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A B S T R A C T   

The typical warm and wet regions of Southeast Asia have significant water resource issues. Deep insight of the 
future streamflow in the region is therefore necessary for effective water resource management and prediction. 
We coupled the Soil and Water Assessment Tool (SWAT) with a downscaling method (Delta) and global circu-
lation models (GCMs) in the Mun River Basin (MRB), in Thailand under three Representative Concentration 
Pathways (RCPs). The results show that the calibrated SWAT model can accurately characterize the hydrological 
process on the daily, monthly, and yearly terms. The future monthly minimum temperature would rise by 
>1.5 ◦C, >2 ◦C, and >3 ◦C in the 2030s, 2060s, and 2080s respectively, under all RCPs (2.6, 4.5, and 8.5), which 
would also occur at the maximum temperature. The temperature increase in dry season was more significant 
than that of the wet season. The average annual precipitation decreased in the 2030s, and increased by 8.9%, 
12.8%, and 13.9% in the 2060s under the three climate scenarios, respectively. Moreover, precipitation from 
June to September in wet season markedly increased. The streamflow was projected to increase by 10.5%, 
20.1%, and 23.2% during 2020–2093 under three climate scenarios, respectively. Monthly average streamflow 
increased from June to September and decreased from February to May, and the dry seasonal streamflow 
decreased by 1.1%-37.2%. These changes in flow were closely related to climate change. Monthly flow changes 
were negatively related to temperature (p < 0.05) in dry season and positively linked to precipitation (p < 0.01) 
in wet season. The results of this study highlight the impact of climate change on streamflow in the Southeast 
Asia and provide scientific basis for adaptive management.   

1. Introduction 

The accumulation of greenhouse gases in the atmosphere is the 
dominant cause of global climate change (Nijssen et al., 2001; Nilawar 
and Waikar, 2019). The consensus of atmospheric scientists is that 
global warming is happening, and temperature is expected to continue 
to rise (Li and Fang, 2017). According to the Fifth Assessment Report of 
the Intergovernmental Panel on Climate Change (IPCC), global mean 
surface temperature (GMST) has increased by approximately 0.85 ◦C 
over the past 130 years (1880–2012; IPCC, 2013). Based on Coupled 
Model Intercomparison Project 5 (CMIP5), the IPCC has defined a new 
Representative Concentration Pathway (RCP) for climate change pro-
jection (Bhatta et al., 2019). For CMIP5, four RCPs have been formu-
lated, including the “high” scenario in RCP8.5 increases throughout the 
twenty-first century before reaching the radiative forcing level of 8.5 W 

m− 2, the intermediate scenarios (RCP4.5 and RCP6.0). In addition, there 
is a low scenario, RCP2.6, in which radiative forcing reaching a 
maximum near mid-21st century before decreasing to a level of 2.6 W 
m− 2 (Taylor et al., 2012). The GMST is projected to continuously in-
crease by 0.3 ◦C to 0.7 ◦C during 2016–2035. Specifically, the GMST is 
projected to increase by 1 ◦C and >4 ◦C under the low and high climate 
change scenarios, respectively, by the end of the 21st century. The in-
crease in global temperature has accelerated evapotranspiration rates, 
which has significantly altered global precipitation patterns (Paparrizos 
et al., 2015; Zhang et al., 2016). In addition, the changing trend of GMST 
and altered rainfall regimes are likely to continue over the next century 
(Bajracharya et al., 2018). 

Climate change (i.e., increased temperature and altered rainfall 
patterns) is expected to significantly impact the hydrological cycle by 
influencing the spatio-temporal distribution of water cycle elements, 
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including precipitation, evaporation, runoff, and soil moisture; these 
changes are expected to further influence the redistribution of water 
resources (Arnell, 1999; Bolch et al., 2012; Wang et al., 2013). Accurate 
projections of streamflow response to climate change are necessary for 
the effective planning and management of water resources, including 
the predictions of droughts and floods and promoting sustainable agri-
culture (Muhammad et al., 2018). Many studies have therefore assessed 
the impacts of climate change on water resources (Lehner et al., 2019; 
Tan and Gan, 2015) and demonstrated that the streamflow of one-third 
of the world’s 200 major rivers have undergone significant changes 
since the 1950s. The associated risks of climate change impacts on 
freshwater resources increases significantly with increasing greenhouse 
gas concentrations. The renewable surface and groundwater resources 
in many arid subtropical regions are therefore expected to decrease 
significantly in the 21st century. The intensity and spatial distribution of 
precipitation are also expected to change under a global warming of 
1.5 ◦C and 2.0 ◦C, (Wang et al., 2013). The frequency of annual heavy 
precipitation and the risk of drought are also projected to increase 
globally before 2070, which will be further enhanced under a global 
warming of 2.0 ◦C (Zhang and Villarini, 2017). Moreover, Europe, the 
Mediterranean, the Amazon, and South Africa are at a higher risk of 
drought under a global warming of 2.0 ◦C (Lehner et al., 2017). Climate 
change is therefore expected to aggravates the global and regional water 
shortage under the global warming of 2.0 ◦C. Such changes in sustain-
able water resources would have considerable consequences for global 
economies as well as ecosystems (Milly et al., 2005). 

