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A B S T R A C T   

Soil erosion is one of the major threats to the environment and agriculture in the world and rainfall erosivity is 
the most active factor to lead changes in soil erosion. Here, we use statistically downscaled, bias-corrected 
Community Earth System Model (CESM) low-warming simulations to investigate the future changes in rainfall 
erosivity in mainland China under the Paris Agreement global warming targets. The downscaled simulations 
evidently outperform the original CESM simulations in capturing the spatial distribution, magnitudes and annual 
cycle of rainfall erosivity in China in the present day (1986–2005). The rainfall erosivity will be significantly 
increased in most regions of China under the 1.5 ◦C and 2 ◦C warming targets and the regional mean increases 
are approximately 33% and 40%, respectively. In addition, the corresponding increases are even larger than 60% 
and 75%, respectively, in a quarter of mainland China. The increase in rainfall erosivity is resulted from the joint 
contributions of increases in frequency and intensity of erosive rainfall. However, it is dominated by the increase 
in the frequency. Compared with annual rainfall amount, the future warming will bring a four times greater 
impact on the soil erosion potentially caused by rainfall. Limiting global warming to 1.5 ◦C instead of 2 ◦C would 
reduce 17% of the increase in rainfall erosivity in China. For grain producing areas like Sichuan Basin, the middle 
and lower reaches of Yangtze River and South China, the values are approximately 20%. The future warming will 
significantly increase the potential risk of soil loss in China, and it is beneficial to relief this risk if the global 
warming is limited to 1.5 ◦C rather than 2 ◦C.   

1. Introduction 

Soil erosion is one of the major threats to the environment and 
agriculture in the world, and is influenced by multiple factors, such as 
soil properties, ground slope, vegetation, runoff and rainfall (Pimentel 
et al., 1995; Lal, 2004; Pimentel, 2006; Wang et al., 2015). Soil erosion is 
a global problem, and countries in different continents are more or less 
affected by it (Bridges and Oldeman, 1999; Li and Fang, 2016). During 
the second half of the 20th century, nearly one-third of the arable land 
worldwide was lost caused by erosion, and the per capita food produc
tivity has begun to decline (Pimentel et al., 1995). Previous studies 
suggest that the soil erosion rate higher than 1∙t∙ha− 1∙yr− 1 could lead to 
irreversible effects to soil over 50 to 100 years (Jones et al., 2004; 

Verheijen et al., 2009). China severely suffers from soil erosion, the 
Xinjiang and Inner Mongolia are mainly affected by wind erosion, the 
Tibetan Plateau is mainly affected freeze–thaw erosion and the other 
regions are mainly affected by water erosion (Liao, 1999; Wang et al., 
2016). The average potential erosion rate in China is 1.44 t∙ha− 1∙yr− 1, 
and value in some parts of southwestern China is even larger than 10 t∙ 
ha− 1∙yr− 1. (Teng et al., 2019). Therefore, it is necessary to pay attention 
to the future changes of soil erosion in China. 

Many models are applied to quantify the effects of different factors 
on soil erosion, such as the Universal Soil Loss Equation (USLE; Wisch
meiner and Smith, 1978), the Revised Universal Soil Loss Equation 
(RUSLE; Renard et al., 1997), and the revised Universal Soil Loss 
Equation Version 2 (RUSLE2; USDA-Agricultural Research Service, 
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2013). These models have been widely applied to investigate soil 
erosion in different regions worldwide. The soil erodibility, topography, 
land management, soil conservation practice and rainfall erosivity are 
considered as the main factors of water erosion in these models (SWCS, 

2003). Rainfall erosivity is a good index to characterize the ability of 
rainfall in leading soil erosion and can be used to indicate the erosion 
potential (Nearing et al., 2004; Morgan, 2005). As the most active factor 
in the process of soil erosion, changes in precipitation can directly lead 
to changes in soil erosion, and the change rate of the latter can be several 
times of the former. A 4% to 18% increase in precipitation can cause a 
31% to 167% increase in soil loss (Zhang, 2007). In addition, increases 
in the precipitation variability can also lead to the increase in soil 
erosion (Zhang and Nearing, 2005). Therefore, it is of great importance 
to investigate the changes in precipitation and rainfall erosivity under 
the future warming. 

