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HIGHLIGHTS

 We proposed an improved meta-Gaussian distribution-based (MGD) method for 

post-processing of precipitation forecasts by censored maximum likelihood 

estimation (CMLE).

 The proposed method improves the forecast skill and overall reliability over the 

original MGD method for sub-daily precipitation.

 The proposed method achieves similar forecast skill with the state-of-the-art 

censored, shifted Gamma distribution-based EMOS if both use ensemble mean as 

the only predictor.
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ABSTRACT

Statistical post-processing methods have been applied in hydrometeorological 

forecasting to correct the bias and spread error in raw forecasts. Among various post-

processing methods, the meta-Gaussian distribution model (MGD) is one of the early 

successful methods for post-processing of precipitation forecasts and has been applied 

in the National Weather Service’s Hydrologic Ensemble Forecast System (HEFS), 

together with the mix-type meta-Gaussian distribution model (MMGD). However, 

recent studies have shown that the original MGD cannot yield reliable forecasts 

especially for sub-daily precipitation forecasts (e.g., 6-hourly). In this paper, we 

improved the MGD model by applying the censored maximum likelihood estimation 

(CMLE) method. We conducted experiments using GEFS reforecasts in Huai river 

basin in China to evaluate its performance. The results show that the proposed method 

performs better than the original MGD for sub-daily precipitation forecasts. The 

proposed method also achieves similar forecast skill with the state-of-the-art censored, 

shifted Gamma distribution-based ensemble MOS (CSGD-EMOS) if both use 

ensemble mean as the only predictor. The results indicate that the proposed CMLE-

MGD can be useful for further applications such as flood forecasting that needs 

forecasts of high temporal resolution.

Keywords: Ensemble forecasts; Precipitation; Statistical post-processing; Meta-

Gaussian distribution.
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1 Introduction

Hydrometeorological ensemble forecasts are vitally important for applications 

such as flood forecasting and water resource management. However, due to different 

uncertainty sources including model inputs, initial conditions, model structures and 

parameters, raw forecasts from meteorological or hydrological models suffer from 

systematic bias and dispersion errors and need to be corrected (Demargne et al., 2014; 

Schaake et al., 2010; Schaake et al., 2007b). Various statistical post-processing methods 

have been developed to correct these errors and achieve sharp forecasts subject to 

calibration (Gneiting et al., 2007; Gneiting and Katzfuss, 2014; Gneiting and Raftery, 

2007). These methods mainly follow the model output statistics (MOS) scheme, namely 

to fit the statistical models using historical forecasts and corresponding observations, 

then apply the fitted model to calibrate future forecasts (Wilks, 2011).

The post-processing of precipitation forecasts is challenging. One difficulty is the 

intermittent nature of precipitation, namely a positive probability for zero precipitation 

and a skewed distribution for nonzero precipitation (Scheuerer and Hamill, 2015; 

Shrestha et al., 2015; Zhang et al., 2017). During the past decade, several post-

processing methods have been developed to deal with this problem. Some methods 

apply data transformations and then develop statistical models for the transformed 

variables. This type of methods includes logistic regression (LR) models (Messner et 

al., 2014a; Messner et al., 2014b; Wilks, 2009), meta-Gaussian distribution (MGD) 

models (Kelly and Krzysztofowicz, 1997; Krzysztofowicz and Evans, 2008; Schaake 

et al., 2007a; Wu et al., 2011) and Bayesian joint probability (BJP) (Robertson et al., 
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2013; Shrestha et al., 2015; Wang et al., 2009; Wang et al., 2012). There are also other 

models that do not need transformations, such as the censored, shifted Gamma 

distribution ensemble MOS (CSGD-EMOS) (Scheuerer and Hamill, 2015). Multi-

model averaging methods have also been developed particularly for precipitation 

forecasts, such as the Gamma distribution-based Bayesian model averaging (Raftery et 

al., 2005; Sloughter et al., 2007).

Moreover, the heteroscedasticity problem also exists for post-processing of 

precipitation forecasts, which means the forecast uncertainty increases with the 

magnitude of forecast variables (Scheuerer and Hamill, 2015). To deal with the 

heteroscedastic problem, the non-homogenous regression scheme can be applied, 

namely to adjust the variance of the predictive distribution by predictors such as raw 

forecast mean or spread (Gneiting et al., 2005; Messner et al., 2014b; Scheuerer and 

Hamill, 2015). Besides, the modeling of the spatio-temporal correlation of precipitation 

forecasts is important for applications such as hydrological forecasting. To solve this 

problem, non-parametric reordering methods have been widely used. Notable ensemble 

reordering methods including Schaake shuffle (Clark et al., 2004), ensemble copula 

coupling (ECC) (Schefzik et al., 2013) and other variants of the two schemes (Joseph 

et al., 2017; Schefzik, 2015; Scheuerer et al., 2017; Wu et al., 2018). Parametric 

methods based on copula or the geostatistical output perturbation model (GOP) have 

also been developed in recent years (Berrocal et al., 2008; Gel et al., 2004; Möller et 

al., 2013; Pinson and Girard, 2011). A recent paper did a more detailed review of those 

post-processing methods (Li et al., 2017).
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Among existing post-processing methods, the meta-Gaussian distribution (MGD) 

model (Schaake et al., 2007a) is one of the early successful methods and it has been 

applied in the Meteorological Ensemble Forecast Processor (MEFP) for National 

Weather Service’s Hydrologic Ensemble Forecast Service (HEFS) (Demargne et al., 

2014), together with the mixed-type meta-Gaussian distribution-based model (MMGD) 

(Wu et al., 2011). However, Wu et al. (2011) found that the original MGD by Schaake 

et al. fails to obtain reliable forecasts for 6-hourly precipitation, because the estimation 

of the correlation coefficients of transformed forecasts and observations in the original 

MGD cannot yield satisfying results (Wu et al., 2011). This disadvantage restricts the 

original MGD for applications such as flood forecasting that needs precipitation 

forecasts at high temporal resolution. 