Previous modelling studies have generated the climate input as a 
single increment of temperature and percentage change of precipitation, 
either by adjusting the output of the climate model (Fan and Shibata, 
2015; Liu et al., 2013) or revising the observed station data (Steinsch-
neider et al., 2015). This can minimise bias in the climate model but may 
not adequately explain the climate regime changes projected by climate 
change, such as potential changes in the frequency, intensity and sea-
sonality of precipitation (Xu et al., 2019). Many studies have also 
coupled general circulation models (GCMs) with hydrological models to 
simulate the potential impact of climate change on streamflow (Wang 
et al., 2018). The GCM is a type of climate model that mathematically 
represents the general circulation of a planet’s atmosphere or ocean, 
which can provide reliable information on historical, current and future 
climates (Zhang et al., 2016). Each GCM is developed based on its own 
assumptions and unique mathematical representations of physical 
climate system processes, thus providing different climate predictions 
(Her et al., 2019). Generally, an ensemble of various GCMs from 
different groups around the world can provide better water resource 
assessments compared to that of a single GCM (Pierce et al., 2009), 
since, in some cases, the uncertainty of climate models is greater than 
that of hydrological simulations (Prudhomme et al., 2003). Statistical or 
dynamic downscaling methods are often used to reconcile the different 
spatio-temporal resolutions of GCMs and hydrological models. For 
example, Luo et al. (2018) used the Delta method to investigate the 
spatio-temporal characteristics of climate change in Xinjiang during 
2021–2060 based on 37 GCMs. Under different climate scenarios, 
climate factors—such as precipitation and temperature—are generated 
as input data in hydrological models to project future streamflow; that is 
considered one of the most reliable methods for assessing water resource 
changes (Bhatta et al., 2019; Tan et al., 2017b; Xu, 1999). 

The Soil and Water Assessment Tool (SWAT) is a physical-based, 
semi-distributed, basin-scale hydrological model and is one of the 
most suitable applications for investigating the response of streamflow 
to climate change (Zhang et al., 2016). For example, Bhatta et al. (2019) 
assessed the climate change impact on the hydrology of the Himalayan 
River Basin using three different time frames, based on an ensemble of 
CMIP5 and four Regional Climate Models (RCMs) under the RCP4.5 and 
RCP8.5 scenarios in the SWAT model. Moreover, Bajracharya et al. 
(2018) used a10-km resolution climate dataset in the SWAT model to 
project basin outflows in the Kaligandaki Basin, Nepal. Gan et al. (2015) 

also used an ensemble of climate models in combination with a glacier- 
enhanced SWAT hydrologic model to assess the effect of future climate 
changes on the glacier and hydrology of the Naryn River Basin in Central 
Asia. 

The Mekong River is located in a tropical region in Southeast Asia 
and is the tenth largest river in the world (Yang et al., 2019). The water 
availability in tropical region is particularly sensitive to the impacts of 
climate change (Shrestha et al., 2018). Moreover, Thailand is vulnerable 
to droughts and floods due to extreme climate change in the middle of 
the Indo-China Peninsula in Southeast Asia. The country suffered its 
most severe monsoon flood in 2011, causing the death of >800 people 
and adversely affected 13.6 million people, with a total economic loss of 
$45.8 billion (USD) (Loo et al., 2015; Tan et al., 2019). It is therefore 
necessary to further elucidate the climate change impacts on hydro-
logical processes in the region, as the intensity and frequency of extreme 
events—such as tropical cyclones, floods and droughts—are predicted to 
increase (Alessandra and Raya, 2013). 

The Mun River in Thailand (the largest tributary of the Mekong 
River) supplies approximately 2.0 × 1010 m3 water into Mekong River 
each year (Li et al., 2020). Therefore, changes in the Mun River’s water 
quantity can have vital impacts on the water resources of the middle and 
lower reaches of the Mekong River. The Mun River Basin (MRB) is a viral 
agricultural region both locally and globally, as approximately 80% of 
the total basin area consists of agricultural land. Rain-fed rice yields in 
the MRB are generally lower than the potential levels due to water 
shortage (Prabnakorn et al., 2018; Prabnakorn et al., 2019). Streamflow 
change in response to future climate change may therefore affect agri-
cultural water demand in this area (Boonwichai et al., 2018), which 
would increase hydrological uncertainty and enhance the challenges 
faced by local water resources management. Despite the wealth of 
environmental studies conducted in recent decades, most investigations 
in this area have focused on heavy metal pollutions, water quality, and 
rice yield (Akter and Babel, 2012; Liang et al., 2019; Zhao et al., 2018). 
In comparison, seldom information was known in relation to streamflow 
and water resource under the future climate change. An effective 
assessment on streamflow is therefore crucial for sustainable agricul-
tural development in the MRB as well as the entire Mekong River Basin. 

The main objectives of this study were to assess the response of 
streamflow to future precipitation and temperature changes on annual, 
seasonal, and monthly scales. The results contribute towards the 
growing literature on streamflow changes under global warming over 
the MRB. This study also provides a scientific reference to river basin 
management to mitigate future water resource issues in the MRB. 
Moreover, the present work has major implications for water resources 
in the Mekong River Basin and across the Indo-China Peninsula. 

2. Materials and method 

2.1. Study area 

The Mun River has a length of 550 km, and is one of the important 
tributaries of the Mekong River, Southeast Asia (Fig. 1). It originates 
from the Khao Yai National Park and joins the Mekong at Khong Chiam 
in the Ubon Ratchathani province in Thailand (Akter and Babel, 2012). 
The MRB covers an area of approximately 1.19 × 105 km2, with an 
elevation range of 96–1339 m (average 223 m; Fig. 2a). Most of the 
basin consists of flat topography, with slope gradients of less than 9% 
(Fig. 2d). 