Since the industrial revolution, the global averaged temperature has 
been significantly increased due to the increasing content of greenhouse 
gases in the atmosphere, and will continue to increase (IPCC, 2013). In 
recent decades, global warming has had a great impact on climate sys
tem, ecological environment and human production and life. Global 
warming increases the water vapor content in the atmosphere, which 
can lead to the increases in mean and extreme precipitation (Allan and 
Soden, 2008; Trenberth et al., 2003; Held and Soden, 2006; O’Gorman 
and Schneider, 2009; Min et al., 2011; Zhang and Zhou, 2019). The 
global mean precipitation has been increased in the past century, but the 
changing pattern of precipitation shows obvious spatial diversity in 
different regions (Wentz et al., 2007；IPCC, 2013). Changes in rainfall 
erosivity also show spatiotemporal differences. Annual and seasonal 
rainfall erosivity generally decreased in Elbro Valley of Spain during 

Fig. 1. The division of agricultural regions in mainland China: Northeast China 
Plain (NEP), Northern arid and semiarid region (NAS), Qinghai Tibet Plateau 
(QTP), Loess Plateau (LP), Huang-Huai-Hai Plain (HHHP), Middle-lower 
Yangtze Plain (MLYP), Southern China (SC), Yunnan-Guizhou Plateau (YGP), 
and Sichuan Basin and surrounding regions (SBS). 

Fig. 2. Spatial distributions of rainfall erosivity (first row) and the frequency (second row) and intensity (third row) of erosive precipitation in 1986–2005. The first, 
second and third column represents results in the observation, the original CESM ensemble and the statistically downscaled CESM ensemble, respectively. 
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1966–2006 (Angulo-Martínez and Beguería, 2012). Switzerland evi
denced a significant increase (decrease) in rainfall erosivity in May to 
October (February) during 1989–2010 (Meusburger et al., 2012). 
Rainfall erosivity in mainland China and its water erosion regions 
experienced an insignificant increase in the past several decades (Liu 
et al., 2013; Qin et al., 2016). 

The future warming will lead to increases in both mean and extreme 
precipitation in most global land regions and the response of extreme 
precipitation in the East Asian monsoon region to the future warming is 
among the greatest across all global monsoon regions (Kitoh et al., 2013; 
IPCC, 2013; Chen et al. 2020a; Zhang and Zhou, 2020). Rainfall 
erosivity will increase across central part of India in 2080 s relative to 
1961–2001 (Mondal et al., 2016). The central Asia will evidence an 
increase in rainfall erosivity by 26.6% in the 2070 s under the RCP8.5 
scenario relative to 1950–2000 (Duulatov et al., 2019). 

In order to mitigate the negative impacts of the future climate 
change, the Paris Agreement has set a goal of “holding global warming 
to well below 2 ◦C and pursuing efforts to limit it to 1.5 ◦C above pre- 
industrial levels” (UNFCCC, 2015). Many efforts have been devoted to 
investigate the climate changes under the 1.5 ◦C and 2 ◦C global 
warming and the avoided climate change impacts owing to the 0.5 ◦C 
less warming (e.g., Schleussner et al., 2016; Donnelly et al., 2017; Dosio 
and Fischer, 2017; King et al., 2017; Li et al., 2018a; Nangombe et al., 
2018; Zhang et al., 2018; Zhao and Zhou, 2019; Chen et al., 2020b). 
However, barely any study has focused on the responses of rainfall 
erosivity to the warming targets, especially in China under the stabilized 
1.5 ◦C and 2 ◦C warming targets. 

While global climate models (GCMs) are useful tools to project the 
future change of precipitation and rainfall erosivity, they generally show 
biases in regional scales due to their relatively low horizontal resolution. 
To fill in the gap between the low resolution GCM simulations and the 
desire for finer spatial resolution as well as correction for biases con
tained in the GCMs, various statistical downscaling methods have been 
developed (Wilby & Wigley, 1997; Giorgi, 2006; etc.). The statistical 
downscaling methods use the outputs of the GCMs as predictors for local 
variables and have been widely used in impact assessments (Maurer & 
Hidalgo, 2008; Iizumi et al., 2011; Dosio et al., 2012; Gutmann et al., 
2014; Li et al., 2018b; Yang et al., 2018). In this study, we have devel
oped a set of statistically downscaled, bias-corrected high resolution 
projection data based on the Community Earth System Model (CESM) 
ensemble simulations and investigated the changes in rainfall erosivity 
in China under the 1.5 ◦C and 2 ◦C global warming levels. We have also 
quantitatively estimated the avoided impacts of the 0.5 ◦C less warming. 
In particular, we aim to answer the following questions: (1) whether the 
downscaled simulations can be used to investigate the rainfall erosivity 
in China? (2) How will rainfall erosivity change in different regions of 
China under the 1.5 ◦C and 2 ◦C global warming targets? (3) To what 
extent the changes in rainfall erosivity in China can be avoided if the 
global warming is limited to 1.5 ◦C rather than 2 ◦C? 

