Research papers

Partitioning the contributions of glacier melt and precipitation to the 1971–2010 runoff increases in a headwater basin of the Tarim River

Zehua Li, Xiaogang Shi, Qiuhong Tang, Yongqiang Zhang, Huilin Gao, Xicai Pan, Stephen J. Déry, Ping Zhou

1. Introduction

Snow cover and glacier ice exert major controls on climate and hydrology over much of the Northern Hemisphere (Barnett et al., 2005). From a climatological perspective, snow and glacier ice interact with the atmosphere over a range of spatial and temporal scales involving complex and sensitive feedback mechanisms (Serreze et al., 2000; Hock, 2005; Déry and Brown, 2007; Shi et al., 2011, 2013; Hock et al., 2017). From a hydrological perspective, the contribution of snowmelt and glacier melt to river runoff is of particular interest (Déry et al., 2009; Tang and Lettenmaier, 2010; Kang et al., 2014; Duethmann et al., 2015; Shi et al., 2015; Wang et al., 2015; Yang et al., 2015; Kang et al., 2016; Rupp et al., 2016; Bolch, 2017; Dickerson-Lange et al., 2017). While seasonal snow cover is a more important source of runoff than glacier melt over much of the globe, the latter can be important during at least part of the year for some large river basins (Schaner et al., 2012). Therefore, water managers require knowledge on the implications to water supplies of glacier retreat and potential disappearance as the climate warms (Koboltschnig and Schöner, 2011).

Both ablation and accumulation are sensitive to local and global changes in climate, which are likely to intensify in the coming decades (Gillet et al., 2011; Donat, 2013; Huss and Hock, 2015; Kronenberg et al., 2003). Model studies for the effect of projected changes in air temperature and precipitation on runoff have shown a range of possible outcomes from seasonal shifts in runoff to complete deglaciation in some environments, which can have serious implications for the water supply in terms of affected population and ecosystems (Barnett et al., 2005; Hagg et al., 2006, 2007; Huss et al., 2008). In this paper, we diagnose observed hydrologic changes in a partially glacierized headwater basin in the Tarim River Basin (TRB), shown in Fig. 1, which has
models typically consist of two components. The first component determines the amount of melt, while the second part transports the meltwater along the basin. Glacier and snowmelt models range from full energy-balance models that provide a detailed evaluation of surface energy fluxes, to temperature index models in which air temperature acts as a proxy for all terms that are a source of melt energy (Singh, 2001; Hock, 2005). Energy balance melt models more directly describe the physical processes at the glacier surface but require detailed observations, which are often not available, especially in high mountain areas like the Himalayas and Tianshan Mountains. Since air temperature is widely observed, temperature-index methods remain the most widely used approach to compute melt for many purposes. Despite the simplicity, these models often perform remarkably well (Quick and Pipes, 1977; Baker et al., 1982; Tangborn, 1984; Jansson et al., 2003). As a complete set of meteorological data to drive an energy balance melt model is unavailable for this remote region, we use a temperature index approach in the study.

A key determinant for the evolution of glacier volume and melt in response to climate variations and change is the glacier area distribution with elevation. Aizen et al. (2007) analyzed almost 16,000 glaciers in the Tianshan Mountains and found that the normal distribution can provide a good fit to the empirical histogram of the distribution of Glacier Covered Area (GCA) by altitude for the basins with glaciated areas exceeding 20 km². However, the distribution of area with elevation in itself is insufficient to understand the evolution of glaciers over time, something that is of particular interest when examining the effects of variability and change in local climate and their effect on the water balance of glacierized river basins.