The tropical savannah climate of the study area has distinct wet and 
dry seasons (Prabnakorn et al., 2018) and is dominated by the South-
eastern monsoon. The rainy season occurs from May to October, while 
the dry season occurs from November to April. The region has a mean 
annual precipitation of >1000 mm, most of which occurs in the rainy 
season. Monthly temperature ranges from 24 ◦C to 30 ◦C, with the lowest 
and highest temperatures occurring in January and April, respectively. 

The MRB consists of six land use types (Fig. 2b). The main land use is 
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agriculture land (AGRL, 80% of the basin), followed by forest land 
(FRST, 15.04%), grass land (PAST, 2.28%), water bodies (WATR, 
1.61%) and land for construction (URML, 1.10%). Rice is the main 
agricultural crop in the region, and forests are mainly located in the 
mountainous areas along the edges of the basin. Moreover, the study 

area has eight soil types (Fig. 2c). The Gleyic Acrisols (Ag) is the main 
soil type (48.82%), followed by Dystric Gleysols (Gd, 12.5%), Ferric 
Acrisols (Af, 17.38%), and Orthic Acrisols (Ao, 16.97%). 

Fig. 1. Location of the study area and river monitoring network.  

Fig. 2. Characteristics of (a) DEM, (b) land use, (c) soil, and (d) slope (AGRL, Agricultural Land; PAST, Pasture; FRST, Forest; WETL, Wetlands; WATR, Water; URML, 
Residential-Med/Low Density; Af, Ferric Acrisols; Ag2, Gleyic Acrisols2; Ge, Eutric Gleysols; Gd, Dystric Gleysols; Fo, Orthic Ferralsols; Ag1, Gleyic Acrisols1; Ao, 
Orthic Acrisols; Lc, Chromic Luvisols; Nd, Dystric Nitosols). 
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2.2. Data collection 

2.2.1. Hydrometeorological data 
Daily precipitation (Prec) data at a spatial resolution of 0.25◦ × 0.25◦

were obtained from the Asian Precipitation-High-Resolved Observa-
tional Data Integration Towards Evaluation of Water Resource 
(APHRODITE) (http://aphrodite.st.hirosaki-u.ac.jp/). APHRODITE is a 
long-term daily gridded precipitation dataset for Asia based on a dense 
network of rain gauges (Yatagai et al., 2012). Many studies have used 
APHRODITE as the ground observation data across Asian to assess its 
regional applicability and streamflow simulation (Chen et al., 2018; Tan 
et al., 2017a). Maximum temperature (Tmax) and minimum temperature 
(Tmin) data were obtained from the Global Surface Summary of the Day 
(GSOD) and Global Historical Climate Network Daily (GHCN) (https:// 
www.ncdc.noaa.gov/). The bilinear interpolation method was used to 
interpolate the Tmax and Tmin to 0.25◦×0.25◦ resolution. In this study, 31 
grids of meteorological data were selected for the MRB (Fig. 1b). Based 
on the Tmax and Tmin, the Hargreaves method was used to calculate 
potential evapotranspiration (Pereia and Prutit, 2004). 

Streamflow data at the M6 gauge station during 1980–2004 were 
used for model calibration (Fig. 1b). The data were obtained from the 
Department of Water Resources of Ministry of Natural Resources and 
Environment of Thailand. The average annual streamflow was 809.8 m3 

s− 1, and the average flow during the rainy season was 613.8 m3 s− 1, 
accounting for approximately 75.8% of the total annual streamflow. 

2.2.2. Topographic, soil, and land use data 
The Digital Elevation Model (DEM) was produced by the Shuttle 

Radar Topography Mission (SRTM) at 30-m resolution. The DEM was 
provided by the Geospatial Data Cloud site from the Computer Network 
Information Center in the Chinese Academy of Sciences (http://www. 
gscloud.cn). 

The Harmonized World Soil Database (HWSD) Version 1.2 was ob-
tained from the Food and Agriculture Organization of the United Na-
tions (FAO-UN; http://www.fao.org). Soil properties—such as soil 
depth, organic carbon, and sand, clay and silt percentages—were also 
available and can be used directly in the SWAT model. Soil character-
istics, including bulk density, available water, and saturation hydraulic 
conductivity, were calculated using the Soil-Plant-Air-Water (SPAW) 
software. 

As this study focused on the impact of climate change on basin 
streamflow, only one-phase land use in 2000 was employed. Land use 
was kept unchanged during the model simulation process, and land use 
data with a resolution of 30 m was obtained from GlobeLand30. 

2.3. SWAT model 

The SWAT model is a distributed watershed hydrological model 
(Arnold et al., 1998) developed by the Agricultural Research Service of 
the U.S. Department of Agriculture (USDA ERS). It can be used to 
simulate the quality and quantity of surface and ground water as well as 
their responses to land management (Olivera et al., 2006). The data 
required to run SWAT include rainfall and temperature, land use, soil 
types and properties, DEM, and hydrology. Based on these datasets, a 
basin is divided into multiple sub-basins and hydrologic response units 
(HRUs) according to the minimum threshold ratio of land use, soil type 
and slope (Jha, 2012). In the present study, the MRB was divided into 70 
sub-basins and 1063 HRUs. 

The SWAT-simulated hydrological process is divided into the hy-
drological cycle and the confluence phase. The hydrological cycle is 
based on the water balance equation (Osei et al., 2019): 

SWt = SW0 +
∑t

i=1
(Rday − Qsurf − Ea − wseep − Qgw) (1)  

where SWt (mm H2O) is the final soil water content at day t, SW0 (mm 

H2O) is the initial soil water content, t(d) is time, Rday (mm H2O) is the 
amount of precipitation at day i, Qsurf (mm H2O) is the amount of surface 
streamflow at day i, Ea (mm H2O) is the amount of evapotranspiration at 
day i, wseep (mm H2O) is the amounts of percolation and bypass flow in 
the soil profile bottom at day i, and Qgw (mm H2O) is the amount of 
return flow at day i (Nilawar and Waikar, 2019). 