The remainder of the paper is organized as follows: Section 2 in
troduces the data and methods used. The main results are shown in 
Section 3, and Section 4 provides the conclusions of this paper. 

2. Data and methods 

2.1. CESM low-warming simulation 

The CESM low-warming simulations released by the National Center 
for Atmospheric Research (NCAR) are applied in this study to investigate 
the rainfall erosivity over mainland China (Kay et al. 2015; Sanderson 
et al. 2017). This set of model simulations are specifically designed to 
investigate the climate changes and climate impacts under the 1.5 ◦C 
and 2 ◦C global warming relative to the pre-industrial levels. A set of 
greenhouse gas emission pathways to obtain long-term global warming 
that do not exceed 1.5 ◦C (1.5 ◦C NE) and 2 ◦C (2 ◦C NE) above pre- 
industrial levels was first produced by a simple Minimal Complexity 

Fig. 3. (a) Taylor diagram for displaying pattern statistics of indices clima
tology over mainland China simulated by original and downscaled CESM 
ensemble simulations verified against observations. Different numbers indicate 
different indices. (b) Regional averaged bias of the mean state for the indices 
over mainland China (units: %). RE = rainfall erosivity, Int12 = intensity of 
erosive precipitation, Freq12 = frequency of erosive precipitation, CESM =
original CESM ensemble mean, SD = statistically downscaled CESM 
ensemble mean. 

Fig. 4. Seasonal cycle of regional averaged rainfall erosivity in main
land China. 
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Earth Simulator (MiCES) model. After that, this set of emission pathways 
were applied to eleven ensemble members of CESM for the simulation 
period from 2006 to 2100. Except for greenhouse gas emission path
ways, all the other anthropogenic forcings, including land use, aerosol 
emission and ozone, follow the RCP8.5 scenario throughout the 21st 
century in the two emission scenarios. In the 1.5 ◦C NE (2 ◦C NE) sce
nario, the global mean temperature reaches 1.5 ◦C (2 ◦C) above the pre- 
industrial levels in 2040 (2090) and stabilizes at this temperature until 
2100. The horizontal resolution of the CESM simulation is 1◦×1◦. For 
more detailed information of the CESM low-warming simulations, 
please refer to Sanderson et al. (2017). 

2.2. The statistical downscaling method 

The statistical downscaling model applied in this study is a regres
sion model (Dettinger et al., 2004). Separate time periods are selected to 
calibrate and validate the model. In this study, the calibration period is 
from 1966 to 1985 and the validation period is from 1986 to 2005. The 
daily precipitation from the CESM simulations is downscaled. The 
detailed downscaling procedure is as follows: Firstly, for each grid in the 
observation dataset, the values in the nearest grid in the CESM simula
tions are set to this certain grid. That means, the horizontal resolution of 
output of the statistical downscaling model is the same as the observa
tion dataset. Then, the daily precipitation in both the observation 
dataset and the CESM simulations is sort at each grid for each month of 
the multiyear during the calibration period. In order to ensure the same 

numbers of wet events (days with precipitation) in the CESM simula
tions and the observation, a threshold is set in the CESM simulations if 
there are more wet events in the simulations. After that, the regression 
relationship between the wet events in the observation and the simu
lation are fit by high-order polynomials. This statistical downscaling 
model has been applied to investigate the climate change in China in 
previous studies (Dai et al., 2014; Li et al., 2018b). 

The credibility of the model is also investigated. Following Salvi et al. 
(2016), the statistical downscaling model is firstly cross validated by 
using 1986–2005 as the calibration period and 1966–1985 as the vali
dation period. Then the capability of the statistical downscaling model 
in capturing the changes in mean precipitation caused by GHG emissions 
is checked. We use the 2 ◦C warmer climate as “high GHG emissions 
period” and the pre-industrial control run as “no anthropogenic GHG 
emissions period” and the results show that the statistical downscaling 
model is credible in a changing climate. Please refer to Salvi et al. (2016) 
for more detailed information of the credibility checking approach. 

