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Abstract 

Based on the large ensembles of the HAPPI historical, +1.5˚C and +2˚C experiments, we 

quantify changes in the magnitude of water availability (i.e., precipitation minus actual 

evapotranspiration; a function of monthly precipitation flux, latent heat flux and surface air 

temperature) below normal conditions (less than median, e.g., 20th percentile water 

availability). We found that, relative to the historical experiment, water availability below 

normal conditions of the +1.5˚C and +2˚C experiments would decrease in the mid-latitudes 

and the tropics, indicating that hydrological drought is likely to increase in warmer worlds. 

These cause more (less) people in East Asia, Central Europe, South Asia and Southeast Asia 

(West Africa and Alaska/Northwest Canada) would be exposed to water shortage. Stabilizing 

warming at 1.5˚C instead of 2˚C would limit population impact in most of the regions; less 

effective in Alaska/Northwest Canada, Southeast Asia and Amazon. Globally, this reduced 

population impact is ~117 million people. 

 

Plain language Summary 

This study emerges from the lack of scientific investigations to inform climate policy about 

differences between two global warming targets (i.e., 1.5˚C and 2˚C) for the “IPCC Special 

Report on Global Warming of 1.5˚C”. We seek to understand: How would water availability 

below normal conditions (the drier end of hydrological extremes) change at these targets? 

How would they affect the water shortage of human society? Could we limit the impact by 

stabilizing the global warming at 1.5˚C and instead of 2˚C? To address these questions, we 

employ the HAPPI (half a degree additional warming, prognosis and projected impacts) 

experiments, explicitly designed to differentiate impacts between these targets. Relative to 

the historical period, future water availability below normal conditions (less than median, 
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e.g., 20th percentile or lower) would decrease in the mid-latitudes and the tropics; the globe 

and most of the regions would endure water shortages. Relative to the 2˚C warming target, 

stabilizing temperature increase at 1.5˚C would constrain adverse impact on people 

suffering water shortages in most of the regions (particularly East Asia, South Asia, West 

Africa, Central Europe) but ineffective in Alaska/Northwest Canada, Southeast Asia and 

Amazon. A global sum of this reduced risk is ~117 million people. 
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1 Introduction 

Securing an adequate freshwater supply (i.e., net of precipitation minus evapotranspiration) 

is vital for sustaining human activities (e.g., agricultural production, industrial, domestic 

water consumptions) and environmental requirements (Falkenmark, 1989; Rijsberman, 

2006; Gudmundsson et al., 2017). Whilst the global-mean hydrological cycle is anticipated to 

intensify with global warming (Oki & Kanae, 2006; Lim & Roderick, 2009; Roderick et al., 

2012), the changing distribution of freshwater both spatially and temporally constrains 

freshwater supply (World Economic Forum, 2015; Liu et al., 2017; Vorosmarty et al., 2010) 

and risks national food security, economic prosperity and societal well-being (Rijsberman, 

2006; Mekonnen & Hoekstra, 2016), albeit with large uncertainty in the estimated response 

(Jimenez Cisneros et al., 2014; Prudhomme et al., 2014). To minimize this uncertainty and 

help keep hazardous climate extremes to a minimum in an interfered climate system 

(Tschakert, 2015), an official agreement has been reached to hold global warming to less 

than 2˚C above the pre-industrial levels with a possible adoption at 1.5˚C target (UNFCCC 

Conference of the Parties, 2015). 

 

The lack of scientific literature to inform climate policy about differences between these 

specified warming targets (i.e., 1.5˚C and 2˚C) has called for a new form of analyses to 

support an Inter-governmental Panel on Climate Change (IPCC) special report on “climate 

impacts of global warming of 1.5˚C” in 2018 (Mitchell et al., 2016; Hulme, 2016; Schleussner 

et al., 2016; Peters, 2016; Seneviratne et al., 2016; Liu et al., 2018, Diffenbaugh et al., 2018). 

In response to this call and the recent proposal for broadening the definition of drought to 

include water shortage cause and human modified processes (Van Loon, 2015; Van Loon et 

al., 2016), we put forward some relevant questions including: How would global water 
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availability below normal conditions (less than median, e.g., 20th percentile or lower; the 

drier end of hydrological extremes) change at the Paris Agreement global warming targets? 