In SWAT, the Soil Conservation Service curve number procedure 
(SCS-CN) and the Green and Ampt infiltration methods are applied to 
estimate surface runoff. The SCS submodel was developed to provide a 
consistent basis for estimating the amount of runoff under various land 
use and soil types. The Green and Ampt equation was applied to predict 
infiltration assuming excess water at the surface at all times. The surface 
runoff can be estimated using the SCS curve equation as follows: 

Qsurf =

(
Rday − Ia

)2

(Rday − Ia + S)
(2)  

where, Ia (mm H2O) is the initial abstraction, including interception, 
infiltration and surface storage for the day, and S (mm H2O) is the 
retention parameter. The retention parameter changes spatially due to 
changes in soil, land use management and slope as well as temporary 
change in soil moisture. Parameter S is defined as: 

S = 25.4
(

1000
CN

− 10
)

(3) 

Table 1 
Details of the 34 CMIP5 climate models.  

ID Model Name Country Institution Resolution Lon ×
Lat 

1 ACCESS1.0 Australia CSIRO-BOM 1.88◦×1.25◦

2 ACCESS1.3 Australia CSIRO-BOM 1.88◦×1.25◦

3 BCC-CSM1.1 China BCC 2.81◦×2.79◦

4 BNU-ESM China GCESS 2.81◦×2.79◦

5 CanESM2 Canada CCCma 2.81◦×2.79◦

6 CCSM4 America NCAR 1.25◦×0.94◦

7 CESM1(CAM5) America NSF-DOE- 
NCAR 

1.25◦×0.94◦

8 CESM1 
(WACCM) 

America NSF-DOE- 
NCAR 

1.25◦×0.94◦

9 CMCC-CMS Italy CMCC 1.88◦×1.88◦

10 CNRM-CM5 France CNRM- 
CERFACS 

1.41◦×1.40◦

11 CSIRO-Mk3.6.0 Australia CSIRO- 
QCCCE 

1.88◦×1.88◦

12 EC-EARTH Ten European 
countries 

EC-EARTH 1.13◦×1.13◦

13 FGOALS-g2 China LASG-CESS 2.81◦×2.81◦

14 FIO-ESM China FIO 2.80◦×2.80◦

15 GFDL-ESM2G America NOAA GFDL 2.00◦×2.02◦

16 GFDL-ESM2M America NOAA GFDL 2.50◦×2.02◦

17 GISS-E2-H America NASA GISS 2.50◦×2.00◦

18 GISS-E2-R America NASA GISS 2.50◦×2.00◦

19 HadGEM2-AO Korea NIMR/KMA 1.88◦×1.25◦

20 HadGEM2-CC England MOHC 1.88◦×1.25◦

21 HadGEM2-ES England MOHC 1.88◦×1.25◦

22 INM-CM4 Russia INM 2.00◦×1.50◦

23 IPSL-CM5A-LR France IPSL 3.75◦×1.89◦

24 IPSL-CM5A-MR France IPSL 2.50◦×1.27◦

25 IPSL-CM5B-LR France IPSL 3.75◦×1.89◦

26 MIROC4h Japan MIROC 0.56◦×0.56◦

27 MIROC5 Japan MIROC 1.41◦×1.40◦

28 MIROC-ESM Japan MIROC 2.81◦×2.79◦

29 MIROC-ESM- 
CHEM 

Japan MIROC 2.81◦×2.79◦

30 MPI-ESM-LR Germany MPI-M 1.88◦×1.87◦

31 MPI-ESM-MR Germany MPI-M 1.88◦×1.87◦

32 MRI-CGCM3 Japan MRI 1.13◦×1.12◦

33 NorESM1-M Norway NCC 2.50◦×1.89◦

34 GFDL-CM3 America NOAA GFDL 2.50◦×2.00◦
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where CN is the curve number for the day. 
Model parameter sensitivity, calibration, and validation were con-

ducted before projecting future climate change impacts on streamflow. 
The global sensitivity of streamflow parameter was determined using 
the Automated Latin Hypercube One-factor-At-a-Time (LH-OAT) pro-
cedure (Nilawar and Waikar, 2019). Fifteen parameters were chosen for 
the model calibration (Table 1). The sensitivity of the parameters was 
measured by considering the P-value and t-Stat (Tuo et al., 2016). 

Calibration and validation processes were conducted after the 
sensitivity analysis. The calibration was performed using the daily data 

during 1978–1998, with the first two years as the warm-up period. The 
validation period was from 1999 to 2004. In this study, SWAT calibra-
tion and uncertainty programs (i.e., SWAT-CUP) were used to calibrate 
SWAT. The sequential uncertainty fitting algorithm (SUFI-2) was 
applied to analyse the sensitivity, calibration, validation, and uncer-
tainty in the MRB. The correlation coefficient (R2), the Nash-Sutcliffe 
(NS) efficiency coefficient, and percent bias (PBIAS) were used to 
check the satisfaction of the SWAT model. 

The precipitation and temperature generated by the Delta method 
under RCP2.6, RCP4.5, and RCP8.5 were then used as inputs in the 
calibrated SWAT model to predict the future climate change impacts on 

Fig. 3. Comparisons between observed and simulated streamflow at station M6 on the daily (upper), monthly (middle), and yearly (lower) time steps for calibration 
and validation. 

Table 2 
The sensitive parameters for streamflow with their ranges and adopted values.  