2.3. Observation data 

Daily precipitation from the CN05.1 dataset (Xu et al., 2009; Wu 
et al., 2013) with a horizontal resolution of 0.25◦×0.25◦ is used to 
calibrate the statistical downscaling model and to validate the model 
results. The time period is from 1966 to 2005. The CN05.1 dataset is 
interpolated from over 2400 observing stations in China and is quality 
controlled by the China Meteorological Administration (CMA). 

Fig. 5. Seasonal cycle of regional averaged rainfall erosivity in the sub-regions of mainland China.  
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2.4. The bias correction method 

Considering that absolute threshold is used to define erosive pre
cipitation, a simple bias correction method called multiple local scaling 

(LS) factor (Casanueva et al., 2016) is applied to further correct the 
systematic deviation of downscaled precipitation for each season at each 
grid: 

Fig. 6. Relative changes in rainfall erosivity in 2081–2100 relative to 1986–2005 in the (a) 1.5 ◦C and (b) 2 ◦C warmer climates. Subplot (c) shows the differences 
between the 2 ◦C and 1.5 ◦C. Dotted areas are statistically significantly different from zero at the 10% level according to Student’s t-test. Subplot (d) shows CDFs for 
regional aggregated changes in rainfall erosivity in 2081–2100 relative to 1986–2005. The shaded areas represent the range of one standard deviation across 
members and the lines represent the multimember mean. Subplot (e) is the regional mean changes in rainfall erosivity in 2081–2100 relative to 1986–2005, and the 
black sticks over the bars show the range between maximum and minimum values across ensemble members. 
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RRLS = RRDS
RMOBS

RMDS
(1)  

where RRDS is the daily downscaled precipitation, respectively. RMOBS 
and RMDS are the seasonal mean observed and downscaled precipitation, 
respectively. RMOBS

RMDS 
is the scaling factor and applied in both the present 

day simulation and future projections. 

2.5. Rainfall erosivity factor (R-factor) 

Due to the lack of high time resolution precipitation data, daily 
precipitation is widely used to calculate the R-factor (e.g. Hoyos et al., 
2005; Angulo-Martínez et al., 2009; Angulo-Martínez and Beguería, 
2012; Zhu and Yu, 2015). The method proposed by Zhang et al. (2002) is 
applied in this study. This method has been widely used to calculate R- 
factor in different regions of China (Men et al., 2008; Huang et al., 2013; 

Ma et al., 2014; Yang and Lu, 2015; Qin et al., 2016). The calculation 
formula is as follows: 

Ri = α
∑k

j=1
(Dj)

β (2)  

where Ri is the rainfall erosivity in the ith half-month of the year, and its 
unit is MJ∙mm∙ha− 1∙h− 1. Dj is the effective rainfall for day j in this 
certain half-month, that means Djis set to the actual rainfall if the rainfall 
in a day is larger than 12 mm (the threshold of erosive precipitation in 
this study), otherwise, Djis set to zero. k is the number of days in this 
half-month. α and β are parameters calculated based on continuous 
rainfall data series with a high time resolution and the empirical for
mulas are as follows: 

β = 0.8363+ 18.144Pd12
− 1 + 24.455Py12

− 1 (3)  

α = 21.586β− 7.1891 (4) 

Pd12 and Py12 represent the average daily and annual rainfall for 
erosive precipitation days, respectively. This daily rainfall erosivity 
model can well estimate the climatology of rainfall erosivity and its 
seasonal distribution, especially in the regions with abundant precipi
tation. However, the model may underestimate the erosion caused by 
extreme storm (Zhang et al., 2002). 

2.6. Time periods and sub-regions 

The period from 1986 to 2005 is referred as the present day and the 
period from 2081 to 2100 in the two low-warming scenarios represent 
the 1.5 ◦C and 2 ◦C global warming levels above the pre-industrial levels. 

The study region is classified into nine sub-regions according to the 
agricultural regions in mainland China (Fig. 1): Northeast China Plain 
(NEP), Northern arid and semiarid region (NAS), Qinghai Tibet Plateau 
(QTP), Loess Plateau (LP), Huang-Huai-Hai Plain (HHHP), Middle-lower 
Yangtze Plain (MLYP), Southern China (SC), Yunnan-Guizhou Plateau 
(YGP), and Sichuan Basin and surrounding regions (SBS). 

