates
in many other parts of the region, especially in many Arabian
countries where the climate is fairly consistent throughout the
year and there are only two distinct seasons (Hasanean 2004).

2.2 Data and pre-processing

In this study, we used Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor products as satellite data
to derive the NDVI and LST, including the ERA-Interim pre-
cipitation data. We obtained the MOD13C2 version 6 NDVI
(details in Didan et al. 2015) for NDVI and also the
MOD11C3 LST products (Wan 2008), which provide a long
time series (Feb 2000–Dec 2017) of monthly LST and NDVI
of the entire globe in a CGM granule (consists of a geographic
grid with 7200 columns and 3600 rows representing the entire
globe). Moreover, the 5600 m spatial resolution is adequate
for the entire study area. The daily precipitation over the study
period was derived from the ERA-Interim reanalysis dataset
of the European Centre for Medium-RangeWeather Forecasts
(ECMWF) (Dee et al. 2011) with a spatial resolution of 0.75°.
The NDVI, LST, and precipitation data of the ECMWF used
in this study are freely available from the following sources:
https://earthexplorer.usgs.gov/ and https://apps.ecmwf.int/
datasets/data/interim-full-daily/levtype=sfc/.

NDVI values range between +1.0 and −1.0, where values
close to +1 represent stronger near-infrared reflectance that is
close to photosynthesizing vegetation (Myneni et al. 1995).
NDVI values less than 0.2 correspond to sand, barren areas,
rock, and non-vegetated land, and negative NDVI values in-
dicate rivers, wetlands, and snow. NDVI values greater than
0.2 indicate sparse, moderate, and dense vegetation cover (Al-
doski et al. 2013; Gandhi et al. 2015; Qader et al. 2016). To
focus on vegetation cover, the pixel scale from 0.2–1 was used
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for extracting SVC, drought indices, and vegetation change
detection, and the NDVI differencing technique was applied
as a radiometric approach to vegetation change detection and
land cover types (Lu et al. 2004; Pu et al. 2008b; Mancino
et al. 2009; Al-doski et al. 2013). In this technique, cell-by-cell
NDVI remotely sensed imagery is compared to detect

differencing images for mapping change/no-change pixels in
a time series (Eq. 1) (Cakir et al. 2006; Pu et al. 2008a).

ΔNDVI ¼ NDVyear ni‐NDVIyear mi ð1Þ

Fig. 1 Delineation of the Middle East as the study region
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The vegetation change in an image of a different date is
represented by a threshold that is based on the standard devi-
ation (SD) and mean of the NDVI differencing image, which
is a commonly used technique for determining vegetation
change (Singh 1989; Coppin et al. 2004; Lu et al. 2004).
The images of two specific data of a time series are subtracted,
and then the first standard deviation μ ± 1 σ is selected for the
positive (NDVI increase) and negative (NDVI decrease)
thresholds to identify changes in each pixel, while the pixels
within the two derived tails characterize the condition of no
change (Mancino et al. 2014). In this study, the NDVI
differencing method was used to present change/no-change
maps for each year by applying the standard deviation (SD)
method (Rahimi et al. 2018).

Vegetation indices are useful tools for indicating drought-
related vegetation conditions (Huang et al. 2014).We used the
vegetation condition index (VCI) and normalized vegetation
supply water index (NVSWI) as vegetation indicators in this
study. The VCI has been applied widely in different climatic
conditions to calculate agricultural and meteorological
droughts based on the min–max normalization approach
(Eq. 2.) (Kogan 1995; Khosravi et al. 2015; Magno et al.
2018), where NDVImax and NDVImin are the absolute maxi-
mum and minimum NDVI values of each month and for each
pixel, j is the index representing the current month, and the
range of VCI values is between 1–100 (Dutta et al. 2015). The
VCI normalizes the NDVI, detects the short-term cli-
mate signal from the long-term vegetation, and
provides a better index for evaluation of water stress
than the NDVI. The classification of the VCI based
on the drought severity classes proposed by Kogan
(1995) is shown in Table 1.