In this paper, we proposed a new version of MGD model by applying maximum 

likelihood estimation for censored data (CMLE for short) to improve its performance. 

With the proposed CMLE-MGD model, we treated the zero precipitation values as 

“left-censored” data. Here the term “left-censored” means it is only known that the 

precipitation amount is less than the threshold of zero precipitation (e.g., 0.1 mm/day), 

but the exact precipitation amount is unknown. In this way, we made it feasible to 

estimate the correlation coefficients between the observations and forecasts including 

zero precipitation values. This censoring technique has been successfully applied in 

other post-processing models such as HCLR (Messner et al., 2014a) and BJP 

(Robertson et al., 2013). We compared the proposed CMLE-MGD with the original 

MGD and the state-of-the-art CSGD-EMOS to demonstrate the effectiveness of the 



  

6

new method. 

The paper is organized as follows. Section 2 introduces the data and methods used 

in this paper. Section 3 describes the validation of the assumptions for the post-

processing model. Section 4 provides the comparison results of the three post-

processing methods. Section 5 discusses the advantages and limitations of the proposed 

method. Finally, Section 6 summarizes the main conclusions.

2 Data and methods

2.1 Study region and data

As shown in Fig. 1, the Huai river basin  (30°55'–36°36'N, 111°55'–121°25'E)

is situated between the Yangtze and Yellow rivers in Eastern China, with an 

approximate drainage area of 270,000 km2. The mean annual precipitation is 

approximately 700–1600 mm, decreasing from the south to the north. Huai river basin 

is under the influence of the Asian monsoon system, so most of the precipitation occurs 

during the June–August flooding season. The characteristics of the 15 subbasins used 

in this study are shown in Table 1 (Liu et al., 2013). The 15 subbasins were divided by 

the China Meteorological Administration for hydrometeorological forecasting purpose.

Figure 1 is here.

Table 1 is here.

The precipitation forecasts used here is the Global Ensemble Forecast System 

(GEFS) reforecasts provided by NOAA’s National Centers for Environmental 

Prediction (NCEP) (Hamill et al., 2013). The raw reforecasts are downloaded at a 

spatial resolution of 1°×1° grid. Observations are the 0.1°×0.1° gridded hourly China 
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Hourly Merged Precipitation Analysis (CMPA-Hourly) obtained from the China 

Meteorological Administration (Shen et al., 2014). The precipitation analysis is merged 

from gauge-based analysis and satellite-based CMORPH precipitation from NOAA 

Climate Prediction Center (CPC). As the CMPA-Hourly dataset is only available from 

2008, here we used ten years of observations and corresponding GEFS reforecasts in 

rain season (June–August) during 2008–2017. The mean areal precipitation (MAP) 

forecasts and observations were calculated from gridded GEFS forecasts and 

observations by inverse distance interpolation method. 

2.2 The original MGD and CMLE-MGD

The original MGD and CMLE-MGD both follow four steps as shown in Fig. 2, 

namely 1) the Normal quantile transformation (NQT) for both the forecasts and the 

observations; 2) the estimation of the joint distribution between the transformed 

observations and forecasts in Normal space; 3) the computation of the conditional 

distribution of observations given the new forecasts and the inverse NQT; 4) the 

Schaake shuffle procedure to maintain the spatio-temporal correlation. The difference 

between the original MGD and CMLE-MGD only exists in the second step. 

Figure 2 is here.

1) The Normal quantile transformation procedure

The Normal quantile transformation (NQT) is designed to transform the non-

Gaussian precipitation forecasts and observations into standard Normal variables as 

follows: 
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(1)𝑢 = Φ ‒ 1
N (𝐹𝑥(𝑥))

(2)𝑣 = Φ ‒ 1
N (𝐹𝑦(𝑦))

where is the inverse of the cumulative distribution function (CDF) of the Φ ‒ 1
N  

standard Normal distribution,  and  are the CDFs of the marginal distribution of 𝐹𝑥 𝐹𝑦

raw forecasts and observations, respectively. In this study, we used mixed-type 

distributions for the marginal distribution of forecasts and observations. For example, 

the marginal distribution of forecasts is as follows:

(3)𝐹𝑥(𝑥) = 𝑝0 + (1 ‒ 𝑝0) ∙ 𝐹𝑥|𝑥 > 0(𝑥)

where  is the probability of the occurrence of precipitation, and  is the 𝑝0 𝐹𝑥|𝑥 > 0

CDF of the precipitation amount given the occurrence of precipitation. The distribution 

for the non-zero precipitation is selected based on the p-value of the Anderson–Darling 

goodness-of-fit test (Anderson and Darling, 1954) for several parametric distributions 

including Pearson Type III, Weibull and the generalized Gamma distribution. These 

three distributions were chosen because they were found to perform well in fitting the 

distribution for daily or sub-daily precipitation amounts (e.g., Papalexiou and 

Koutsoyiannis, 2016; Papalexiou et al., 2018; Ye et al., 2018). These parametric 

distributions also perform well for the study region according to the results of the 

Anderson–Darling test in previous experiments. 

2) The estimation of the joint distribution of transformed forecasts and 

observations in Normal space

In the meta-Gaussian model, the transformed forecasts u and observations v are 

assumed to follow the bivariate standard Normal distribution as follows (Schaake et al., 
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2007a):

(4)𝑓(𝑢,𝑣)~𝑁(𝝁,𝚺)

where , and 𝝁 = (0,  0) 𝚺 = (1,
𝜌,

 𝜌
 1).