2.7. Definition of indices and avoided impact 

Three indices are used in this study. The erosive precipitation day 
defined in this study is a day when the daily precipitation is larger than 
12 mm. Freq12 and Int12 are the annual frequency and annual mean 
intensity of erosive precipitation. Besides, RE represents rainfall 
erosivity in the following parts. 

The impact of rainfall erosivity that avoided at 1.5 ◦C compared with 
the 2 ◦C warming level is calculated using the formula below (Li et al., 
2018a): 

AI =
C2.0 − C1.5

C2.0
× 100% (5)  

where AI is the avoided impact. C1.5 and C2.0 represent the changes of 
rainfall erosivity at the 1.5 ◦C and 2 ◦C warming levels relative to the 
present day. 

3. Results 

3.1. Validation of the model simulations in the present day 

We first evaluate the model performance. In the present day, the 
annual rainfall erosivity decreases from the southeast to the northwest 
of China in the observation, like that of the annual precipitation, ranging 
from higher than 10,000 MJ∙mm∙ha− 1∙h− 1∙a− 1 to lower than 50 MJ∙mm∙ 
ha− 1∙h− 1∙a− 1 (Fig. 2a). For the regional mean of the sub-regions, it is 
highest in SC and lowest in NAS (Figs. 1 and 2a). The Freq12 also de
creases from the southeast to the northwest of China, from larger than 

Table 1 
Regional mean changes of rainfall erosivity in 2081–2100 relative to 1986–2005 
(units: %) in different regions of mainland China. The “_CESM” represents the 
results in the original CESM projections and “_SD” represents the results in the 
SD projections. The number in [ ] represents the standard deviation across the 
ensemble members.   

1.5 ◦C _CESM 1.5 ◦C _SD 2 ◦C _CESM 2 ◦C _SD 

NEP 16 [10] 19 [12] 15 [10] 18 [12] 
YGP 30 [6] 38 [7] 37 [6] 43 [7] 
NAS 25 [9] 30 [9] 29 [9] 38 [9] 
SC 22 [14] 29 [17] 30 [14] 36 [17] 
SBS 40 [7] 53 [13] 51 [7] 65 [13] 
MLYP 26 [6] 32 [7] 37 [6] 42 [7] 
QTP 23 [7] 66 [11] 31 [7] 91 [11] 
LP 21 [9] 31 [11] 27 [9] 34 [11] 
HHHP 18 [7] 24 [12] 20 [7] 21 [12] 
CN 25 [3] 33 [6] 33 [3] 39 [6]  

Fig. 7. (a) Absolute and (b) relative regional mean changes in rainfall erosivity 
over mainland China in 2081–2100 relative to 1986–2005 in the (a) 1.5 ◦C and 
(b) 2 ◦C warmer climates. The shaded areas represent the range of one standard 
deviation across members and the lines represent the multi-member mean. 
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40 days per year to smaller than 2 days per year (Fig. 2b). Generally, the 
Int12 also shows similar spatial distribution with the RE (Fig. 1c), 
however, the central value is located between the Yangtze River and the 
Yellow River in eastern China. Hence, the spatial distribution of RE over 
mainland China is the combined results of frequency and intensity of 
erosive precipitation. 

The original CESM low-warming simulations (hereafter the CESM) 
can roughly capture the spatial distribution and magnitudes of RE in 
mainland China, but overestimate RE in most parts of western China and 
underestimate it in most parts of eastern China (Fig. 2d). Therefore, the 
gradient of RE from southeast to northwest China is smaller in the CESM 
than in the observation. This bias is reflected in both the frequency and 

Fig. 8. Relative changes in the frequency of erosive precipitation in 2081–2100 relative to 1986–2005 in the (a) 1.5 ◦C and (c) 2 ◦C warmer climates. Subplot (e) 
shows the differences between the 2 ◦C and 1.5 ◦C. Subplots (b), (d) and (f) correspond to subplots (a), (c) and (e), but for changes in the intensity of erosive 
precipitation. Dotted areas are statistically significantly different from zero at the 10% level according to Student’s t-test. 
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intensity of erosive precipitation, especially the frequency (Fig. 2e and 
f). The statistical downscaling simulations (hereafter the SD) show 
evident improvement compared with the CESM in capturing the 
climatology characteristics of RE in mainland China (Fig. 2g). Both the 
spatial distribution and the magnitude are more close to the observation. 
Similar improvement is evident in the frequency and intensity of erosive 
precipitation in the SD (Fig. 2h and i). 