Rank Parameter Description Range Adopted value t-Stat P-Value 

1 GW_DELAY Groundwater delay time 30 to 450 33.74 − 13.91 0.00 
2 CN2 SCS runoff curve number − 0.2 to 0.2 0.04 10.04 0.00 
3 RCHRG_DP Deep aquifer percolation fraction 0 to 1 0.04 − 7.40 0.00 
4 ALPHA_BNK Base flow alpha factor for bank storage 0 to 1 0.43 2.30 0.02 
5 ESCO Soil evaporation compensation factor 0.8 to 1 0.81 − 2.27 0.02 
6 CH_K2 Effective hydraulic conductivity in the main channel 5 to 130 48.53 − 1.86 0.06 
7 CANMX Maximum canopy storage 0 to 100 97.74 1.60 0.11 
8 REVAPMN Threshold depth of water in the shallow aquifer for “revap” to occur 0 to 10 3.28 0.86 0.39 
9 SOL_K Saturated hydraulic conductivity − 0.8 to 0.8 0.65 − 0.85 0.39 
10 GWQMN Threshold depth of water in shallow aquifer for return flow to occur 0 to 2 1.78 0.80 0.42 
11 SOL_BD Moist bulk density of first soil layer − 0.5 to 0.6 − 0.24 0.44 0.66 
12 GW_REVAP Groundwater revap. coefficient 0 to 0.2 0.07 0.34 0.74 
13 CH_N2 Manning’s n value for main channel 0 to 0.3 0.30 0.28 0.78 
14 ALPHA_BF Base flow alpha factor 0 to 1 0.11 0.24 0.81 
15 SOL_AWC soil available water storage capacity − 0.2 to 0.4 0.37 0.12 0.90  
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streamflow. 

2.4. Future climate change projection 

Precipitation and temperature are the two main climatic factors 
affecting streamflow on the basin scale (Wang et al., 2018). Thirty-four 
CMIP5 GCMs were employed in this study (Table 1) and are described in 
detail by Ruan et al. (2018, 2019). The future climate data was also 
corrected by the Delta method for 2006–2093 under RCP2.6, RCP4.5, 
and RCP8.5. The Delta method is a relatively simple but commonly 
applied downscaling technique; it can also cluster the entire range of 
various models and calculate their average level. The major steps of the 
method include the following: 1) comparing the future annual precipi-
tation of each GCM output grid with the reference period and then 
calculating the change proportions of precipitation, and 2) multiply the 
proportions by the observed precipitation of the base period to obtain 
the future precipitation at each station (Hay et al., 2000). It is worth 
noting that the Delta changes for precipitation and temperature differ: 
the grid variable change output by the GCM refers to the relative change 
for precipitation and absolute change for temperature. 

The mean multi-model ensemble projected changes in precipitation 
and temperature for the 2030s (2020–2044), the 2060s (2045–2069), 
and the 2080s (2070–2093) under RCP2.6, RCP4.5, and RCP8.5, which 
were compared to their counterparts during baseline period 
(1980–2004). Each period covered a 25-year time period, and the 
ensemble of absolute change was calculated using the simple arithmetic 
mean method. 

3. Results 

3.1. Parameter sensitivity, calibration, and validation 

Fifteen parameters were chosen for the calibration of the model are 
listed in Table 2. The sensitivity of the parameters was measured by 
considering the P-value and t-Stat (Tuo et al., 2016). The most sensitive 
parameters were groundwater delay (GW_DELAY), followed by the SCS 
runoff curve number (CN2), deep aquifer percolation fraction 
(RCHRG_DP), base flow alpha factor for bank storage (ALPHA_BNK), 
and soil evaporation compensation factor (ESCO). Generally, the most 
sensitive parameters were groundwater-related parameters (GW_DE-
LAY, RCHRG_DP) and the surface runoff parameter (CN2), which is 
consistent with the results of previous studies (Ligaray et al., 2016; 
Shrestha et al., 2018). 

During the calibration period, the simulated daily, monthly, and 
yearly streamflow values were matched with the observed values 
(Fig. 3). The R2 values were 0.87, 0.90, and 0.76, and the NS values were 
0.86, 0.89, and 0.76, respectively (Table 3). PBIAS values were − 1.37%, 
− 1.44%, and − 1.10%, suggesting that the simulated values were 
generally lower than the observed values. The R2 and NS during the 
validation period were 0.86, 0.89, and 0.66, and 0.85, 0.88, and 0.61, 
respectively. The PBIAS values were − 7.54%, − 7.56%, and − 7.29%, 
and the R2 and NS values during this period were slightly lower than 
those during the calibration period. 

3.2. Projected changes in precipitation and temperature 

3.2.1. Precipitation 
The monthly precipitation in January, May, August, and December 

was projected to increase under all three emission scenarios and in all 
time frames (Fig. 4). Under the three climate scenarios, precipitation 
was projected to decrease in February, April, July, and November during 
the 2030s, and projected to increase during the 2060s and 2080s. Pre-
cipitation in March was projected to decrease during the 2060s under 
RCP2.6 and increase in all three time slices under RCP4.5 and RCP8.5. In 
June, rainfall was projected to decrease during the 2030s and the 2080s 
and increase during the 2060s under all three RCPs. Under RCP2.6, Ta
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September precipitation was projected to decrease during the 2030s and 
the 2080s and increase (35.04 mm) during the 2060s. Moreover, 
October precipitation was projected to decrease in the 2060s and the 
2080s and increase in the 2030s. 