VCIi ¼ NDVIi‐NDVImin

NDVImax‐NDVImin
*100 ð2Þ

The vegetation supply water index (VSWI) is a useful ap-
proach for detecting agricultural drought. Considering the wa-
ter in the canopy, partial closing of leaf stoma leads to de-
creased evapotranspiration, increased LST, and NDVI that is
reduced by the drooping of leaves, which depends on leaf
health (Eq. 3.) (Cai et al. 2010; Dutta et al. 2015).

VSWI ¼ NDVI=LST Tsð Þ ð3Þ

In Eq. (3), Ts is the crop canopy temperature in the field,
which can be perceived as the LST calculated from remote
sensing data (Abbas et al. 2014). Despite the complex or in-
direct relationship between drought severity and VSWI, the
index provides a simple and applied measure for soil moisture
and drought monitoring (Gao et al. 2008; Dutta et al. 2015).
The normalized VSWI (NVSWI) values also allow compari-
sons over the study period (Eq. 4.).

NVSWI ¼ VSWImax‐VSWI

VSWImax‐VSWImin
*100 ð4Þ

Here, NVSWI is the normalized VSWI, VSWI max, and
VSWI min are the respective values of each pixel over the
period of study, and VSWI is the index of the current month.
The range of this index is from 0 to 100, depending on drought
conditions (Table 2).

We also considered meteorological indices, including the
standardized precipitation index (SPI) (McKee et al. 1993)
(Table 3) and the rainfall anomaly index (RAI) introduced
by Van Rooy (1965) to assess the performance of the
SVC. The RAI, as a simple and efficient drought index,
was used to analyze the intensity and frequency of wet
and dry years (Eq. 5).

RAI ¼ R‐μ= ð5Þ

In Eq. (5), RAI is the rainfall anomaly index, R is rainfall, μ
is the long-term average rainfall, and r is the standard devia-
tion. The rainfall anomaly of each year in this study was cal-
culated based on the long-term average rainfall (Table 4).

Table 3 Classification of SPI (McKee et al. 1993)

SPI value Category SPI value Category

>0.2 Extremely wet <-0.2 Extremely Dry

1.5–1.99 Very wet -1.5 to –1.99 Very Dry

1.0–1.49 Moderately wet -1 to -1.49 Moderately Dry

-0.99 to 0.99 Near Normal

Table 1 Classification of vegetation condition index (VCI) (Kogan
1995)

VCI range Classification

50-100% Normal condition of vegetation

35-50% Drought condition

< 35% Severe drought condition

Table 2 Classification of
normalized vegetation
supply water index
(NVSWI) (Dutta et al.
2015)

NVSWI range Classification

zero Severest drought

<20% Severe drought

20–40% Moderate drought

40–60% Slight drought

60–80% Normal

>80 % Wet
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The mean monthly precipitation of the ERA-Interim was
used to calculate the annual SPI and RAI in the current work.

3 Results and discussion

Some studies have considered NDVI values between −1 and
+1, but there are arid and semiarid regions in the ME that are
classified mostly as barren regions and are outside of

phonological detection. Therefore, the threshold of 0.2 was
applied to denote zones of plants with good condition and to
provide an opportunity to trace SVC and vegetation change
detection and classification of vegetation-related indices ob-
tained by this threshold. Figure 2 shows the percentage of total
area attributed to NDVI > 0.2 in each year throughout the
study area. As shown, high NDVI dominance occurred in
April, May, and June, in accordance with the growing season.

3.1 Vegetation land cover (VLC) and long-term
sustained NDVI

The 0.2 threshold of monthly NDVI was calculated over the
study period, and Fig. 3 shows the interquartile range of VLC
by long-term NDVI > 0.2 for the region. The box plots for the
25th and 75th percentile thresholds of the area and the median
of VLC by NDVI > 0.2 distributions reveal differences in the
countries and the whole region. For most countries, the whis-
kers of the box plots are apparently much higher in January,
February, March, and April than in other months, but for

Fig. 2 Pie chart showing distribution of area attributed to NDVI> 0.2 in each year over 2001–2017

Table 4 Classification of
rainfall anomaly index
(Van Rooy 1965)