We further quantitatively measure the model skill (Fig. 3). Taylor 
diagram is used to evaluate the performance of the SD and the CESM in 
terms of pattern correlations, the root-mean-square differences, and the 
ratios of spatial variations in the simulated and observed values of the 
RE, Freq12 and Int12 (the observation is used as the reference). In the 
CESM, the pattern correlation of RE is around 0.2 and the ratio of spatial 
standard deviation is more than 2.0 (Fig. 3a). The regional averaged 
biases of RE in most sub-regions are larger than 30% and even 60% 
(Fig. 3b). The biases of RE in the CESM are mainly caused by the biases 
in the Freq12. The pattern correlation is around 0.2 and the regional 
averaged biases are larger than 60% in most sub-regions. Differently, the 
biases of Int12 are relatively small. The pattern correlation is around 
0.6, and the ratio of spatial standard deviations is approximately 0.75 
(Fig. 3a). In addition, the regional averaged biases are within ± 15% in 
most sub-regions (Fig. 3b). The SD outperforms the CESM for all the 
three indices, with pattern correlations larger than 0.9 and the ratios of 

spatial standard deviations close to 1.0, especially for Freq12 (Fig. 3a). 
The regional averaged biases are also smaller in the SD, with values 
within ± 15% for the three indices in most sub-regions (Fig. 3b). 

The regional mean RE over mainland China shows obvious annual 
cycle in the present day, with peak values of about 360 MJ∙mm∙ha− 1∙h− 1 

occurring in July (Fig. 4). The annual cycle of RE in mainland China can 
be roughly reproduced in the CESM, but is overestimated throughout the 
year. Besides, the peak values of RE occurs in June. Compared with the 
CESM, the SD exhibits obvious improvements in reproducing the annual 
cycle of regional mean RE in mainland China, with the overestimation 
evidently reduced and the peak value occurring in July (Fig. 4). There 
are certain differences in the annual cycle of RE in different sub-regions, 
but the peak values all occur in summer (Fig. 5). Consistent with the 
results shown above (Figs. 2 and 3), The CESM underestimates the RE in 
southern China and overestimates the RE in northern China (Fig. 5). In 
addition, these biases exist throughout the year. The SD performs well in 
most sub-regions, and only overestimates the RE in MLYP and HHHP in 
summer. 

In general, compared with the original CESM simulations, the SD 
performs better in reproducing the characteristics of rainfall erosivity 
and its important determinants, the frequency and intensity of erosive 
precipitation, in the present day in mainland China. However, there are 
still some biases in the SD. The reason is that, the statistical downscaling 
method applied in this study can help to obtain more detailed spatial 
distribution of precipitation and reduce the biases of climatic state of 
precipitation in the global model. After statistical downscaling, the 
biases of precipitation with different intensity will be reduced but not 
fully eliminated. In the following analysis, the SD is applied to investi
gate the changes in rainfall erosivity and erosive precipitation in 
mainland China at the 1.5 ◦C and 2 ◦C global warming levels. 

3.2. Future projections of rainfall erosivity 

We first examine the changes in annual rainfall erosivity. The 
changing patterns of RE in the two warmer climates are similar. 
Compared with the present day, the annual rainfall erosivity will in
crease significantly in most areas of mainland China at the 1.5 ◦C and 
2 ◦C global warming levels, with the large values occurring in central 
China and the southern edge of the Tibetan Plateau (Fig. 6a and b). 
Compared with the 1.5 ◦C warmer climate, the extra 0.5 ◦C warming in 
the 2 ◦C warmer climate will significantly lead to larger RE in most parts 
of China, except some parts of North China (Fig. 6c). The most obvious 
increases (larger than 16%) lie in the Sichuan Basin and parts of 
Southeast China, two of the important grain producing areas in China. 