How would they affect the water shortage of society? Could we avoid/reduce the impact 

and risk at 1.5˚C relative to 2˚C? The ‘event attribution-style’ climate experiments -- half a 

degree additional warming, prognosis and projected impacts (HAPPI), were explicitly 

designed to differentiate impacts between these global warming targets. They used large 

ensembles of equilibrated climate (Mitchell et al., 2017) to allow insight into these 

questions relative to earlier climate experiments, e.g., the Couple Model Intercomparison 

Project Phase 3 (CMIP3) (e.g., Arnell, 2004; Fung et al., 2011; Murray et al., 2012), CMIP5 

(e.g., Hanasaki et al., 2013; Arnell & Lloyd-Hughes, 2014) and the Inter-Sectoral Impact 

Model Intercomparison Project (ISI-MIP) (Prudhomme et al., 2014; Schewe et al., 2014; 

Veldkamp et al., 2016). 

 

Whilst hydrological models are traditionally applied for climate impact assessments, studies 

have confirmed their weakness in low flow simulations (Smakhtin et al., 1998; Smakhtin, 

2001; de Wit et al., 2007; Stahl et al., 2011). This is caused by poor understanding about 

hydrological processes under low flow conditions (Smakhtin, 2001), hence inadequate 

mathematical representation of hydrological systems (see pg. 616 in Gudmundsson et al., 

2012). This might explain why existing hydrological models are more suitable for wet 

conditions but not for dry conditions (Staudinger et al., 2011, Stahl et al., 2012). 

Comprehensive evaluation in the Water Model Intercomparison Project (WaterMIP) further 

confirmed large uncertainty in hydrological drought simulations among the large-scale 

hydrological models (Gudmundsson et al., 2012), which generally exhibit problematic snow 

and groundwater performances (see details in Van Loon, 2015). Given the above challenges 
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in simulation of the drier end of hydrological extremes, we substitute them with an 

alternative approach specifically designed to address the questions put forward in this study 

(above). Without subscribing to a specific statistical distribution, we used a mathematical 

approach that objectively compare the change in magnitude of water availability below 

normal conditions among the climate models; and with the ability to synthesize the climate 

models output and the baseline data (details in Section 2). 

 

In conjunction with the HAPPI climate models, we use a global hydrological product from a 

climate data record and global population data that is consistent with the United Nation’s 

World Population Prospects (UN WPP) (constant 2015) (CIESIN 2017) (we do not account for 

future population growth in this study). We evaluate how the magnitude of freshwater 

availability below normal conditions in the future period (1.5˚C and 2˚C) would change 

relative to the historical period. To express its population impact in a comprehensible way 

(relative to water amount), we apply a water stress indicator (on a per person basis) to 

estimate the change in affected population due to the change in freshwater shortage 

between the historical and future periods. We present these results on global and sub-

continental scales consistent with the IPCC (2012) and make inferences to previous studies. 

2 Data and Methods 

2.1 Data 

The overall approach of our study is illustrated in Figure S1 in Supporting Information. 

Firstly, we obtain atmosphere-only general circulation models (AGCMs) output of the HAPPI 

Tier 1 experiments. These experiments do not assume any human activities (e.g., land use, 

water use) on the water cycle. The Tier 1 experiments consist of multiple perturbed initial 

condition simulations (50-100 ensemble members per AGCM) for three 10-year periods: (i) a 
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historical period (2006-2015; hereafter referred to as ‘historical experiment’), (ii) a future 

period at 1.5˚C above the pre-industrial levels (2106-2115; hereafter referred to as ‘+1.5˚C 

experiment’) and (iii) a future period at 2˚C above the pre-industrial levels (2106-2115; 

hereafter referred to as ‘+2˚C experiment’). The large number of ensemble members per 

AGCM allows for multi-year event analysis of extremes (see details in Mitchell et al., 2017). 

HAPPI is a multi-model project, but we select only the AGCMs that output the following 

monthly variables: (i) precipitation flux (pr, kg m-2 s-1), (ii) latent heat flux (hfls, W m-2), (iii) 

surface air temperature (tas, K), in addition, we stipulate that the first 50 ensembles are 

available for all the Tier 1 experiments. Following this, we use five AGCMs (CanAM4, 

ECHAM6-3-LR, ETH-CAM4-2degree, MIROC5, NorESM1-HAPPI) with sufficient samples (50 

ensembles × 10 years × 12 months = 6000 monthly samples per AGCM) per experiment (see 

Table S1 in Supporting Information).  