RAI range Classification

Above 4 Extremely humid

2 to 4 Very humid

0 to 2 Humid

-2 to 0 Dry

-4 to -2 Very dry

Below -4 Extremely dry
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Fig. 3 Distribution of vegetation cover (VC) with NDVI > 0.2 in the
Middle East countries; the orange box shows the 25th percentile, the gray
box represents the 75th percentile; the bold horizontal line represents the

median and the whiskers of the box plots extend to the maximum and
minimum values of distribution in filtering zone of the study region
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Fig. 4 a Average of monthly changes in vegetation cover in the ME. b
The percentage of time changes on vegetation land cover in the ME. c
Ratio of vegetation land cover in each country. d Averaged NDVI
monthly and vegetation land cover in the filtering zone of the study

area. e Averages of pixels’ number and area of monthly sustained
vegetation cover. f The ratio of sustained vegetation area in each year in
the filtering zone of the study area
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Jan Feb Mar

Apr May Jun

a

b

Fig. 5 a Thematic maps showing selected pixels of sustainable NDVI
and spatial extend of monthly mean pixels’ value. b Frequency
distribution of pixels (Jan …Jun) in the filtering zone of the study area.

c Thematic maps showing selected pixels of Sustainable NDVI and
spatial extend of monthly mean pixels’ value. d Frequency distribution
of pixels (Jul … Dec) in the filtering zone of the study area
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Fig. 5 (continued)
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Yemen, for example, in addition to January, these are apparent
in August and September. Figure 4a shows the average
monthly change of vegetation cover, which reveals that the
period ofMarch to June, matching the growing season in most
parts of the region, has the largest value in comparison with
other months. A less sharp increase in average monthly

vegetation land cover from February, a peak during May,
and a continual decrease that becomes a minimum by the
end of January are also apparent. Figure 4b shows the percent-
age of time change of vegetation cover in the region.
Vegetation cover by the NDVI threshold was generally found
in 15 to 20 percent of the total area, such that the lowest
percentage of vegetation cover was in 2008 and the highest
was in 2010. This result corresponds reasonably with the re-
sult of another study done in this region (Khosravi et al. 2017).
The density of vegetation cover in the area of each country is
shown in Fig. 4c. The highest vegetation land cover density is
in Turkey, followed by Iran and the eastern Mediterranean
countries (EMC) including Lebanon and Palestine.
Figure 4d displays the average monthly NDVI and vegetation
cover of the region. It should be noted that the spatial distri-
bution of vegetation cover and the NDVI match, such that the
maximum vegetation cover occurs in months when the NDVI
> 0.2 is high.

To identify the long-term sustained NDVI, the frequency of
pixels with a value greater than 0.2 was identified. A useful way

Fig. 6 Frequency of positive (increased area) and negative (decreased
area) of the vegetation change in the filtering zone of the region

Fig. 7 Monthly vegetation change, increasing (green), and decreasing (yellow) in the Middle East over 2001–2017
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Fig. 8 Representative monthly NDVI differencing, a (2002–2001) and b (2017–2016)
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of defining frequency of pixels is recognition and exploration of
the long-term SVC as a scale for reliable vegetation in terms of
resistance to drought, which can be reported as pixel counts,
percentages, and areas. It is apparent from Fig. 4e that there is
a resemblance between the selected pixels and the average
monthly vegetation cover description. Figure 4f illustrates the
ratio of sustained vegetation area in each year in which the max-
imum conforms to the year 2008 with lowest vegetation cover
over the study period. Therefore, it can be concluded that the
SVC shows the minimum drought-tolerant vegetation cover.

Figure 5a reveals the spatial extent of the monthly mean of
sustained NDVI pixel values in the filtering zone of the region
from January to May, which can quickly pinpoint the SVC.
Figure 5b shows the distribution pattern of the sustained
NDVI pixels, which is roughly the same in January,
February, and March. The highest frequency distribution of
NDVI is in the range of 0.42 to 0.52. Moreover, the number of
sustained NDVI pixels increases in February, and this trend is
also apparent in March. In April, the highest frequency ranges
from 0.3 to 0.4, and as the NDVI increases, the number of
pixels decreases. In May and June, the same trend in the dis-
tribution of pixels is observed. In May, the highest number of
pixels in terms of SVC or sustained pixels always exceeded
0.2 over the course of the study period. In June and August,

the distribution pattern of NDVI values in the sustained pixels is
similar and continues until October and November, but their
number declined over these months. A significant decrease in
the number of pixels is also observed in December (Fig. 5 c, d).