The cumulative density function (CDF) is applied to quantitatively 
analyze the changes of RE in China. Individual grid cells are weighted by 
their area. The CDFs can apparently exhibit both the median change of 
RE in China and the changes in small fractions. Compared with the 
present day, about half landmass of mainland China will experience a RE 
increase of 30% and 40% in the 1.5 ◦C and 2 ◦C warmer climates, 
respectively. The corresponding increases will be even larger than 60% 
and 75%, respectively, in a quarter of mainland China (Fig. 6d). 
Regional mean changes in RE in mainland China are approximately 33% 
and 40% under the 1.5 ◦C and 2 ◦C global warming, respectively, about 
four times larger than the corresponding increase in precipitation (5.5% 
and 7.3% under the 1.5 ◦C and 2 ◦C global warming, respectively; Li 
et al., 2019). QTP and SBS will experience larger RE increase than other 
sub-regions (Fig. 6d). Compared with the original CESM projection, the 
increasing magnitudes of rainfall erosivity in the SD are larger in all the 
nine subregions in the two warmer climates and the differences between 
these two sets of simulations are largest in the Tibetan Plateau (Table 1). 
The possible reason for these differences is that the SD can better capture 
the spatial distributions and magnitudes of frequency and intensity of 
erosive precipitation. 

Seasonal features of changes in RE over China are further investi
gated (Fig. 7). We first examine the absolute changes of RE. In the two 

Fig. 9. Changes in rainfall erosivity avoided over mainland China and its sub- 
regions in the 1.5℃ warmer climate compared with the 2℃ warmer climate in 
(a) the SD and (b) the original CESM. 
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warmer climates, the RE will increase throughout the year, with peak 
values occurring in summer months (Fig. 7a). The increases in RE caused 
by extra 0.5 ◦C warming in the 2 ◦C warmer climate mainly appear in 
June to September (Fig. 7a). Distinctly, the magnitudes of relative 
changes in RE among different months are comparable, around 30% and 
40% in the 1.5 ◦C and 2 ◦C warmer climates, respectively (Fig. 7b). 
Therefore, the future warming basically will not change the seasonal 
distributions of RE in mainland China in terms of regional mean, but 
lead to an overall RE increase throughout the year. 

Freq12 will increase in most parts of mainland China in the warming 
future (Fig. 8a and b). The changing patterns of Freq12 in the two 
warmer climates are similar with those of RE (Figs. 6 and 8). Int12 will 
also increase under the future warming, but the magnitudes are obvi
ously smaller than those of increase in Freq12 (Fig. 8d and e). Therefore, 
increases in the frequency of erosive precipitation contribute more to the 
increases in RE in the warming future than the intensity of erosive 
precipitation. It is worth noting that the increasing magnitudes of RE are 
evidently larger than both Freq12 and Int12. 

We use formula (5) to quantify the impacts of increased RE avoided if 
the global warming is controlled well below 1.5 ◦C rather than 2 ◦C 
(Fig. 9). In the SD, compared with the 2 ◦C warmer climate, the half- 
degree less warming in the 1.5 ◦C warmer climate will help to reduce 
17% of the increase in RE over mainland China. Except NEP and HHHP, 
the increases of RE will be avoided in most sub-regions of mainland, 
from 10% in LP to 28% in QTP. For major grain producing areas like 
SBS, MLYP and SC, the avoided increase in RE are approximately 20%. 
The results in the original CESM are comparable with or a little larger 
than those in the SD in most subregions. The half-degree less warming in 
the 1.5 ◦C warmer climate will help to reduce 23% of the increase in RE 
over mainland China. 

4. Conclusion and summary 

The CESM low-warming simulations released by NCAR are specif
ically designed to investigate climate change and climate impacts of 
1.5 ◦C and 2 ◦C global warming above the pre-industrial levels. In this 
study, statistically downscaled and bias-corrected CESM low-warming 
ensemble simulations are developed and applied to investigate the 
changes in rainfall erosivity and erosive precipitation in mainland China 
at the 1.5 ◦C and 2 ◦C global warming levels. The main conclusions are 
summarized as follows:  

(1) Compared with the original CESM low-warming simulations, the 
downscaled simulations show much better performance in 
reproducing the spatial distributions and annual cycle of RE in 
mainland China. The pattern correlations of RE, Freq12 and Int12 
are larger than 0.9, and the regional mean biases of the three 
indices are within ± 15% in most sub-regions.  

(2) The RE will evidence a robust increase in mainland China, with 
larger increasing magnitudes under 2 ◦C compared with 1.5 ◦C 
warming target in most sub-regions. The increasing magnitudes 
are larger than 60% and 75% in a quarter of mainland China at 
the 1.5 ◦C and 2 ◦C global warming levels, respectively. The ab
solute increases of regional mean RE over China show obvious 
seasonality, with peak values occurring in summer. However, the 
relative increases of RE among different months are comparable, 
around 30% and 40% in the 1.5 ◦C and 2 ◦C warmer climates, 
respectively. The increasing magnitudes of rainfall erosivity in 
the original CESM are a little smaller than those in the SD. 