The only parameter to be estimated for the joint distribution is the correlation 

coefficient  in Normal space. The difference between the original MGD and the 𝜌

proposed CMLE-MGD is how ρ is estimated. In original MGD, several options are 

provided for the estimation of ρ. The default option is to substitute ρ in Normal space 

by that in the untransformed space. There are also other options in the original MGD, 

but the default option leads to acceptable results in general (Liu et al., 2013; Tao et al., 

2014; Ye et al., 2017). However, this substitution is not correct, and may lead to an 

underestimation in the post-processed results (Wu et al., 2011).

In this paper, we tried to estimate the actual ρ in Normal space directly by applying 

the maximum likelihood estimation for censored data (CMLE). We treated the zero 

precipitation values as “left-censored” at the threshold of zero precipitation (e.g., 0.1 

mm/day used in this study). Here the term “left-censored” means the data is known to 

be less than or equal to the threshold, but unknown precisely. The MLE method for 

censored data was first developed in statistics and has been successfully used in the 

post-processing of precipitation forecasts (e.g., Messner et al., 2014a; Robertson et al., 

2013).

The details of the likelihood functions are described as follows. The CDF value at 

the censoring threshold instead of the density should be used in the likelihood function 

for censored data. Specifically, depending on whether the forecasts and observations 

are censored or not, the likelihood function in Normal space can be divided into four 
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cases as follows (Schepen et al., 2016):

(5)𝐿(𝑢,𝑣;𝜌) = ∏𝑡
𝑖 = 1𝑙(𝑡)

where,

𝑙(𝑡) =

(6){ 𝜙BN(𝑢(𝑡), 𝑣(𝑡);𝜌)                                       𝑖𝑓 𝑢(𝑡) > 𝑢0,𝑣(𝑡) > 𝑣0
ΦN(𝑣0;𝜇𝑣|𝑢,𝜎𝑣|𝑢) ∙ 𝜙N(𝑢(𝑡))               𝑖𝑓 𝑢(𝑡) > 𝑢0,𝑣(𝑡) ≤ 𝑣0
ΦN(𝑢0;𝜇𝑢|𝑣,𝜎𝑢|𝑣) ∙ 𝜙N(𝑣(𝑡))              𝑖𝑓 𝑢(𝑡) ≤ 𝑢0,𝑣(𝑡) > 𝑣0

ΦBN(𝑢0,𝑣0;𝜌)                                            𝑖𝑓 𝑢(𝑡) ≤ 𝑢0,𝑣(𝑡) ≤ 𝑣0

 and  are the transformed values for the thresholds of zero precipitation for 𝑢0 𝑣0

forecasts and observations, respectively. For the first and last cases,  and  are 𝜙BN ΦBN

the density and the CDF for the standard bivariate Normal distribution, respectively. 

For the second case,  is the density for a standard univariate Normal distribution; 𝜙N

 is the CDF of the conditional distribution of observations given ΦN(𝜇𝑣|𝑢,𝜎𝑣|𝑢)

forecasts with parameters as follows:

(7)𝜇𝑣|𝑢 = 𝜌 ∙ 𝑢(𝑡)
(8)𝜎𝑣|𝑢 = 1 ‒ 𝜌2

Similarly, for the third case,  is the density for a standard univariate Normal 𝜙N

distribution;  is the CDF of the conditional distribution of forecasts ΦN(𝜇𝑢|𝑣,𝜎𝑢|𝑣)

given observations with parameters as follows:

(9)𝜇𝑢|𝑣 = 𝜌 ∙ 𝑣(𝑡)
(10)𝜎𝑢|𝑣 = 1 ‒ 𝜌2

3) The computation of the conditional distribution and inverse NQT

After the estimation of the joint distribution, the conditional distribution of 

observation given a new forecast can be obtained exactly in the same way in the original 

MGD scheme (Schaake et al., 2007a). Specifically, if the new forecast is larger than 

zero, the conditional distribution of the observation is a Normal distribution with 
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parameters defined in Eq. 7 – 8. If the new forecast is less than the threshold of zero 

precipitation, the CDF of the observation in Normal space can be written as follows 

(Schaake et al., 2007a):

(11)𝐹𝑣|𝑢(𝑣│𝑢,𝑢 ≤ 𝑢0) =
∫𝑣

‒ ∞
∫𝑢0

‒ ∞𝑓(𝑢,𝑣)𝑑𝑢𝑑𝑣

∫∞
‒ ∞

∫𝑢0
‒ ∞𝑓(𝑢,𝑣)𝑑𝑢𝑑𝑣

=
∫𝑣

‒ ∞ΦN(𝑢0;𝜇𝑢|𝑣,𝜎𝑢|𝑣) ∙ 𝜙N(𝑣)𝑑𝑣

∫∞
‒ ∞ΦN(𝑢0;𝜇𝑢|𝑣,𝜎𝑢|𝑣) ∙ 𝜙N(𝑣)𝑑𝑣

where  is the CDF of the conditional distribution of forecasts given ΦN(𝜇𝑢|𝑣,𝜎𝑢|𝑣)

observations with parameters defined as Eq. 9 – 10;  is the density for a standard 𝜙N

univariate Normal distribution. Then, the observation given a new forecast in original 

space can be obtained by the inverse NQT as follows (Schaake et al., 2007a):

(12)𝑦 = 𝐹 ‒ 1
𝑦 (ΦN(𝐹 ‒ 1

𝑣|𝑢(𝑣|𝑢)))

where  is the CDF of the standard univariate Normal distribution,  is the ΦN 𝐹 ‒ 1
𝑦

inverse of the CDF of the observations.

4) The ensemble generation using the Schaake shuffle procedure

After obtaining the calibrated predictive distribution, ensemble members can be 

generated from the predictive distribution by the sampling method used in the original 

MGD (Schaake et al., 2007a). Firstly, a larger number (e.g., 1000 in this research) of 

equally spaced samples are drawn from the predictive distribution obtained in Step 3. 

Then, the predictive distribution is partitioned into n equal intervals with probability 

equal to 1/n, where n is the ensemble size. An ensemble size of 100 was used in this 

research according to previous experiments. Finally, the ensemble members are 

obtained by computing the sample mean within each interval of the predictive 

distribution. 