3.2 Vegetation change detection

The differencing method generally compares NDVI pixel
values, and the NDVI differencing results are then attained
by DNDVI by adding a filter threshold to mask water bodies
and barren land (Eq. 1). Table 5 shows the percentage of
NDVI differencing. The increasing values of vegetation cover
range from 7 to −15.7%, and the decreasing values range from
8 to 16.3%. Overall, the vegetation change values showwhere
the trend of average vegetation value is positive, and the prob-
ability of a normal year in the year (ni) is much greater than
that of the time period (mi). The frequencies of positive and
negative changes are shown in Fig. 6. The highest increases
are in May 2001 to 2017, and the highest decline occurred in
March. The monthly changes (increasing/decreasing) shown
in Fig. 7 indicate the highest positive change of percentage of
NDVI differencing in most months of the years 2013–2012
and 2015–2014, whereas the highest negative change of per-
centage of NDVI differencing occurs in most of the months of

Fig. 9 a Comparison of drought
and normal VCI during Jan to
Dec for the filtering zone of the
study area. b Comparison of
drought and normal NVSWI
during Jan to Dec for the filtering
zone of the study area
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2008–2007. The spatial distribution of these changes for
2002–2001 and 2017–2016 are presented in Fig. 8 as an
example.

3.3 Drought monitoring

3.3.1 VCI and NVSWI change distribution

The NDVI-derived drought indices from the satellite data,
VCI and NVSWI, were used to calculate the drought charac-
teristics of the region. Figure 9a shows the change in distribu-
tion of monthly VLC classes over the study area. It was found
that water stress and dry conditions prevailed during all
months, especially in August, over more than 80% of the area
and that less than 20% of the landscape experienced normal
vegetation conditions. Presented in Fig. 9b, the NVSWI, as
the normalized VSWI, can reveal water stress and a lack of
soil moisture. The distribution of the NVSWI shows a pattern
similar to that of the VCI for most months; however, in colder
periods, such as November, October, January, and April, due
to lower LST and evapotranspiration, the percentage of area
affected by drought decreases. The LST time series, shown in
Fig. 10a, suggests that in warm months, when the surface
temperature is increased, the drought condition is intensified.

In addition, the temporal classification of VCI shown in Fig.
10b reveals a distinct difference between the VCI variation in
the year 2008 and that in others, in which around 78%
of the filtering zone endured a VCI value below 50,
which specifies domination of moderate and severe
drought conditions in the region.

3.3.2 Drought change distribution

The SPI and RAI were applied to identify meteorological
drought over the study period. The long-term annual precipi-
tation of the region was derived from ERA-Interim precipita-
tion reanalysis data (Borji et al. 2016). Raziei and Sotoudeh
(2017) reported that validation of the ERA-Interim indicated a
high compliance rate of the reanalysis data with ground-based
precipitation and these data have been used instead of obser-
vational data. The average SPI and RAI values of the filtering
zone are presented in Table 6, which shows the lowest per-
centage of vegetation cover in the region in the year 2008, in
which both meteorological drought indices revealed domi-
nance of drought conditions and the largest decrease in vege-
tation cover (Nosrati et al. 2009; Khosravi et al. 2017). The
highest percentage of SVC or drought-tolerant vegetation has
been archived at approximately 73% during the time series of

Fig. 10 a The bar graph of time
series of LST (°C) in the filtering
zone over 2001–2017. b
Temporal classification of VCI in
the filtering zone of the study area
over 2001–2017
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the study period. In this research, the meteorological drought
indices correspond to the results of SVC and confirm that a
large number of sustained NDVI pixels exist even in drought
conditions. The effects of drought are clearly evident in the
percentage change of vegetation cover in the region.