Precipitation in the rainy season was projected to increase during the 
2060s and the 2080s under all scenarios, while a decrease was predicted 
for the 2030s under RCP2.6 and RCP4.5 (Fig. 5a). During the 2060s, the 
absolute changes of precipitation in wet season were projected to be 87 
mm, 124 mm, and 135 mm under RCP2.6, RCP4.5 and RCP8.5, 
respectively. The dry season precipitation was projected to consistently 
increase during the 2060s and 2080s under the three scenarios, but was 
projected to decrease by 9.1%, 9.5%, and 8.1% under all three scenarios 
during the 2030s. 

3.2.2. Temperature 
Both the mean Tmin and Tmax were projected to increase under all 

RCP scenarios throughout the 21st century (Fig. 4). The absolute Tmin 
changes in January, March, April, May, and December were higher than 
those in other months—except for the 2060s. Under RCP2.6, the average 
increase in monthly Tmin were expected to range from 0.8 ◦C to 1.4 ◦C in 
the 2030s, 0.6 ◦C to 1.2 ◦C in the 2060s, and 1.4 ℃ to 2.2 ◦C in the 
2080s. Under RCP4.5, the increase in monthly Tmin was projected to 
range from 0.9 ◦C to 1.5 ◦C in the 2030s, 1.2 ◦C to 1.8 ◦C in the 2060s, 
and 2.1 ◦C to 2.8 ◦C in the 2080s. Similar monthly Tmin changes were 
observed under the RCP8.5, ranging from 1.0 ◦C to 1.6 ◦C in the 2030s, 
2.5 ◦C to 3.1 ◦C in the 2060s, and 3.3 ◦C to 4.0 ◦C in the 2080s. Notably, 

we observed no significant difference in monthly Tmax or Tmin between 
the different scenarios. The monthly mean Tmax under RCP2.6 was 
projected to increase by 1.0 ◦C, 1.0 ◦C, and 1.5 ◦C in the 2030s, 2060s, 
2080s, respectively. Under RCP4.5, the temperatures were projected to 
increase by 1.1 ◦C, 1.8 ◦C, and 2.3 ◦C in the 2030s, 2060s, 2080s, 
respectively. Finally, under RCP8.5, the monthly Tmax was projected to 
increase by 0.8 ◦C to 1.6 ◦C in the 2030s, 2.5 ◦C to 3.1 ◦C in the 2060s, 
and 3.2 ◦C to 3.8 ◦C in the 2080s. 

The projected seasonal changes in Tmin and Tmax are shown in Fig. 5. 
Seasonal Tmin and Tmax increased in both the wet and dry seasons across 
the year. A higher absolute increment for both seasons was projected for 
the 2080s. On average, the projected dry season temperature changes 
were higher than the wet season temperature changes. Notably, the 
projected Tmin increment rates were generally higher than those of the 
Tmax. 

3.3. Climate change impact on streamflow 

Streamflow was projected to change under all three scenarios in 
response to future climate change. The annual streamflow was projected 
to decrease during 2020–2093 under the RCP2.6 scenario, and a sig-
nificant correlation (R2 = 0.83) was observed between streamflow and 
precipitation (Fig. 6). In contrast, streamflow was projected to increase 
during 2020–2093 under the RCP4.5 and RCP8.5 scenarios, with a high 
positive correlation between streamflow and precipitation (determinant 
coefficient of 0.84). Compared to that of the baseline period, climate 

Fig. 4. Ensemble of absolute changes in monthly precipitation (Prec, upper), minimum temperature (Tmin, middle), and maximum temperature (Tmax, lower) in the 
2030s, 2060s, and 2080s in reference to the baseline (1980–2004). 
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change under the RCP8.5 scenario induced the largest increase in 
streamflow of 23.2% from 2020 to 2093. In contrast, streamflow under 
the RCP2.6 scenario showed the smallest increase from 809.3 m3 s− 1 in 
the baseline period to 894.6 m3 s− 1 (rate of increase of only 10.5%). 

The changes in annual, wet, and dry season streamflow for the three 
future periods under RCP2.6, RCP4.5, and RCP8.5 are presented in 
Fig. 7. Under RCP2.6, RCP4.5, and RCP8.5, the annual streamflow 
decreased by 14.1%, 11.1%, and 7.6%, respectively, during the 2030s 
and increased by 26.0%, 40.9%, and 43.3% during the 2060s (Fig. 7a). 
Streamflow was projected to increase by 3.1% and 5.3% in the 2080s 
under the RCP4.5 and RCP8.5 scenarios, but did not increase under 
RCP2.6. The sensitivity of streamflow to climate change was signifi-
cantly different between the dry and wet seasons. Under the three sce-
narios, wet season streamflow was expected to decrease in the 2030s, 
2080s (Fig. 7b). However, during the 2060s, the streamflow was pro-
jected to increase by 30.1%, 45.7%, and 48.9% under RCP2.6, RCP4.5, 
and RCP8.5, respectively. Notably, the streamflow in the dry season was 
projected to decrease in all future decades under all three RCP scenar-
ios—especially at the end of the century (Fig. 7c). 