Then, Schaake shuffle is applied to generate ensemble series with appropriate 
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spatio-temporal correlation (Clark et al., 2004). Firstly, the current ensemble members 

and the historical observations on similar dates are both ranked. Then the ensemble 

members are reordered to match the rank of the historical observations. In this way, the 

shuffled ensemble members represent the spatio-temporal correlation of historical 

observations. For more details on Schaake shuffle, please refer to Clark et al. (2004). 

2.3 Forecast experiments and verification strategies

To verify the performance of the proposed method, we conducted a 10-fold leave-

one-year-out cross-validation using the 10-year GEFS reforecasts and corresponding 

observations. In other words, we chose nine years of data for training and used the other 

one year of data for verification, and repeated this process for ten times. Post-processing 

models were fitted for each month using a training dataset composed from a 91-day 

window centered on the 15th of each month during the training years. For example, the 

training dataset for the post-processing model in June is the 9-year data within the time 

window of 1st May –30th July, thus a training dataset of  days can be obtained. 91 × 9

In this study, we focused on 6-hourly accumulated precipitation amounts within the 

lead time of five days, because the forecast skill for 6-hourly precipitation is limited 

beyond five days.

Three post-processing methods including the original MGD, CMLE-MGD and 

CSGD-EMOS were applied to the MAP of each subbasin. The CSGD-EMOS is briefly 

described in the appendix. The post-processed forecasts were verified both for all the 

15 subbasins together and for each subbasin individually. The verification for all 15 

subbasins was implemented after pooling the samples from the 15 subbasins and 10-
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fold cross-validations together. The verification for each subbasin was implemented 

after pooling the samples of 10-fold cross-validations together. Several commonly used 

verification metrics were applied, including the relative mean error (RME), the mean 

continuous ranked probability score (CRPS) (Hersbach, 2000) and the Brier skill score 

(BSS) (Brier, 1950). Reliability is the statistical consistency of forecasts and 

observations, and here we used the stratified probability integral transform (PIT) 

histogram (Dawid, 1984; Gneiting et al., 2007; Bellier et al., 2017) to assess the 

reliability. As for discrimination, we used ROC score computed from the relative 

operating characteristic (ROC) curve (Wilks, 2011). The sampling uncertainty of 

metrics including RME, CRPS, BSS and ROC score was estimated by the stationary 

block bootstrap technique (Politis and Romano, 1994) for 1000 times by the software 

of Ensemble Verification System (EVS, Brown et al., 2010). Details of the verification 

metrics can be found in the appendix and related references (e.g., Wilks, 2011). 

The stratified PIT histogram is able to show the reliability for precipitation 

forecasts of different strata. In this work, three strata are divided by the 85% and 95% 

quantiles of raw forecast mean. In other words, the three strata are corresponding to the 

samples with raw forecast mean within the range of 0 – 85% quantiles (light rain), 85% 

– 95% quantiles (moderate rain), and 95% – 100% quantiles (heavy rain). Then, the 

PIT histograms for each stratum are plotted and stacked together, as will be shown in 

Fig. 5. It should be noted that the stratification should be based on forecasts (e.g., raw 

forecast mean as we used here), instead of observations to ensure calibration for each 

stratum (Lerch et al., 2017; Bellier et al., 2017). 
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3 Validation of the model assumption

In this section, we applied the proposed CMLE-MGD and the original MGD 

method to the full dataset described in Section 2 to validate the bivariate Normal 

distribution assumption for the joint distribution of transformed forecasts and 

observations. Due to the existence of zero precipitation, it is not easy to directly check 

the bivariate Normal distribution assumption, so we compared the estimated correlation 

coefficients of transformed variants with the “optimal” correlation coefficients. The 

“optimal” correlation coefficients are defined as the correlation coefficients that 

minimize the CRPS of the post-processed ensemble forecasts. As we haven’t got the 

closed form of the CRPS for MGD model, we simply searched the optimal correlation 

coefficients by traversing a series of correlation coefficients within the 0–1 interval. We 

computed the CRPS of the ensemble forecasts from the MGD model with each 

correlation coefficient value. Then, the correlation coefficients with the lowest CRPS 

were selected as the optimal correlation coefficients. The other parameters in MGD 

were kept the same during the searching for the optimal correlation coefficients. 

Figure 3 is here.

In Fig. 3, we plotted the optimal correlation coefficients in transformed space 

(horizontal axis) versus the estimated correlation coefficients (vertical axis) by CMLE-

MGD (red dots) and original MGD (blue circles) for the results of all the subbasins. As 

shown in Fig. 3, the correlation coefficients estimated by the original MGD (blue circles) 

are obviously lower than the optimal correlation coefficients. The results show that the 

original MGD underestimates the correlation coefficients of the transformed variants. 
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On the contrary, the correlation coefficients estimated by CMLE-MGD (red dots) are 

much closer to the 1:1 line than those by the original MGD, which indicates better 

correlation coefficients can be obtained by the proposed CMLE-MGD. The superior 

results of CMLE-MGD also indirectly suggest that the assumption of bivariate Normal 

distribution for transformed forecasts and observations is generally appropriate.

4 Verification results

In this section, we evaluated the predictive performance of the GEFS forecasts and 

the results of the post-processing methods using the 10-fold cross-validation method 

described in Subsection 2.3. The verification results for all the 15 subbasins together 

are shown in Subsection 4.1 and 4.2. The verfication results for individual subbasins 

are presented in the supplemetary materials.