4 Conclusion

In this study, we examined an approach for identifying
sustained vegetation cover (SVC) in order to map and monitor

the ME region for a relatively long-term period. The ME is
mostly arid and semi-arid land, with sparse vegetation cover in
many areas, and drought is a regular phenomenon over the
region. Therefore, drought is strongly linked with its conse-
quent effects on vegetation. Hence, considering the SVC may
facilitate finding more reliable and realistic results to identify
drought conditions. The long-term monthly remotely sensed
NDVI and LST of MODIS products were used to extract
vegetation and temperature-based drought indices. Because
very low NDVI values (i.e., less than 0.2) are identified as
non-vegetated areas, this value was used as an optimal

Table 6 Percentage change of vegetation cover and drought indexes

Year Mean
NDVI

Mean SPI
(Carlson et al.
1994) value

SPI
Category

RAI
Category

Area
( Km2)

Percentage
of vegetation
cover in ME

Percentage
of sustained
vegetation/
land cover

Mean
of Decrease
(%)

Mean
of Increase
(%)

Year
By Year

2001 0.37 -1.79 Severe dryness Dry 1,172,388 16.599 68

10.8 11.7 2002-2001

2002 0.37 0.20 Near Normal Humid 1194607 16.9 67

11.9 10.6 2003-2002

2003 0.37 0.34 Near Normal Humid 1238207 17.5 64

10.8 11.8 2004-2003

2004 0.37 0.69 Near Normal Humid 1221333 17.3 65

11.0 10.5 2005-2004

2005 0.37 0.72 Near Normal Humid 1208512 17.1 66

11.0 11.1 2006-2005

2006 0.38 -1.02 Moderate dryness Dry 1249691 17.7 64

12.0 11.2 2007-2006

2007 0.37 -0.94 Near Normal Dry 1225502 17.4 65

12.6 10.9 2008-2007

2008 0.38 -1.37 Moderate dryness Very Dry 1090006 15.4 73

10.8 12.5 2009-2008

2009 0.39 -0.91 Near Normal Humid 1217904 17.2 65

11.3 11.6 2010-2009

2010 0.39 0.65 Near Normal Dry 1345374 19.0 59

12.2 11.9 2011-2010

2011 0.39 0.07 Near Normal Humid 1226810 17.4 65

12.0 10.9 2012-2011

2012 0.38 0.13 Near Normal Humid 1197110 16.9 67

11.8 12.2 2013-2012

2013 0.39 0.80 Near Normal Humid 1324267 18.7 60

11.7 11.6 2014-2013

2014 0.38 0.44 Near Normal Humid 1330005 18.8 60

11.2 12.5 2015-2014

2015 0.40 0.88 Near Normal Humid 1354234 19.2 59

12.5 11.0 2016-2015

2016 0.39 1.00 Moderate wet Humid 1325934 18.8 60

11.3 10.1 2017-2016

2017 0.38 0.20 Near Normal Dry 1225811 17.4 65
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threshold for detecting long-term SVC in order to filter NDVI
and classify the confidence levels of the NDVI map. These
filtered vegetation maps were used to obtain the SVC, and the
performance was assessed by comparing it with the estimated
vegetation change, remote sensing-based VCI, and two mete-
orological drought indices (i.e., SPI and RAI). The results
showed the highest severe drought condition and VCL-
based drought in 2008 as well as the highest percentage of
sustained vegetation cover or highest number of sustained
NDVI pixels in this year. Around 75% of the filtering zone
endured a VCI value below 50, which indicates the existence
of severe drought over the region. A comparison of the esti-
mates of SPI, RAI, vegetation change, and VCI showed that
the results were similar to the SVC, which indicates that the
drought condition is consistent with the highest increase in
sustained vegetation. Despite a reduction of vegetation, an
acceptable correlation between SVC and other drought indi-
cators can be attained, which can help to realize resilience of
vegetation cover, especially in arid and semi-arid regions, for
sustainable natural resources and land management practices.
Arid and semi-arid ecosystems have a complex nature, which
make it difficult to predict their response to environmental
stresses such as drought. The use of remote sensing techniques
and vegetation indices is one useful way to understand the
ecosystem responses to environmental stresses in a large area
better andmore rapidly when field data are insufficient. Due to
the impact of climate change of increasing drought in the
study area, the combined use of the methods of remote sensing
and meteorological data can facilitate better understanding
and management of land and water resources in the region
in both the current situation and the future.
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