 

We take the summation of runoff and water storage change (includes groundwater, 

snowmelt, soil moisture) of the climate data record (CDR) (Zhang et al., 2017) for the global 

terrestrial water budget (spatial resolution: 0.5˚ × 0.5˚, temporal resolution: monthly, time 

period: 1984-2010) to represent the baseline water availability (27 years × 12 months = 324 

monthly samples). The CDR is an optimized estimation of the terrestrial water budget 

through merging in-situ observations, satellite remote sensing, reanalysis and land surface 

model outputs using data assimilation techniques. The runoff data has been validated 

against in-situ discharge measurements obtained from the Global Runoff Data Centre 

(GRDC) and the United States Geological Survey (USGS) (Zhang et al., 2017). The water 

storage change data was the ensemble mean of that prepared by three centers, 
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GeoForschungsZentrum in Potsdam (GFZ), Center for Space Research at University of Texas, 

Austin (CSR), and Jet Propulsion Laboratory (JPL) (Zhang et al., 2017). 

 

We apply the recently released Gridded Population of the World, Version 4 (GPWv4) that 

was adjusted using UN WPP (CIESIN, 2017; link: 

http://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-adjusted-to-2015-

unwpp-country-totals-rev10). Whilst the original spatial resolution of this product is high 

(i.e., 30’’ × 30’’), we download the upscaled product at similar spatial resolution as the CDR. 

To be consistent with the historical period (2006-2015) of the HAPPI archive, we select the 

population count data in 2015 and keep it constant. Note that we do not apply the 

population projection of the shared socioeconomic pathways (SSPs) because they were 

specifically designed for the climate simulations based on representative concentration 

pathways (RCPs). It is difficult to reconcile the future period (2106-2115) of the HAPPI 

archive (originally designed to address climate attribution questions) with the forcing 

windows of the RCPs and hence the SSPs projections. 

 

2.2 Methods 

2.2.1 Estimate water availability below normal conditions 

From the AGCMs monthly output (we apply the original spatial resolution), we use the 

precipitation (pr, kg m-2 s-1) and latent heat flux (hfls, W m-2) to calculate the water 

availability (Q*, mm d-1) at each grid cell, 

𝑄∗ =
86400000

𝜌𝑊
(𝑝𝑟 −

ℎ𝑓𝑙𝑠

𝜆𝑊
)       (1) 

where 𝜌𝑊 (kg m-3) is the density of liquid water (≈1000 kg m-3) and λ𝑊 (J kg-1) is the latent 

heat of vaporization. From water balance perspective, Q* equates the summation of runoff 
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and water storage change (includes groundwater, snowmelt, soil moisture). Typically, the 

fluctuation of water storage change is significant (small) under non-steady (steady) state 

conditions, e.g., timescale of less than (at least) a year. 

 

Following Allen et al. (1998), we calculate λ𝑊 as, 

𝜆𝑊 = 2.501 × 106 − 2361(𝑡𝑎𝑠 − 273.15)   (2) 

From these equations, we prepare the water availability for the historical and future periods 

(i.e., Q*his and Q*fut), respectively. The subscript “his” refers to the historical experiment in 

the historical period; and the subscript “fut” refers to the +1.5˚C or +2˚C experiment in the 

future period. 

 

For each AGCM, we construct a cumulative distribution function (CDF) of the monthly water 

availability Q* in each grid cell per experiment (e.g., historical, +1.5˚C, +2˚C experiment). 

From these CDFs, we use a percentile threshold (e.g., xth percentile) as one way to define 

the water availability below normal conditions for both historical and future periods (i.e., 

Q*his,x and Q*fut,x, respectively). We rescale these estimates to a common spatial resolution 

(0.5˚ × 0.5˚) using the bilinear interpolation so that we could consistently analyze them. 

Whilst it is finer than the original spatial resolution of the AGCMs (see Table S1), it enables 

us to streamline and preserve the spatial details of hydrologic information when 

synthesizing the baseline data (Section 2.1) with the percentile of AGCMs in the water 

shortage analysis (Section 2.2.2 and Figure S1). 