4.1 The overall forecast performance

In Fig. 4, the relative mean error and the mean CRPS (hereafter referred to as 

CRPS for brevity) of all 15 subbasins for raw GEFS forecasts and the post-processed 

forecasts are plotted versus lead times. The 90% confidence intervals are obtained 

through bootstrapping for each metric by EVS. As shown in Fig. 4a, raw GEFS 

forecasts (black lines) suffer from an obvious positive bias of 20%–60%. After post-

processed by three methods, the relative mean error is much lower, which means that 

the post-processing methods are able to correct the systematic bias in raw GEFS 

forecasts. The relative mean error of CMLE-MGD (red lines) is 10%–20%, higher than 

that of the original MGD (blue lines), which is 0%–10%. The reason for the 
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overestimation problem of CMLE-MGD will be further analyzed in Section 5.  

Figure 4 is here.

In Fig. 4b, the CRPS results show that all three post-processing methods obtained 

much lower CRPS values than those of the raw GEFS forecasts. Among the three post-

processing methods, EMOS performs the best, followed by CMLE-MGD and the 

original MGD, but the differences between the CRPS of the three post-processing 

methods are not obvious in general. 

Figure 5 is here.

In Fig. 5, the stratified PIT histograms show the reliability of the post-processed 

forecasts from the original MGD and CMLE-MGD for three strata (light, moderate and 

heavy rain based on raw forecasts) at the four lead times within the first day. As shown 

in Fig. 5a–d, the histograms of the original MGD exhibit obvious underestimation 

(upslope “/”-shape), especially for moderate and heavy rain (the histograms in moderate 

blue and dark blue color). On the contrary, the histograms of all the samples for CMLE-

MGD (Fig. 5e–h) are generally flat, which indicates CMLE-MGD can achieve 

generally reliable forecasts. Fig. 5 shows that the proposed CMLE-MGD outperforms 

the original MGD in term of overall reliability. It should also be noted that the PIT 

histograms of CMLE-MGD for heavy rain (in dark blue color) are still not perfect and 

indicate a bit overestimation (downslope “\”-shape), especially for lead time of 12–18 

h (Fig. 5g) and 18–24 h (Fig. 5h). The corresponding reason will be further analyzed in 

Section 5. The PIT histograms for other lead times are generally similar to the results 

in Fig. 5 and are only shown in the supplemental material.
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4.2 The forecast performance for dichotomous events

The forecast performance of the original MGD and CMLE-MGD for dichotomous 

events at different precipitation thresholds are assessed through the Brier skill score and 

the ROC score in this subsection. Three thresholds, namely the 85% quantile (0.6 mm/6 

h), 95% quantile (6.5 mm/6 h) and 97.5% quantile (13.3 mm/6 h) of observed 6-hourly 

precipitation amounts during summers of 2008 – 2017 are used. As shown in Fig. 6a–

c, the BSS results of CMLE-MGD (red lines) are better than those of original MGD 

(blue lines) at the threshold of 85% and 95% quantiles. For the threshold of 97.5% 

quantile, the BSS results of CMLE-MGD are slightly better than those of the original 

MGD for events within the first 72-h lead times. The BSS results show that CMLE-

MGD outperforms the original MGD mainly for light and moderate rain.

Figure 6 is here.

Fig. 6d–f show the ROC scores of the post-processed methods. The ROC scores 

for the two methods are generally similar for the first 72-h lead times. For several longer 

lead times, the CMLE-MGD outperforms the original MGD, such as for lead times 

beyond 96 h in Fig. 6e and for lead times beyond 60 h in Fig. 6f. The results show that 

CMLE-MGD also performs better than the original MGD in terms of discrimination for 

longer lead times.

In summary, the results from all the 15 subbasins demonstrate that the proposed 

CMLE-MGD performs better than the original MGD in terms of Brier skill score, 

especially for light and moderate rain. There are also improvements in discrimination 

in terms of ROC score for several lead times. The detailed results for each of the 15 
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subbasins are shown in the supplementary materials, which also indicate improvements 

in terms of BSS for most of the subbasins.

5 Discussion

As illustrated in Section 4, the proposed CMLE-MGD is generally superior to the 

original MGD in terms of forecast skill and overall reliability. The original MGD 

cannot achieve reliable forecasts for 6-hourly precipitation, which confirms the results 

in Wu et al. (2011). The reason of the improvements of CMLE-MGD can be attributed 

to the improved estimation of correlation coefficients between the transformed 

forecasts and observations by the CMLE method (Fig. 3), as it is the only difference 

between the two methods. 

In fact, the estimation of correlation coefficients for the transformed variates with 

censored data needs special treatments. If the default option in the original MGD is 

used, the correlation coefficient of the transformed variates is substituted by the 

correlation coefficient in the untransformed space. However, this substitution method 

in the original MGD will lead to underestimation of the correlation coefficients, which 

can be proved theoretically by investigating the relationship between the correlation of 

untransformed variants and the correlation of transformed variants (Papalexiou, 2018). 

Another estimation option of the correlation coefficients in the original MGD is a 

weighted sum of the correlation coefficients for untransformed variants and those for 

transformed variants, but the results are still not satisfying (Wu et al., 2011).

On the contrary, the correlation coefficients can be well estimated by the CMLE 

method, because zero precipitation values are modeled as left-censored data at the 
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threshold of zero precipitation in CMLE-MGD. The CMLE method has been 

successfully applied in other studies for post-processing of precipitation forecasts, such 

as in HCLR (Messner et al., 2014a) and BJP (Robertson et al., 2013). The CMLE-

MGD’s improvement over the original MGD for sub-daily precipitation events is 

meaningful in hydrological applications, because accurate and reliable precipitation 

forecasts of high temporal resolution are very important in applications such as flood 

forecasting.

There are still limitations in the proposed CMLE-MGD model, which may lead to 

the overestimation of CMLE-MGD in terms of bias (Fig. 4a) and reliability for heavy 

rain (Fig. 5). As Fig. 3 shows, the estimated correlation coefficients by CMLE-MGD 

are slightly higher than the “optimal” correlation coefficients that minimize CRPS, 

which may result in the overestimation of CMLE-MGD. A possible reason for the 

imperfect estimation of the correlation coefficients is the joint distribution of 

transformed forecasts and observations may not be bivariate Normal distribution (Wu 

et al., 2011). In the future, more flexible tools such as copulas can be applied to model 

the joint distribution of forecasts and observations (Khajehei and Moradkhani, 2017).