In recent years, an increasing number of studies focused on the upper Aksu River Basin by using glacio-hydrological models (Zhao et al., 2013; Duethmann et al., 2015; Wang et al., 2015). Zhao et al. (2013) extended the VIC macroscale land-surface hydrologic model by coupling an energy-balance based glacier scheme for high, cold mountainous regions. In their model, a glacier is described as one special land use/land cover class as well as other vegetation classes. The results in the Aksu River Basin showed obvious improvements in the model performance on runoff simulation. Their results also showed the contribution to runoff from glacier melt was 43.8% in the Kumalak River Basin (called Kunma Like River in their study), and 95.5% of the increasing runoff was from precipitation runoff. However, this model did not consider glacier mass or glacier area change, and their study did not take observations on glacier mass or glacier area into model calibration/validation, which can lead to wrong estimates of glacier melt and its contribution to runoff. Duethmann et al. (2015) paid more attention to the representation of glacier geometry changes. In the setup of the hydrological model WASA that they used, glacier areas were updated annually by prescribing a constant linear decrease rate during

![Image](image-url)
the simulation period. The WASA model was thus well calibrated based on glacier mass balance in addition to discharge data. Their results showed the contribution to runoff from glacier melt was 35–48% in the Kumalak River Basin (called Sari-Djaz catchment in their study), and indicated that both precipitation and temperature had effects on the runoff increase. However, there likely exist inconsistencies between the prescribed constant linear decrease rate and actual change of glacier area, which would lead to inaccuracy in estimating glacier mass balance, glacier melt and its contribution to runoff as well.

To provide a basis for predicting glacier mass and area evolution due to changing temperature and precipitation, we developed a temperature index based model that can simulate the vertical evolution of glacier area and mass at a monthly time step. The major objectives of this study are to use this model to a) simulate catchment glacier and runoff; b) partition the runoff generating mechanisms; and c) determine the possible causes of observed increases in runoff over the last few decades for the headwater basin of the TRB.

2. Study area and datasets

The Kumalak River originates from the Tianshan Mountains and flows through Kyrgyzstan and Kazakhstan before reaching China (Zhao et al., 2013; Wang et al., 2015). With a catchment area of 12,800 km², the Kumalak River Basin (KRB) upstream of the hydrometric gauge at Xiehela has a glacier coverage of about 21.3% (Fig. 1). The elevation ranges from 1450 m to 7100 m. Monthly mean discharge data for the period of 1971–2010 were obtained from a hydrometric gauge at Xiehela (1450 m). The annual average runoff upstream of Xiehela is 385 mm year⁻¹, with a rate of increase of +2.05 mm year⁻¹. Compared to the lower reaches of the Aksu River Basin, the upstream area above the gauge is less developed and basically remains in a natural condition during the study period. Monthly maximum and minimum air temperatures, and precipitation from 1971 to 2010 (Fig. 2) used to drive the model were derived from the meteorological station at Aksu (1104 m, see Fig. 1 for the gauge location), for which quality control is operated by the China Meteorological Administration (CMA). The annual average air temperature observed at Aksu is 11.2 °C, with a warming rate of +0.05 °C year⁻¹. The annual average precipitation observed at Aksu is 78.9 mm year⁻¹, with a trend of +0.55 mm year⁻¹.

There is a paucity of long-term meteorological observations at higher elevations in the KRB. Therefore, we need to estimate precipitation and air temperature at higher elevations using a seasonal temperature lapse rate and precipitation gradient (Table 1) to adjust model forcings derived from the CMA station at Aksu located within the basin at lower elevations, where precipitation is significantly less than that at higher elevations. The air temperature lapse rate is calculated from data at 242 meteorological stations from 1961 to 2007 in western China by distinguishing different altitudes and months (Gao et al., 2010). The precipitation gradient of 0.22 mm year⁻¹ m⁻¹ year in our study is adapted from a study of geostatistics based on the monitoring network maintained by CMA (Jiang et al., 2006; Gao et al., 2010). In Table 2, we summarize a number of observation-based studies with the similar evaluation for orographic precipitation enhancement in this region. The locations of four precipitation gauges used in the previous studies are located in/close to the KRB as shown in Fig. 1. All previous studies suggested a significant increase in precipitation with altitudes. This strong orographic gradient is comparable with the results derived from similar observations on the southern slopes of the Tianshan Mountains (Aizen et al., 1997; Zhang et al., 2006; Gao et al., 2008; Li et al., 2012).