 

To compare these percentiles (previous paragraph), we compute the percentile in the 

historical period for the water availability Q*his,(fut,x) corresponding to the future period 
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Q*fut,x (i.e., the percentile in the historical period equivalent to the magnitude of the xth 

percentile water availability in the future period). If the computed percentile of Q*his,(fut,x) is 

lower (higher) than Q*fut,x , then Q*fut,x is drier (wetter) than Q*his,x . If the computed 

percentile of Q*his,(fut,x) equates Q*fut,x , then Q*fut,x is identical to Q*his,x.  

 

From literature, we have confirmed that the 20th percentile (Q*20; a value being equaled or 

exceeded 80% of the time) is a commonly used threshold in large scale hydrologic 

investigations (i.e., hydrological drought, water scarcity; Andreadis et al., 2005; Sheffield et 

al.,2009; van Huijgevoort et al.,2013). Hence we set x = 20 for our analysis throughout the 

main text. For each AGCM, we calculate Q*20 at each grid cell (50 ensembles x 10 years x 12 

months = 6000 monthly samples per AGCM) across all experiments (i.e., historical, +1.5˚C 

and +2˚C experiments). To generalize them, we calculate the ensemble mean of the 

percentile in the historical period for the water availability corresponding to the future 

period (Q*his,(fut,x), also see previous paragraph) across five AGCMs; and show the model 

consistency in terms of direction change (but not magnitude change). To test the robustness 

of our findings, we repeat the analysis using lower thresholds (e.g., Q*5, Q*10) in Supporting 

Information. We also performed a separate set of significance testing for a number of 

percentiles (e.g., Q*5, Q*20, Q*50) across all the AGCMs using the Wilcoxon Sign Test (see 

Figures S4-S6 in Supporting Information). The Wilcoxon Sign Test is a nonparametric test 

close to the dependent t-test. It does not assume normal distribution for the samples; and is 

useful for analyzing data when the numbers of samples are relatively small (Oliver et al., 

2015). 
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2.2.2 Estimate people affected by water shortage  

To streamline all AGCMs projections, we match the CDF of water availability in the historical 

period per AGCM to that of the baseline (see Section 2.1). Briefly, this CDF mapping 

technique is common in hydroclimate studies (e.g., Reichle and Koster 2004, Boe et al. 2007, 

Deque 2007, Sun et al 2011) and is categorized as a form of ‘distribution mapping’ approach 

(Teutschbein & Seibert 2012). Whilst this technique applies a similar correction algorithm to 

both historical and future periods like all bias-correction approaches, comprehensive 

evaluation has confirmed its merit over other existing approaches (e.g., Teutschbein & 

Seibert 2012; Liu et al., 2015; Liu & Sun, 2017). In this way, we could to some extent, reduce 

the uncertainties due to individual features of the five AGCMs. 

 

For each AGCM per experiment, we quantify the people affected by water shortage per grid 

cell  𝑃𝑎𝑓𝑓,𝑔𝑟𝑖𝑑 (unit: person) as 

𝑃𝑎𝑓𝑓,𝑔𝑟𝑖𝑑 = 𝑚𝑖𝑛{
𝑄𝑥
∗−𝐷𝑃×𝑃𝑎𝑙𝑙,𝑔𝑟𝑖𝑑

𝐷𝑃
, 𝑃𝑎𝑙𝑙,𝑔𝑟𝑖𝑑}   (3) 

where 𝑄𝑥
∗ (m3 d-1) is the xth percentile water availability of a specific period (broadly 

represents the freshwater supply in this study), 𝐷𝑃 (m3 person-1 d-1) is the water demand 

threshold and 𝑃𝑎𝑙𝑙,𝑔𝑟𝑖𝑑 (person) is the population size per grid cell. We constrain the number 

of people affected by water shortage per grid cell so that it does not exceed the population 

size per grid cell (𝑃𝑎𝑙𝑙,𝑔𝑟𝑖𝑑). To calculate 𝑄𝑥
∗, we match the percentile of the AGCM water 

availability (i.e., historical period: the xth percentile water availability in the historical period, 

Q*his,x; future period: the percentile in the historical period for the water availability 

corresponding to the xth percentile of that in the future period, Q*his,(fut,x); we set x=20 with 

that of the baseline in order to get the CDR water availability. Following the Falkenmark 
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water stress indicator (e.g., Falkenmark et al., 1989, 2013), we set the water demand 

threshold (𝐷𝑃) equivalent to 1700 m3 person-1 yr-1  and 1000 m3 person-1 yr-1, respectively. 