(3) The increase in RE is resulted from the joint contributions of in
creases in Freq12 and Int12. The spatial distribution of increases 
in RE is dominated by that of the increase in Freq12. Differently, 
the increases in the intensity of erosive precipitation are rela
tively uniform in mainland China in the two stabilized warming 
conditions. In addition, the changing magnitudes of RE are much 
larger than those of annual precipitation or the frequency and 

intensity of erosive precipitation. The increasing magnitudes of 
regional mean RE in mainland China are about four times larger 
than the corresponding increase in annual precipitation in the 
two warmer climates. Therefore, compared with annual rainfall 
amount, the future warming will bring a greater impact on the 
soil erosion potential caused by rainfall.  

(4) Compared with the 2 ◦C warmer climate, the 0.5 ◦C less warming 
in the 1.5 ◦C warmer climate will help to avoid 17% of the in
crease in rainfall erosivity in mainland China, with greatest 
reduction of 28% occurring in QTP. For grain producing areas 
like SBS, MLYP and SC, the values are approximately 20%. The 
correspond values in the original CESM are comparable with or a 
little larger than those in the SD in most subregions. The half- 
degree less warming in the 1.5 ◦C warmer climate will help to 
reduce 23% of the increase in RE over mainland China. Our 
analysis suggests that the future warming will significantly in
crease the potential risk of soil erosion in mainland China, and 
controlling the global warming to 1.5 ◦C above the pre-industrial 
levels rather than 2 ◦C is beneficial to reduce this risk. 

Rainfall erosivity is directly associated with the intensity, frequency, 
and amount of precipitation. Different models and methods have been 
applied to investigate the changes of these different characteristics of 
precipitation over East Asia under the 1.5 ◦C and 2 ◦C warming condi
tions, including the regional climate models (Li et al., 2018c), the 
Coupled Model Intercomparison Project Phase 5 (CMIP5) models (Zhou 
et al., 2019) and the stand-alone AGCM simulations of the HAPPI (Half- 
a-degree Additional warming, Prognosis and Projected Impacts) project 
(Lee et al., 2018). The results are qualitatively consistent but quantita
tively different among these models and methods (Li et al., 2019). The 
results of this study are only derived from one set of coupled low- 
warming simulations, and this may lead to uncertainties in the projec
tion of rainfall erosivity. Further investigation should be done in the 
future work due to the model dependence of the results presented here. 
Moreover, climate projections are scenario-dependent. A new set of 
future scenarios, namely the combined scenarios of the Shared Socio
economic Pathways (SSPs) and Representative Concentration Pathways 
(RCPs) are designed and applied to the CMIP6 models (O’Neill et al., 
2016). The changes of rainfall erosivity under these new scenarios 
should be also investigated. 

Changes of rainfall erosivity is a good indicator of the changes of soil 
erosion potential in the warming future. It is worth noting that, in 
addition to the changes of rainfall, changes of land use/land cover 
(LULC) also have large impacts on the changes of soil erosion. For 
example, the conversion of naturally vegetated areas for agricultural 
uses may intensify soil erosion (Tarolli and Sofia, 2016; Yang and Lu, 
2018) and grain for green can effectively decrease the soil erosion (Deng 
et al., 2012). There are large uncertainties in the future greenhouse gas 
emissions and land uses. Statistically explore their relative contributions 
to the changes of soil erosion is of great importance to the adaptation 
and mitigation policies (Borrelli et al., 2020; Saha and Ghosh, 2020). 
Borrelli et al. (2020) uses three alternative (2.6, 4.5, and 8.5) Shared 
Socioeconomic Pathway and Representative Concentration Pathway 
(SSP-RCP) scenarios to investigates the impacts of land use and climate 
change on the global erosion by water. They indicate that the future 
changes of soil erosion are dominated by climate change and the con
tributions of socioeconomic developments impacting land use to 
changes in water erosion are relatively small. Similarly, changes of 
surface hydrology of the Ganga river basin are also dominated by the 
climate change mitigation pathways (Saha and Ghosh, 2020). The 
relative contributions of changes in rainfall and land use to the changes 
of soil erosion in China in the 1.5 ◦C and 2 ◦C warmer climates are still 
not clear and should be further investigated in the future work. 
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