The Tianshan Mountains have the largest number of glaciers in northwestern China. A complete set of aerial photographs and large-scale topographic maps covering the glacierized portion of the KRB were collected in the 1970s. The glacier inventory for this region was compiled in 1980. The distribution of glaciers in our research was carefully checked with these maps, aerial photographs and field investigations. In addition, 34 glacier parameters including glacier area,
We used a temperature-based method to separate precipitation into rainfall and snowfall. If monthly minimum temperature (T_{min}) is larger than the threshold temperature ($T_{\text{thres}} = 0.5°C$), then all precipitation is considered as rainfall. If monthly maximum temperature (T_{max}) is lower than the threshold temperature, precipitation is assumed to occur as snowfall. When the threshold temperature is between the minimum and maximum temperatures, the rainfall amount (P_{rain}) is estimated as a proportion of the total precipitation (P_{total}) as (Leavesley et al., 1983; Gunawardhana and Kazama, 2012):

$$P_{\text{rain}} = \frac{T_{\text{max}} - T_{\text{thres}}}{T_{\text{max}} - T_{\text{min}}} \times P_{\text{total}}$$

$$P_{\text{snow}} = P_{\text{total}} - P_{\text{rain}}$$

(1)

As indicated in the above section, the meteorological forcings were corrected by a monthly temperature lapse rate (T_{lapse}) and monthly precipitation gradient (P_{grad}) based on a geosatistical study in the Aksu River Basin (Jiang et al., 2006; Gao et al., 2010). These adjustment factors (Table 1) were applied to each 50-m elevation band, by which the glacial headwater KRB was divided based on a Digital Elevation Model (DEM) of the Shuttle Radar Topography Mission (SRTM) at 1 arc sec resolution (Farr et al., 2007).

Using the degree-day method, the glacier melt and snowmelt processes were assumed to be a function of the sum of the positive air temperatures, with different degree-day factors respectively (Braithwaite, 1995):

$$\begin{align*}
M_{\text{glacier}} &= \text{DDF}_{\text{glacier}} \sum T^+ \\
M_{\text{snow}} &= \text{DDF}_{\text{snow}} \sum T^+
\end{align*}$$

(2)

$$\begin{align*}
T^+ &= \begin{cases}
0, & T_{\text{min}} \leq T_{\text{thres}} \\
\frac{(T_{\text{max}} - T_{\text{thres}}) - T_{\text{min}}}{T_{\text{max}} - T_{\text{min}}} \text{dom}, & T_{\text{min}} < T_{\text{thres}} < T_{\text{max}} \\
\frac{T_{\text{max}} - T_{\text{thres}}^2}{2T_{\text{max}} - T_{\text{min}} - 2T_{\text{thres}}} \text{dom}, & T_{\text{max}} > T_{\text{thres}}
\end{cases}
\end{align*}$$

(3)

where $\text{DDF}_{\text{glacier}}$ is the degree-day factor for glacier melt and DDF_{snow} is the degree-day factor for snowmelt, and the sum of the positive air temperatures (ΣT^+) was estimated based on T_{min}, T_{max}, and T_{thres} during each month and days of the month (dom). Specifically, glacier melt is defined as the amount of water melt from glacier ice to runoff, whereas snowmelt is defined as the amount of water melt from snowpack to runoff.

The vertical evolution of glacier mass is simulated over the elevation bands in our model. Hence each elevation band as a basic unit of the model, is divided into the glacierized part and non-glacierized part. The glacier area, thickness and storage volume were taken from the Glacier Inventory of China (Shi et al., 2010) and then generated for the year of 1971 as model inputs to initialize and parameterize the glacierized part of each elevation band in our study area. The glacier mass balance is assumed to appear within the glacierized part at each elevation band, where the glacier mass is assumed to be distributed horizontally uniform (same thickness). At each time step, the mass balance of glacier and snow is computed for each elevation band with the thickness updated accordingly. Hence the glacier area and glacier mass with the same elevation band would disappear when melting down. When there is a snowpack on the glacier, the snow melts first before the glacier starts melting. If the accumulated snow at the glacier surface is