We aggregate the people affected by water shortage per grid cell 𝑃𝑎𝑓𝑓,𝑔𝑟𝑖𝑑 to sub-

continental and global scales and calculate the change in affected population from the 

historical period to the future period (i.e., Δ(fut+1.5-his), Δ(fut+2.0-his)) (Note: Positive 

(negative) number means that the number of people adversely affected by water shortage 

would increase (decrease)). When presenting these estimates (details in Section 3.2), we 

exclude the grid cells where both historical and future periods do not encounter water 

shortages. 

 

3 Results 

3.1 Projections of water availability below normal conditions 

The multi-model ensemble mean (MEM) percentile in the historical period for monthly 

water availability corresponding to the future period Q*20 show some robust large-scale 

features (Figure 1). For the +1.5˚C experiment, there is some indication that the 20th 

percentile water availability would increase at very high latitudes in the Northern 

Hemisphere, and in the Sahara. More strongly, the simulations indicate a decrease (i.e., 

drying) in the 20th percentile water availability in the mid-latitudes (e.g., Central Asia, West 

Asia and East Asia, middle and south of North America) and the tropics (e.g., parts of 

Amazon basin, north of Chile, southeastern Brazil, Malaysia, Indonesia, Thailand, Cambodia, 

Vietnam, Laos, New Guinea, Kenya, Tanzania, Gabon and Congo and Democratic Republic of 

Congo). Whilst the geographic pattern of changes in the 20th percentile water availability for 

the +2˚C experiment is close to that of +1.5˚C experiment, the magnitude of both positive 

and negative changes intensifies in most of the regions, except for the Sahara, Malaysia and 
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Indonesia. We repeat a similar process at lower thresholds (Q*10, Q*5) and find that the 

spatial pattern of the changes (drier/wetter) are insensitive to the threshold (whilst the 

magnitude would vary) (Figures S2-S3), confirming the robustness of these projections. 

More generally, these results imply that the magnitude of droughts arising from water 

availability below normal conditions would be less severe in most parts of the world should 

we pursue climate change mitigation efforts to hold temperature increase at 1.5˚C instead 

of 2˚C above the pre-industrial levels.  

 

Most of the spatial patterns are consistent with previous studies despite different climate 

experiments and/or methods used (Alcamo et al., 2007; Hagemann et al., 2013; Schleussner 

et al., 2016; Lehner et al., 2017). Specifically, the decrease in the 20th percentile water 

availability in Europe, Middle East, southwestern United States and Central America 

coincides with an analysis using CMIP5 experiment output and offline river-routing (Koirala 

et al., 2014). 

 

The high inter-model consistency on the sign of change (3-5 models within 5 AGCMs) in 

most of the regions for the future periods (+1.5˚C, +2˚C experiments and their difference; 

see Figure 1(ii)) gives us some confidence on these projections.  All models indicate that 

drought risk associated with water availability below normal conditions would intensify 

when global warming approaches the 2˚C (instead of 1.5˚C) above the pre-industrial levels. 

(The Wilcoxon Sign Test confirms that the regions where most of the AGCMs showed 

statistically significant results (e.g., see hatching in Figure S5) are close to the outcomes of 

the inter-model consistency in Figure 1(ii).) 
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Following the definition of regions in the IPCC (2012), we reorganize these projections and 

estimate the global and regional mean of MEM percentile in the historical period for 

monthly water availability corresponding to the future period Q*20  (Figure 2). Globally, the 

MEM of the magnitude of the 20th percentile water availability is projected to increase 

slightly (Q*20 -> Q*20.10) under +1.5˚C experiment whilst barely changing (Q*20 -> Q*20.03) 

under +2˚C experiment relative to the historical experiment, indicating that differences 

between +1.5˚C and +2˚C experiments are not statistically robust or nonlinear effects play 

an important role. Regionally, the MEMs of the 20th percentile water availability would 

decrease under the +1.5˚C experiment, except for West Africa (Q*20 -> Q*20.35), South Africa 

(Q*20 -> Q*20.11), Sahara (Q*20 -> Q*21.72), Northern Europe (Q*20 -> Q*20.17), North Australia 

(Q*20 -> Q*20.76), North Asia (Q*20 -> Q*20.32), East Canada, Greenland, Iceland (Q*20 -> 