Moreover, the current version of CMLE-MGD is based on the parametric NQT in 

this study. However, the performance of the parametric NQT is influenced by the 

goodness-of-fit of the marginal distribution. If the fitting of the marginal distribution is 

not satisfying, the transformed variables may not follow standard Normal distribution, 

which will further deteriorate the modeling of the joint distribution in transformed space. 

In the future, we will test other transformations or non-parametric NQT to achieve 
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better performance. Besides, Wu et al. (2011) demonstrated that the mixed-type MGD 

performed better than the original MGD developed by Schaake et al. (2007a). The 

comparison of the mixed-type MGD and the proposed CMLE-MGD is also needed in 

the future.

In addition, we only used ensemble mean as predictor in this work. There are 

several methods that utilize all the ensemble members or the ensemble spread as 

predictors, such as the member-by-member (MBM) (Van Schaeybroeck and Vannitsem, 

2015) and EMOS (Gneiting et al., 2005; Scheuerer and Hamill, 2015). We will improve 

the MGD models to make better use of the information from the ensemble forecasts to 

address the heteroscedasticity problem in the future. 

6. Summary and conclusions

Raw forecasts from numerical weather models (NWP) can be improved 

significantly through post-processing to remove the systematic bias and obtain better 

forecast skill. The meta-Gaussian distribution (MGD) model is one of the early 

successful methods. However, recent studies have shown that the original MGD may 

suffer from reliability problems for 6-hourly precipitation forecasts. In this paper, we 

proposed an improved version of MGD model, namely the censored maximum 

likelihood estimation-based MGD (CMLE-MGD). We evaluated the proposed method 

using the GEFS reforecasts of 6-hourly precipitation. The results show that the 

proposed CMLE-MGD outperforms the original MGD in terms of Brier skill score and 

overall reliability. The proposed method can achieve similar performance with the 

state-of-the-art CSGD-EMOS if both use ensemble mean as the only predictor. The 
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proposed CMLE-MGD can achieve reliable sub-daily precipitation forecasts, and it can 

be used in applications such as flood forecasting that needs precipitations forecasts of 

high temporal resolution. More studies are still needed to test the performance of the 

new method in different climates.
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Appendix A. Verification metrics

A.1 Relative mean error

The relative mean error (RME) measures the average difference between the 

ensemble mean forecast  and corresponding observation  as a fraction of the 𝑓𝑖 𝑜𝑖

average observation, namely,
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(A.1)RME = ∑𝑛
𝑖 = 1(𝑓𝑖 ‒ 𝑜𝑖)/∑𝑛

𝑖 = 1𝑜𝑖

Where n is the total number of forecast-observation pairs.

A.2 Brier score and Brier skill score

The Brier score measures the mean square error of the forecast probabilities of the 

meteorological variables exceeding a threshold,

(A.2)BS =
1
𝑛∑𝑛

𝑖 = 1(𝐹𝑓𝑖(𝑞) ‒ 𝐹𝑜𝑖(𝑞))2

where  is the probabilities of forecast exceeding the threshold q, and  𝐹𝑓𝑖(𝑞) 𝐹𝑜𝑖(𝑞)

is the corresponding binary observation depending on whether the observation  𝑜𝑖

exceeds the threshold as follows, namely,

(A.3)𝐹𝑜𝑖(𝑞) = {1,           𝑜𝑖 > 𝑞
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The Brier skill score (BSS) measures the relative improvement of the Brier score 

of main forecast system over that of a reference system (e.g., the climatology) as 

follows,

(A.4)BSS = 1 ‒
BS

BSref

The BSS is positive oriented. The BSS for perfect forecast is one, while the BSS 

is less than zero for forecasts with no skill relative to the reference. 

A.3 Continuous ranked probability score

The continuous ranked probability score (CRPS) measures the integral square 

difference between the cumulative distribution functions (CDF) of a forecast and 

corresponding CDF of observation as follows,

(A.5)CRPS = ∫∞
‒ ∞(𝐹𝑓(𝑞) ‒ 𝐹𝑜(𝑞))2𝑑𝑞

Then, the mean CRPS of all samples can be computed from the average of the 
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CRPS of all forecast and observation pairs.

A.4 Stratified PIT histogram

The probability integral transform (PIT) is the predictive cumulative distribution 

function (CDF)  at the corresponding observation as follows, 𝐹𝑡 𝑦𝑡 

(A.6)PITt = 𝐹𝑡(𝑦𝑡)

The PIT for reliable forecasts follows a uniform distribution (Gneiting et al., 2007), 

so the corresponding PIT histogram for reliable forecasts should be flat. When the 

observations are equal or below the threshold of zero precipitation (0.1 mm/day in this 

study), a pseudo-PIT value is generated from a uniform distribution with the range of 

, where  is the threshold of zero precipitation for [0,𝐹𝑡(𝑦𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)] 𝑦𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

observation (Wang and Robertson, 2011).

A.5 Relative operating characteristic score

Forecast discrimination can be by the ROC diagram, which plots the hit rate (HR) 

versus the false alarm rate (FAR) for a range of probability thresholds. The ROC 

diagram can be summarized by the area under the ROC curve (AUC). Then, the ROC 

score can be computed as follows, 

(A.7)ROC score =
AUC ‒ AUCref

1 ‒ AUCref

where  is the AUC of the reference forecasts. The ROC score is positive AUCref

oriented.