<table>
<thead>
<tr>
<th>Month</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{max} ($°C$)</td>
<td>0.29</td>
<td>0.39</td>
<td>0.48</td>
<td>0.58</td>
<td>0.61</td>
<td>0.63</td>
<td>0.59</td>
<td>0.56</td>
<td>0.53</td>
<td>0.47</td>
<td>0.43</td>
<td>0.31</td>
</tr>
<tr>
<td>P_{min} (mm)</td>
<td>0.29</td>
<td>0.35</td>
<td>0.75</td>
<td>0.75</td>
<td>2.33</td>
<td>4.59</td>
<td>4.81</td>
<td>4.35</td>
<td>2.37</td>
<td>0.77</td>
<td>0.20</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Table 1
Monthly air temperature lapse rate (T_{lapse}) and precipitation gradient (P_{grad}) in the Kumalak River Basin.
not completely melted at the end of the ablation season each year, it would turn into ice in the model.

In this research, the model updates the total GCA by summing up the area of glacierized parts of those elevation bands with glacier ice. Thus the simulated total GCA is computed at each time step accordingly. Therefore, our model developed in this paper is capable of simulating the combined effects of temperature, precipitation, and glacier melt. Then, the fractions of rainfall, snowmelt, and glacier melt were calculated from the sum. Finally, we applied these fractions to the simulated runoff to calculate the corresponding runoff components resulting from rainfall, snowmelt, and glacier melt.

3.2. River discharge simulation

The CRR model SIXPAR uses two soil layers to represent the subsurface. The upper zone extends from the surface to the bottom of the root zone, while a lower zone represents ground water storage. The percolation process links the upper and lower zones, simulating the root zone, while a lower zone represents ground water storage. The model outputs, such as GCA, glacier mass and runoff, were selected from the Pareto set. The remaining part of the discharge measurements from 2001 to 2010 and the observed change in GCA between 1975 and 2008 (Pieczonka and Bolch, 2015) are used for model validation and evaluation.

4. Methods

4.1. Optimization algorithm

In this study, the Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM-UA) algorithm is used for model calibration (Vrugt et al., 2003). This algorithm is an improvement over the Shuffled Complex Evolution Metropolis (SCEM-UA) global optimization algorithm by using an improved concept of Pareto dominance to evolve the initial population of points toward a set of solutions stemming from a stable distribution (Pareto set) (Shi et al., 2008). The MOSCEM-UA algorithm is used to calibrate ten model parameters (shown in Table 3), including upper and lower zone maximum storage capacities, upper and lower zone recession constants, constants to fit the percolation equation, melt factors for snow and glacier ice, amplification coefficient of temperature lapse rate in glacierized area, and bias factor of precipitation.

Table 3

Model parameters with values and units.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper zone maximum storage capacity</td>
<td>UM</td>
<td>31.0</td>
<td>mm</td>
</tr>
<tr>
<td>Lower zone maximum storage capacity</td>
<td>LM</td>
<td>87.5</td>
<td>mm</td>
</tr>
<tr>
<td>Upper zone recession constant</td>
<td>UK</td>
<td>0.44</td>
<td>–</td>
</tr>
<tr>
<td>Lower zone recession constant</td>
<td>LK</td>
<td>0.07</td>
<td>–</td>
</tr>
<tr>
<td>Constants to fit the percolation equation</td>
<td>A</td>
<td>0.22</td>
<td>–</td>
</tr>
<tr>
<td>X</td>
<td>23.3</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Melt factor for snow</td>
<td>DDFsnow</td>
<td>1.48</td>
<td>mm day$^{-1}$</td>
</tr>
<tr>
<td>Melt factor for glacier ice</td>
<td>DDFglacier</td>
<td>3.09</td>
<td>mm day$^{-1}$ °C$^{-1}$</td>
</tr>
<tr>
<td>Amplification coefficient of temperature lapse rate in glacierized area</td>
<td>T_{amp}</td>
<td>1.15</td>
<td>–</td>
</tr>
<tr>
<td>Bias factor of precipitation</td>
<td>P_{bias}</td>
<td>1.00</td>
<td>–</td>
</tr>
</tbody>
</table>

4.2. Calibration criteria

Two criteria are used for model calibration to ensure an optimal model performance with respect to both observed discharge and Glacier Mass Balance (GMB). For observed discharge, the first criterion is based on the Nash-Sutcliffe Efficiency (NSE) coefficient (Nash and Sutcliffe, 1970), which is defined as:

$$ NSE = 1 - \frac{\sum(Q_{sim} - Q_{obs})^2}{\sum(Q_{obs} - \bar{Q}_{obs})^2} \quad (-\infty < NSE < 1) $$

with monthly simulated (Q_{sim}) and monthly observed (Q_{obs}) discharge for the calibration period.