The changes in mean monthly streamflow for the entire study period 
(2020–2093) and the three future decades (i.e., 2030s, 2060s, and 
2080s) under all scenarios are shown in Fig. 8. Although we observed 
the differences between each scenario throughout the study period, 
streamflow was generally projected to increase in January, July, August, 

September, and October—with a particularly significant increase in 
January. In contrast, streamflow was projected to decrease in February, 
March, April, May, November, and December—with a particularly sig-
nificant decrease in April. The streamflow changes in different months 
under the three RCPs showed large variability for the 2030s, 2060s, and 
2080s. We observed a decreasing trend in flow in most months during 
the 2030s. Moreover, the streamflow was projected to decrease from 
February to July and from October to December, with a maximum flow 
decrease in May. In contrast, streamflow was projected to increase in 
January, August, and September under the three scenarios. Compared to 
the streamflow in the baseline period, streamflow increased from June 
to November but decreased from December to May (excluding January). 
Moreover, the streamflow for March, April, and May was projected to 
significantly decrease in the 2060s. Under the RCP 2.6, RCP4.5 and 
RCP8.5 scenarios, streamflow was projected to decrease in the 2080s by 
48.9%, 41.5%, and 41.4% in February; 75.5%, 71.2%, and 71.5% in 
March; 88.8%, 87.5%, and 88.4% in April; and 81.2%, 74.1%, and 
66.7% in May, respectively. Notably, the decreases in streamflow 
exceeded 20% in November and December. 

Fig. 5. Basin-wide mean changes in wet season (a), dry season (b), and annual (c) in Prec, Tmax, and Tmin in the 2030s, 2060s, and 2080s under three concen-
tration scenarios. 
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4. Discussion 

4.1. Model performance 

In this study, we employed an integrated SWAT and Delta model to 
project future streamflow under three climate scenarios using CMIP5 
GCMs across the MRB. As this study is the first to apply the SWAT model 
in the MRB, we systematically evaluated its performance and applica-
bility by comparing our results with those of other similar studies in 
Southeast Asia. The impact of climate change on streamflow has been 
successfully evaluated in the Bangpakong River Basin (Sangmanee et al., 
2013), Thachin River Basin (Yasin and Clemente, 2014), and Chao 
Phraya River Basin (Ligaray et al., 2015) in Thailand. Generally, the 
model performance was between satisfactory and very good in terms of 
calibration and verification. The model simulated results are credible 
When the R2 and NS are>0.6 and 0.5, and the PBIAS is less than 25% 
(Abou Rafee et al., 2019; Wang et al., 2018). In this study, the R2, NS, 
and PBIAS for streamflow simulation were very good for both calibra-
tion and validation periods at different time steps (Table 2). However, it 

was difficult to obtain a strong fit, as hydrological processes are more 
complex and runoff changes more dramatic on the yearly scale. Overall, 
the performance of the SWAT model in this study was considered 
acceptable for the agricultural area of the MRB. 

4.2. Precipitation and temperature change 

Precipitation variability affects hydrology and streamflow (Choi 
et al., 2016; Fu et al., 2011). Ligaray et al. (2015) and Kure and Tebakari 
(2012) found that climate change increased rainfall and subsequently 
streamflow in the Chao Phraya Basin in Thailand. In this study, 
streamflow generally increased with increasing precipitation, and 
streamflow was mostly sensitive to the changes in annual precipitation 
(Table 4). A 1% increase in precipitation resulted in a streamflow in-
crease of 3.36%, 2. 28% and 2.34% under RCP2.6, RCP4.5, and RCP8.5, 
respectively, which is consistent with previously published results. For 
example, Chiew et al. (2006) reported 1%-3% change in mean annual 
streamflow for every 1% change in mean annual rainfall. On the 
monthly scale, both the precipitation and streamflow in September 

Fig. 6. The annual streamflow simulated by the calibrated SWAT model and the relations between precipitation and streamflow for 2020–2093 under the RCP2.6 
(upper), RCP4.5 (middle), and RCP8.5 (lower) scenarios. 

Fig. 7. Changes in mean annual (a), wet season (b), and dry season (c) streamflow for the 2030s, 2060s, and 2080s.  
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showed the highest increase under the RCP2.6, RCP4.5, and RCP8.5 
scenarios (Figs. 4 and 8). Moreover, the dry season precipitation had 
increased, but the dry season flow had decreased in all three future 
decades (Figs. 5b and 7c), which was closely related to the observed 
increase in dry season temperature. 

The projected temperature increases in this study are in agreement 
with the literature (Aggarwal et al., 2010; Arunrat et al., 2018; Furuya 
and Koyama, 2005) and may be responsible for the lower flows from 
November to April under the three scenarios (Figs. 4 and 8). The sig-
nificant increase in temperature and insignificant increase in rainfall 
will likely accelerated water evaporation and thus decreases streamflow. 
The rate of temperature increase in the dry season was projected to be 
higher than that in the wet season, which is consistent with the findings 
of other studies in Thailand (Shrestha et al., 2018; Shrestha et al., 2017). 
Under all three scenarios, the decreased streamflow during the 2030s 
may due to the projected higher temperature and low rainfall –similar to 
the 2080s condition under the RCP2.6. In contrast, under a warmer 
future climate (RCP8.5 scenario), higher evaporation is unlikely to offset 
the negative impacts of enhanced rainfall, resulting in the higher 
streamflow in the 2060s (Fig. 7a and b). 

4.3. Identification of the main factors 

A stepwise multiple linear regression analysis inferred that the 
impact of annual precipitation on streamflow exceeded that of temper-
ature in both the base period and future scenarios. However, the 

influencing factors varied on the monthly scale. The streamflow from 
May to September was mainly influenced by precipitation under the 
RCP2.6 and RCP4.5 scenarios. Under the RCP8.5 scenario, streamflow 
from May to September and November was also primarily linked to 
precipitation (Table 5). However, precipitation was not the only influ-
encing factor in some months. Under the RCP2.6 scenario, the influence 
of precipitation and temperature was significant in April and November, 
and the streamflow from January to March was mostly linked to Tmax 
and Tmin. For RCP4.5, the flow in November was mainly related to 
precipitation and temperature, while the flow from January to March 
was linked to Tmax and Tmin. For the RCP8.5 scenario, the flow in 
January and March was mainly related to Tmax and Tmin. Under future 
climate change, temperature is projected to play a stronger role than 
precipitation during the dry season, which is similar to the findings 
observed in northeastern China and other regions (Li and Fang, 2017). 
Tmax and Tmin were significantly negatively correlation with streamflow 
during the dry season. This suggests that an increase in temperature will 
likely accelerate evaporation, which will exceed the impacts of precip-
itation and subsequently reduce streamflow (Bhatta et al., 2019). In 
contrast, higher rainfall was projected to occur in the wet season, which 
would exceed the impact of temperature and subsequently increase 
streamflow. 