Appendix B. CSGD-EMOS model

CSGD-EMOS is designed for post-processing of precipitation forecasts based on 
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the EMOS scheme (Gneiting et al., 2005; Scheuerer and Hamill, 2015). It firstly fits the 

climatology distribution of observation using the censored, shifted Gamma distribution 

(CSGD). Then, the CSGD-based regression model can be fitted using forecasts and 

corresponding observations. To make a fair comparison with MGD, here we use 

ensemble mean as the only predictor in the regression model. The mean and standard 

deviation of the conditional distribution of observations given forecasts are modeled in 

CSGD-EMOS as follows (Scheuerer and Hamill, 2015),

(B.1)𝜇 =
𝜇𝑐𝑙

𝛼1
log1p[expm1(𝛼1)(𝛼2 + 𝛼3

𝑓
𝑓𝑐𝑙)]

(B.2)𝜎 = 𝛼4𝜎𝑐𝑙
𝜇

𝜇𝑐𝑙

where  are the regression parameters,  is the ensemble mean of raw α1,…,𝛼4 𝑓

forecasts,  is the climatology of the ensemble mean,  and  are the 𝑓𝑐𝑙 𝜇𝑐𝑙 𝜎𝑐𝑙

parameters for the climatology distribution of observation, , log1p(𝑥) = log (1 + 𝑥)

and . More details about CSGD-EMOS can be found in expm1(𝑥) = exp (𝑥) ‒ 1

Scheuerer and Hamill (2015).  
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Tables and figures

Table 1. Main characteristics of the 15 subbasins of Huai river basin

Table 1. Main characteristics of the 15 subbasins of Huai river basin 

ID Catchment name Center
Area 

(103km2 )

Annual 
mean 

precipitation 
(mm)

A1 Dapoling upstream of Huaihe to Xixian catchment 114.01°E, 32.31°N 16.5 1063.96
A2 Xixian upstream of Huaihe to Wangjiaba catchment 115.02°E, 32.21°N 8.8 1009.00
A3 Ruhe and upstream of Honghe catchment 114.12°E, 33.04°N 9.5 904.64
B1 Upstream of Yinghe to Zhoukou catchment 113.33°E, 34.07°N 27.4 687.60
B2 Midstream of Yinghe and Zhoukou to Fuyang 

catchment
114.99°E, 33.47°N 14.3 824.94

B3 Shihe catchment 115.73°E, 32.19°N 10.6 1130.30
B4 Pihe, downstream of Huaihe and Huaigan catchment 116.29°E, 32.03°N 11.4 1103.45
B5 Wohe, midstream of Huaihe and Huaigan catchment 116.04°E, 33.48°N 28.7 781.07
C0 Bengbu to Hungtse, midstream and downstream of 

Huaigan and Huihe catchment
117.40°E, 33.65°N 42.3 859.87

D1 Nansihu catchment 116.32°E, 35.31°N 30.8 634.28
D2 Zaozhuang and Xuzhou catchment 117.78°E, 34.63°N 9.2 781.11
D3 Upstream of Yihe catchment 118.12°E, 35.62°N 10.1 719.30
D4 Upstream of Shuhe catchment 118.84°E, 35.61°N 4.4 717.89
D5 Downstream of Yihe and Shuhe catchment 118.95°E, 34.41°N 26.9 864.71
E0 Hungtse to downstream of Huaihe catchment 119.82°E, 33.18°N 30.6 947.35
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Figure Captions

Figure 1. Illustration of the Huai river basin.

Figure 2. The flowchart of the original MGD and CMLE-MGD.

Figure 3. The scatterplot of the correlation coefficients of transformed forecasts and 

observations estimated by the original MGD (blue circles) and CMLE-MGD (red dots) 

against the optimal correlation coefficients (defined in Section 3). 

Figure 4. Overall evaluation for the raw GEFS forecasts and post-processed forecasts 

by the original MGD, CMLE-MGD and EMOS. (a) Relative mean error, (b) CRPS. 

Both metrics are negative oriented (smaller values are better). The 90% confidence 

intervals by bootstrapping are shown for each metric.

Figure 5. The stratified PIT histogram of the post-processed forecasts at lead time of 

0–6 h, 6–12 h, 12–18 h and 18–24 h for (a)–(d) original MGD and (e)–(h) CMLE-MGD. 

The PIT histograms in color of light blue, moderate blue and dark blue are the PIT 

histograms for the three strata, corresponding to the samples with raw forecast mean 

within the 0 – 85% quantiles (light rain), 85% – 95% quantiles (moderate rain), and 

95% – 100% quantiles (heavy rain), respectively.

Figure 6. (a) – (c) The Brier skill score for the original MGD and CMLE-MGD at 

thresholds of (a) 85%, (b) 95% and (c) 97.5% quantiles of observations. (d) – (f) The 

ROC score of the original MGD and CMLE-MGD at thresholds of (d) 85%, (e) 95% 

and (f) 97.5% quantiles of observations. The 90% confidence intervals by bootstrapping 

are shown for each metric.



  

30

Figure 1. Illustration of the Huai river basin.
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Figure 2. The flowchart of the original MGD and CMLE-MGD.
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Figure 3. The scatterplot of the correlation coefficients of transformed forecasts and 

observations estimated by the original MGD (blue circles) and CMLE-MGD (red dots) 

against the optimal correlation coefficients (defined in Section 3).
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Figure 4. Overall evaluation for the raw GEFS forecasts and post-processed forecasts 

by the original MGD, CMLE-MGD and EMOS. (a) Relative mean error, (b) CRPS. 

Both metrics are negative oriented (smaller values are better). The 90% confidence 

intervals by bootstrapping are shown for each metric.
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Figure 5. The stratified PIT histogram of the post-processed forecasts from all 15 

subbasins at lead time of 0–6 h, 6–12 h, 12–18 h and 18–24 h for (a)–(d) original MGD 

and (e)–(h) CMLE-MGD. The PIT histograms in color of light blue, moderate blue and 

dark blue are the PIT histograms for the three strata, corresponding to the samples with 

raw forecast mean within the range of 0 – 85% quantiles (light rain), 85% – 95% 

quantiles (moderate rain), and 95% – 100% quantiles (heavy rain), respectively.