By comparing the Digital Terrain Models (DTMs) obtained from 1975 KH-9 Hexagon imagery and the SRTM3 DTM acquired in February 2000, the glacier mass balances were estimated for different regions in the Central Tian Shan Mountains (Pieczonka and Bolch, 2015). A region-wide glacier mass loss of -0.35 ± 0.34 m w.e. year$^{-1}$ was observed for the KRB in the period from 1975 to 2000 and is directly used in the calibration for the GMB. Therefore, the second criterion is based on Relative Error (RE), which is applied in the calibration against observed GMB and defined as:

$$ RE_{GMB} = \left| \frac{GMB_{sim} - GMB_{obs}}{GMB_{obs}} \right| $$

with the simulated GMB (GMB_{sim}) and the observed GMB (GMB_{obs}) for the calibration period.

We calibrated our model for a 30-year period from 1971 to 2000, using monthly discharge measurements from the Xiehela hydrometric gauge and the observed GMB (Pieczonka and Bolch, 2015). By model calibration, parameters are selected from the Pareto set. The remaining part of the discharge measurements from 2001 to 2010 and the observed change in GCA between 1975 and 2008 (Pieczonka and Bolch, 2015) are used for model validation and evaluation.

4.3. Sensitivity experiments

To identify the effects of temperature and precipitation to the 1971–2010 runoff change, we regenerated two climate scenarios. The first climate scenario is called ‘1970s temperature’, under which the precipitation experiences the natural change but the temperature is kept at the level of the 1970s. The other climate scenario is called ‘1970s precipitation’, under which the temperature experiences the natural change but the precipitation is kept at the level of the 1970s. The model outputs, such as GCA, glacier mass and runoff, were selected for comparisons from the above two scenarios and the natural climate condition under which the precipitation and temperature experience the natural change.

5. Results

5.1. Model calibration and validation

From the resulting Pareto set, a solution was selected when it has the optimal performance in terms of both monthly discharge and GMB. In Fig. 3, the black dot shows the best solution from calibration with $NSEQ = 0.90$ and $RE_{GMB} = 0.01$. The observed and simulated monthly mean runoff during the calibration period from 1971 to 2000 are shown in Fig. 4. The simulated GMB during the calibration period is about $23.3\frac{mm}{day}$ and $0\frac{cm}{year}$.

By comparing the Digital Terrain Models (DTMs) obtained from 1975 KH-9 Hexagon imagery and the SRTM3 DTM acquired in February 2000, the glacier mass balances were estimated for different regions in the Central Tian Shan Mountains (Pieczonka and Bolch, 2015). A region-wide glacier mass loss of -0.35 ± 0.34 m w.e. year$^{-1}$ was observed for the KRB in the period from 1975 to 2000 and is directly used in the calibration for the GMB. Therefore, the second criterion is based on Relative Error (RE), which is applied in the calibration against observed GMB and defined as:

$$ RE_{GMB} = \left| \frac{GMB_{sim} - GMB_{obs}}{GMB_{obs}} \right| $$

with the simulated GMB (GMB_{sim}) and the observed GMB (GMB_{obs}) for the calibration period.

We calibrated our model for a 30-year period from 1971 to 2000, using monthly discharge measurements from the Xiehela hydrometric gauge and the observed GMB (Pieczonka and Bolch, 2015). By model calibration, parameters are selected from the Pareto set. The remaining part of the discharge measurements from 2001 to 2010 and the observed change in GCA between 1975 and 2008 (Pieczonka and Bolch, 2015) are used for model validation and evaluation.