4.4. Uncertainty analysis 

Future climate projections via the CMIP5 GCMs are largely uncertain 
(Knutti and Sedlacek, 2013). Thailand and Vietnam are the two coun-
tries with the highest number of SWAT studies in the Mekong basin. Khoi 
and Suetsugi (2014) reported that climate change will reduce stream-
flow by 0.7%-6.9% in the Be River Catchment in Vietnam. In contrast, Le 
and Sharif (2015) identified an increase in summer and fall river 
discharge during the 21st century under scenarios A2 and B1 in central 
Vietnam. Compared to the reference period (2003–2011), streamflow 
was projected to increase by 6.8%, 41.9%, and 38.4% under scenarios 
B1, A1B, and A2, respectively, in the Chao Phraya River Basin in 
Thailand (Ligaray et al., 2015), which is similar in amplitude to the 
streamflow changes in this study. Moreover, streamflow was projected 
to decrease in the Songkhram River Basin (northeast Thailand) by 19.5% 
and 24% under RCP4.5 and RCP8.5, respectively. These uncertainties in 

Fig. 8. Comparisons of the monthly mean streamflow between baseline and future projected period for the entire projection period (upper) and the three future 
decades (lower). 

Table 4 
Annual precipitation, temperature, and streamflow for the baseline period and 
the three RCP scenarios.  

State variable Baseline RCP2.6 RCP4.5 RCP8.5 

Precipitation (mm year− 1) 1007.6 1039.1 1096.4 1107.3 
Minimum yearly rainfall (mm) 794.9 795.6 823.7 835.1 
Maximum yearly rainfall (mm) 1269.7 1355.8 1438.4 1447.7 
Daily rainfall ≥ 10 mm per year (%) 7.55 8.13 8.46 8.65 
Minimum daily temperature (◦C) 21.9 23.0 23.4 24.2 
Maximum daily temperature (◦C) 32.6 33.6 34.1 34.8 
Streamflow (m3 s− 1) 809.8 894.6 972.5 997.6  
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projected streamflow may be due to a number of factors, including the 
selected climate models, the choice of downscaling methods, the hy-
drological model structure, and the water conservancy measures 
implemented in the basins. 

The primary uncertainties are related to the projections of precipi-
tation and temperature, which impact basin hydrology and water re-
sources (Ahmadalipour et al., 2017; Minville et al., 2008; Ouyang et al., 
2015). We applied the multi-model ensemble of GCM in the present 
study to project future climate. We also utilised the Delta downscaling 
method, which can account for changes in the median of the multiple 
models (Luo et al., 2018). This method can also cluster the entire range 
of various models and calculate their average level. The disturbance 
factor obtained from the GCM operation is more representative and 
reasonable than the absolute value; this avoids the noise impact from 
massive datasets and filters out the overall trend (Onyutha et al., 2016). 
To further reduce the uncertainties of projected temperature and pre-
cipitation, an improved score-based method can be used to rank the 
performance of the 34 CMIP5 GCMs. Thus, appropriate models and 
statistical methods should be developed to quantify the impact of nat-
ural climate change and anthropogenic activities on streamflow. These 
aspects are beyond the scope of this study and therefore require further 
research. 

Human activities, such as dam constructions, reservoir operations, 
and urban expansion, are also expected to change in response to ongoing 
economic development. These changes in land use have a significant 
impact on runoff generation and water resources (Zhou et al., 2015). In 
the present study, we isolated the impacts of climate change by 
assuming no changes in land use or other human activities. Therefore, 
our results can still provide a reference for future climate change im-
pacts on streamflow. 

5. Conclusions 

In this study, we projected the impacts of 21st century climate 
change on streamflow in the MRB in Thailand, and assessed the changes 
in streamflow in response to three climate scenarios. The major findings 
of this study are summarized as follows:  

(1) Compared to the baseline period (1980–2004), Tmin and Tmax 
are projected to increase consistently in three future time slices 
(2030s, 2060s, and 2080s) under three RCPs (2.6, 4.5, and 8.5). 
The rate of increase in the dry season temperature was greater 
than that in the wet season.  

(2) The annual, wet season, and dry season precipitation over the 
MRB is projected to increase in the 2060s and 2080s under all 
three RCPs (2.6, 4.5, and 8.5), but decrease in the 2030s under all 
three climate scenarios.  

(3) The streamflow in the MRB was projected to increase by 10.5%– 
23.2% during 2020–2093 in response to precipitation variability 
and temperature increase. The dry season streamflow was pro-
jected to significantly decrease by 1.1%–37.2%.  

(4) The elasticity of streamflow to climate variables was not time- 
invariant. Precipitation was the dominant variable affecting the 
hydrological response on the annual scale. Moreover, tempera-
ture played a more important role during the dry season, while 
precipitation was more significant during the wet season. These 
results are crucial for the development and implementation of an 
effective water resource management plan in the MRB and 
similar basins. 
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