  

35

Figure 6. (a) – (c) The Brier skill score for the original MGD and CMLE-MGD at 

thresholds of (a) 85%, (b) 95% and (c) 97.5% quantiles of observations. (d) – (f) The 

ROC score of the original MGD and CMLE-MGD at thresholds of (d) 85%, (e) 95% 

and (f) 97.5% quantiles of observations. The 90% confidence intervals by bootstrapping 

are shown for each metric.

Figure Captions

Figure 1. Illustration of the Huai river basin.

Figure 2. The flowchart of the original MGD and CMLE-MGD.

Figure 3. The scatterplot of the correlation coefficients of transformed forecasts and 

observations estimated by the original MGD (blue circles) and CMLE-MGD (red dots) 

against the optimal correlation coefficients (defined in Section 3). 

Figure 4. Overall evaluation for the raw GEFS forecasts and post-processed forecasts 
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by the original MGD, CMLE-MGD and EMOS. (a) Relative mean error, (b) CRPS. 

Both metrics are negative oriented (smaller values are better). The 90% confidence 

intervals by bootstrapping are shown for each metric.

Figure 5. The stratified PIT histogram of the post-processed forecasts at lead time of 

0–6 h, 6–12 h, 12–18 h and 18–24 h for (a)–(d) original MGD and (e)–(h) CMLE-MGD. 

The PIT histograms in color of light blue, moderate blue and dark blue are the PIT 

histograms for the three strata, corresponding to the samples with raw forecast mean 

within the 0 – 85% quantiles (light rain), 85% – 95% quantiles (moderate rain), and 

95% – 100% quantiles (heavy rain), respectively.

Figure 6. (a) – (c) The Brier skill score for the original MGD and CMLE-MGD at 

thresholds of (a) 85%, (b) 95% and (c) 97.5% quantiles of observations. (d) – (f) The 

ROC score of the original MGD and CMLE-MGD at thresholds of (d) 85%, (e) 95% 

and (f) 97.5% quantiles of observations. The 90% confidence intervals by bootstrapping 

are shown for each metric.

Table 1. Main characteristics of the 15 subbasins of Huai river basin 

ID Catchment name Center
Area 

(103km2 )

Annual 
mean 

precipitation 
(mm)

A1 Dapoling upstream of Huaihe to Xixian catchment 114.01°E, 32.31°N 16.5 1063.96
A2 Xixian upstream of Huaihe to Wangjiaba catchment 115.02°E, 32.21°N 8.8 1009.00
A3 Ruhe and upstream of Honghe catchment 114.12°E, 33.04°N 9.5 904.64
B1 Upstream of Yinghe to Zhoukou catchment 113.33°E, 34.07°N 27.4 687.60
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B2 Midstream of Yinghe and Zhoukou to Fuyang 
catchment

114.99°E, 33.47°N 14.3 824.94

B3 Shihe catchment 115.73°E, 32.19°N 10.6 1130.30
B4 Pihe, downstream of Huaihe and Huaigan catchment 116.29°E, 32.03°N 11.4 1103.45
B5 Wohe, midstream of Huaihe and Huaigan catchment 116.04°E, 33.48°N 28.7 781.07
C0 Bengbu to Hungtse, midstream and downstream of 

Huaigan and Huihe catchment
117.40°E, 33.65°N 42.3 859.87

D1 Nansihu catchment 116.32°E, 35.31°N 30.8 634.28
D2 Zaozhuang and Xuzhou catchment 117.78°E, 34.63°N 9.2 781.11
D3 Upstream of Yihe catchment 118.12°E, 35.62°N 10.1 719.30
D4 Upstream of Shuhe catchment 118.84°E, 35.61°N 4.4 717.89
D5 Downstream of Yihe and Shuhe catchment 118.95°E, 34.41°N 26.9 864.71
E0 Hungtse to downstream of Huaihe catchment 119.82°E, 33.18°N 30.6 947.35

ABSTRACT

Statistical post-processing methods have been applied in hydrometeorological 

forecasting to correct the bias and spread error in raw forecasts. Among various post-

processing methods, the meta-Gaussian distribution model (MGD) is one of the early 

successful methods for post-processing of precipitation forecasts and has been applied 

in the National Weather Service’s Hydrologic Ensemble Forecast System (HEFS), 

together with the mix-type meta-Gaussian distribution model (MMGD). However, 

recent studies have shown that the original MGD cannot yield reliable forecasts 

especially for sub-daily precipitation forecasts (e.g., 6-hourly). In this paper, we 

improved the MGD model by applying the censored maximum likelihood estimation 

(CMLE) method. We conducted experiments using GEFS reforecasts in Huai river 

basin in China to evaluate its performance. The results show that the proposed method 

performs better than the original MGD for sub-daily precipitation forecasts. The 

proposed method also achieves similar forecast skill with the state-of-the-art censored, 

shifted Gamma distribution-based ensemble MOS (CSGD-EMOS) if both use 

ensemble mean as the only predictor. The results indicate that the proposed CMLE-
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MGD can be useful for further applications such as flood forecasting that needs 

forecasts of high temporal resolution.

HIGHLIGHTS

 We proposed an improved meta-Gaussian distribution-based (MGD) method for 

post-processing of precipitation forecasts by censored maximum likelihood 

estimation (CMLE).

 The proposed method improves the forecast skill and overall reliability over the 

original MGD method for sub-daily precipitation.

 The proposed method achieves similar forecast skill with the state-of-the-art 

censored, shifted Gamma distribution-based EMOS if both use ensemble mean as 

the only predictor.

Declaration of interests

☒  The authors declare that they have no known competing financial interests or personal 
relationships that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be 
considered as potential competing interests: 



  

39