By comparing the Digital Terrain Models (DTMs) obtained from 1975 KH-9 Hexagon imagery and the SRTM3 DTM acquired in February 2000, the glacier mass balances were estimated for different regions in the Central Tian Shan Mountains (Pieczonka and Bolch, 2015). A region-wide glacier mass loss of -0.35 ± 0.34 m w.e. year$^{-1}$ was observed for the KRB in the period from 1975 to 2000 and is directly used in the calibration for the GMB. Therefore, the second criterion is based on Relative Error (RE), which is applied in the calibration against observed GMB and defined as:

$$ RE_{GMB} = \left| \frac{GMB_{sim} - GMB_{obs}}{GMB_{obs}} \right| $$

with the simulated GMB (GMB_{sim}) and the observed GMB (GMB_{obs}) for the calibration period.

We calibrated our model for a 30-year period from 1971 to 2000, using monthly discharge measurements from the Xiehela hydrometric gauge and the observed GMB (Pieczonka and Bolch, 2015). By model calibration, parameters are selected from the Pareto set. The remaining part of the discharge measurements from 2001 to 2010 and the observed change in GCA between 1975 and 2008 (Pieczonka and Bolch, 2015) are used for model validation and evaluation.
The selected parameter set from calibration was then applied for model validation when it also has a good performance in term of discharge with $NSEQ = 0.89$ during the period from 2001 to 2010. The observed and simulated monthly mean runoff during the validation period from 2001 to 2010 are shown in Fig. 4. In addition, the simulated change in GCA approaches -0.15% year$^{-1}$ during the period between 1975 and 2008, in good agreement with the observed value of -0.11% year$^{-1}$ (Pieczonka and Bolch, 2015).

As shown in Fig. 5(a) and (b), the glacier area and glacier mass under the scenario of ‘1970s temperature’ both experienced a decreasing trend, but with a lower decreasing rate compared to that under the accelerating warming natural climate, implying the temperature in
the 1970s was warm enough to promote long lasting glacier melt. While changes in glacier area and glacier mass under the scenario of '1970s precipitation' and natural climate are basically consistent, indicating changes in air temperature largely governed changes in glacier characteristics over the last decades. In comparison, the effect of changes in precipitation is negligible. From Fig. 5(c), the effects of air temperature and precipitation changes on runoff are generally balanced before 2000. After that, the effect of air temperature exceeds the effect of precipitation.

5.2. Water balance components

The water balance for the KRB is given by

\[P = E + R + \Delta S \]

(6)

where \(P \) is the precipitation estimated assuming a seasonal gradient and bias factor, while \(E \) denotes actual evapotranspiration and \(R \) is runoff, both of which were computed by the model; the residual term \(\Delta S \) is the water storage change. Positive (negative) \(\Delta S \) means the water storage of the basin increases (decreases) in the form of soil moisture, snow or glacier ice. Fig. 6 shows the monthly mean of each water balance component in Eq. (6) from the model simulation (selected solution from calibration) for the period from 1971 to 2010. Fig. 6(a) illustrates the seasonal cycle of precipitation \(P \) from the model simulation, the maximum value of which occurs in July. The annual precipitation averages 643 mm year\(^{-1}\), in which the average rainfall and snowfall are 499 mm year\(^{-1}\) and 144 mm year\(^{-1}\), respectively. Fig. 6(b) illustrates the seasonal cycle of evapotranspiration \(E \) from the model simulation, the peak of which occurs in August and the annual evapotranspiration averages 431 mm year\(^{-1}\). In our model, the simulated fractions of rainfall, snowmelt and glacier melt to the simulated runoff of each month are used to calculate the runoff contribution. Fig. 6(c) shows that as the maximum value of runoff from glacier melt occurs in August, with the runoff (\(R \)) lagging the precipitation by one month. The annual average runoff is 376 mm year\(^{-1}\), in which rainfall, glacier melt and snowmelt are 228 mm year\(^{-1}\) (accounting for 60.6%), 106 mm year\(^{-1}\) (accounting for 28.2%) and 42 mm year\(^{-1}\) (accounting for 11.2%), respectively. That implies rainfall and glacier melt contribute the majority of the runoff. From Fig. 6(d), monthly mean \(\Delta S \) is negative from July to September, implying the water storage decreases through this period, mainly in the form of evapotranspiration and runoff. Our model results also indicate despite covering only 21.3% of the basin area, the glacier areas contributed 43.3% (including rainfall, snowmelt and glacier melt) to the total runoff in the KRB.

5.3. Changes in glacier and runoff

The simulated GCA and glacier mass during the period from 1971 to 2010 are shown respectively in Fig. 5(a) and (b). The GCA decreased by a total of 76.3 km\(^2\) during the study period, while the glacier mass declined by a total of 17.9 m w.e. in response to the warming climate with accelerating glacier melt. The largest decrease of GCA (−14.6 km\(^2\)) and of glacier mass (−6.3 m w.e.) appeared concurrently in the 2000s.

Fig. 7(a) shows the observed and simulated runoff time series at the Xiehelu gauge. Overall, our model depicts accurately the increasing trend in runoff. The increase rate of observed and simulated runoff are +2.05 mm year\(^{-1}\) and +1.64 mm year\(^{-1}\), respectively. The model simulations, however, cannot reproduce adequately the persistent higher discharge values observed in the 1990s. Insufficient glacier melting due to an incomplete model structure is one possible reason (Shangguan et al., 2017). Other factors such as an underestimation of precipitation due to the sparse gauging network in high elevations are also likely influencing the simulated glacier mass balance and hydrological cycle. Fig. 7(b) shows the time series of simulated runoff contribution at the Xiehelu gauge during the period from 1971 to 2010. Overall, runoff from rainfall showed an obvious upward trend, with an increase rate of +0.93 mm year\(^{-1}\). Concurrently, runoff from snowmelt experienced a slight downward trend, with a decrease rate of −0.12 mm year\(^{-1}\). That implies a larger proportion of precipitation shifts to rainfall rather than snowfall as the increasing precipitation occurs with rising temperatures. At the same time, runoff from glacier melt also showed an upward trend, with an increase rate of +0.83 mm year\(^{-1}\), in response to the rising temperatures. The contribution to total runoff from rainfall reached the maximum of 61.4% in the 1990s, then dropped to 60.2% in the 2000s. The contribution to total runoff from glacier melt reached the maximum of 29.9% in the 2000s, 3.0% larger than the minimum value in the 1970s. The contribution to total runoff from snowmelt dropped to the minimum of 9.9% in the 2000s, with 2.2% less than the maximum value in the 1970s. That implies both rainfall and glacier melt are the primary causes of increased runoff in the recent years, while snowmelt has a minor influence in comparison.

6. Discussion

During the calibration and validation periods, the model consistently performed well in simulating the changes in glacier and runoff except the observed high flows in the 1990s. This is probably attributed to an underestimation of the precipitation due to the sparse gauging network in high elevations, insufficient glacier melting, and/or other processes such as the rapid release of internal water storage in glaciers (Shangguan et al., 2017). The model performance is considerably lower when looking at annual variations than at monthly series of streamflow. This is because seasonal variations between winter low flow and summer high flow are much more distinct than annual variations.

Our estimates of the contribution to runoff from glacier melt is 28.2% for the KRB, similar to that of Dikikh (1993) whose estimate is 33%, and lower than those of Zhao et al. (2013) and Duethmann et al. (2015), who derived glacier melt contributions of 43.8% and 35–48%, respectively. Our estimates also indicate the glacier areas contributed 43.3% (including rainfall, snowmelt and glacier melt) to the total runoff, similar to that of Aizen and Aizen (1998) who estimated the contribution of glacier areas was 36–38%. In addition, we concluded both rainfall and glacier melt are the primary causes of increased runoff in recent years, which is similar to the result of Duethmann et al. (2015).

Our estimate for the contribution to runoff from snowmelt is 11.2% in the KRB, lower than that of Zhao et al. (2013) with an estimate of
27.7%. The underestimation is likely due to our assumption for the new snow on the glacier surface, which would turn into ice if it does not melt out at the end of the ablation season. In addition, we do not represent explicitly the densification from snow to ice. Therefore, the temperature index model was used to estimate snowmelt and glacier melt and to update the glacier area and mass at each elevation band.

Due to the sparse gauging network in the remote mountainous areas of the TRB, we used a temperature lapse rate and precipitation gradient to adjust model forcings based on low elevation observing stations to reflect the elevation dependence of air temperature and precipitation. This could lead to uncertainties in our modeling results especially at higher elevations where the glacio-hydrologic process is the most dynamic. Better observations in these areas would reduce these uncertainties.

A number of previous studies have quantified the role of glacier melt and precipitation increases in runoff increase by using hydrological simulation approach. Zhao et al. (2013) found that runoff increase over the period of 1970–2007 was 96% due to precipitation increase and 4% due to glacier melt increase. However, Duethmann et al. (2015) estimated that temperature increase was the dominant driver to runoff increase over the period of 1957–2004. In contrast, our study provided an estimate for both rainfall and glacier melt that are the primary causes of increased runoff in the study area over the period of 1971–2010. Except that the analyzed time periods of those studies were not completely overlapped, the main difference among these studies lie in the model parameterizations and calibrations, which would result in considerable uncertainties. Furthermore, most of those models could simulate the glacier mass evolution but without including an explicit representation of glacier flow. The increased ablation at low elevations and enhanced accumulation at high elevations would lead to a steepening of glacier surface, a corresponding increase in driving stress and accelerating ice flow. These effects are likely important for determining glacier mass redistribution over the past years. Therefore, it is worthwhile to put more attention in the design of future observation networks, as well as modeling and prediction work.

7. Conclusions

Using a glacio-hydrological model, we investigated the water balance dynamics of a highly glacierized basin in the TRB, which has
experienced increases in both air temperature and precipitation during the last few decades. Our key findings are: a) the contribution to total runoff from rainfall, glacier melt and snowmelt are 60.6%, 28.2% and 11.2%, respectively on average over the period from 1971 to 2010; b) the glacier areas contributed 43.3% (including rainfall, snowmelt and glacier melt) to the total runoff; c) as the primary causes of increased runoff (increase rate of 1.64 mm year$^{-1}$) in response to the warmer and wetter climate over the period of 1971–2010, the contribution from rainfall and glacier melt increase are +0.93 mm year$^{-1}$ and +0.83 mm year$^{-1}$, respectively, accounting for 56.7% and 50.6%, while contribution from snowmelt increase is −0.12 mm year$^{-1}$, accounting for −7.3%.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors are grateful to Professor Dennis P. Lettenmaier at the University of California, Los Angeles, and Professor Bart Nijssen at the University of Washington for their guidance and help. The work was financially supported by the Guangdong Provincial Science and Technology Program (2018B030324001, GDAS’ Special Project of Science and Development (2019GDASYL-0104001, 2019GDASYL-0401001, 2020GDASYL-2020TO3002), and partially supported by the University of California, Los Angeles, and Professor Bart Nijssen at the University of Washington for their guidance and help. The work was financially supported by the Guangdong Provincial Science and Technology Program (2018B030324001, GDAS’ Special Project of Science and Development (2019GDASYL-0104001, 2019GDASYL-0401001, 2020GDASYL-2020TO3002), and partially supported by the University of California, Los Angeles, and Professor Bart Nijssen at the University of Washington for their guidance and help. The work was financially supported by the Guangdong Provincial Science and Technology Program (2018B030324001, GDAS’ Special Project of Science and Development (2019GDASYL-0104001, 2019GDASYL-0401001, 2020GDASYL-2020TO3002), and partially supported by the University of California, Los Angeles, and Professor Bart Nijssen at the University of Washington for their guidance and help.

Fig. 7. (a) Observed and simulated runoff with trend slopes; (b) Simulated runoff contribution from glacier melt, snowmelt and rainfall with trend slopes during the period from 1971 to 2010.

References

Farr, T., Rosen, P., Carse, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M.,