Q*21.86), Alaska/Northwest Canada (Q*20 -> Q*21.00)  and South Australia/New Zealand (Q*20 -

> Q*20.16). The direction of changes in MEM of the 20th percentile water availability is quite 

similar under the +2˚C experiment, except for South Australia/New Zealand, Northern 

Europe and West Africa. Relative to the 2˚C warming target, a 1.5˚C warming target is more 

likely to reduce drought risk triggered by water availability below normal conditions globally 

and regionally (except for the Southeast Asia, South Africa, North Asia, Southern Europe and 

Mediterranean, East Canada, Greenland, Iceland and Alaska/Northwest Canada. Notably, 

increasing water availability at very high latitudes in the Northern Hemisphere is positive for 

glacier accumulation, e.g., Alaska/East Canada/Greenland (Figure S6).). 

 

In some regions, the projections are subject to a large spread across the ensemble, e.g., 

Southeast Asia, Sahara and Northeastern Brazil. The spread owing to differences between 
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AGCMs is evident in South Australia/New Zealand, Northern Europe and Southern Africa, 

where AGCMs project the 20th percentile water availability changes are of opposite sign. 

However, the changes in MEM of the 20th percentile water availability in Southern Africa 

(slight increase) under different warming periods agree with the hydrological drought 

changes projected by Prudhomme et al. (2014) using ISI-MIP experiments. 

 

3.2 Population impact 

To understand the population impact of water availability below normal conditions, we 

reconcile the projections (Q*20) with population distribution information (constant 2015) in 

order to estimate the people affected by water shortage between the historical (baseline 

results in Figure S8) and future periods (Figures S9 and S11). At the water demand threshold 

level of 1700 m3 person-1 yr-1, the number of people adversely affected by water shortage in 

+1.5˚C and +2˚C experiments would increase by ~3.7% (~271 millions) and ~5.3% (~388 

millions) of global population relative to the historical period (Table S2), respectively. These 

are consistent with the expectation of elevating water stress/scarcity in a warmer climate 

(Liu et al., 2017; Veldkamp et al., 2016). The benefit of holding global warming at 1.5˚C 

instead of 2˚C above the pre-industrial levels is apparent in most of the regions (e.g., East 

Asia, South Asia, Central Europe, West Africa and East Africa). 

 

From regional aggregation, we find that more (less) people in East Asia, South Asia, East 

Arica, Central Europe and Southeast Asia (West Africa and Alaska/Northwest Canada) would 

be exposed to the risk of water shortage under the future periods.  

Our projections suggest that stabilizing temperature increase at 1.5˚C instead of 2˚C would 

constrain adverse impact on people suffering water shortages in most of the regions 
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(particularly East Asia, South Asia, East Africa, West Africa and Central Europe) but less 

effective in Alaska/Northwest Canada, Southeast Asia and Amazon basin. Globally, we 

estimate the reduction in adversely affected population (when limiting the warming to 1.5˚C 

rather than 2˚C) to be ~117 million people. Repeating this analysis using the water demand 

threshold 1000 m3 person-1 yr-1, we confirm that the spatial distribution (Figures S10 and 

S12) of water shortage appears similar to that using 1700 m3 person-1 yr-1. In a sense, both 

thresholds confirm that there is a clear advantage of holding global warming at 1.5˚C 

relative to 2˚C above the pre-industrial levels. 

 

4 Discussions 

This study is performed using five AGCMs from the HAPPI consortium that fulfill our 

selection criteria. The HAPPI experimental design enables generation of large ensembles 

(Mitchell et al., 2016), making it particularly suitable for identification of changing patterns 

of extreme hydrological events such as droughts driven by water availability below normal 

conditions (e.g., Q*5, Q*10, Q*20). The findings presented in this study supplement the 

drought/low flow studies prepared using earlier climate modeling archives (CMIP5, ISI-MIP) 

(e.g., Koirala et al., 2014; Prudhomme et al., 2014; Schewe et al., 2014; Schleussner et al., 

2016), but are specific to the global warming targets put forward by the Paris Agreement, 

and their differences (if any) compared to the standard climate projection approaches (e.g., 

Mitchell et al., 2016). By concentrating our analysis on these targets, it is possible for 

international policymakers to comprehend societal impact of water shortages triggered by 

freshwater availability below normal conditions on global and regional scales. 
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Based on constant population count, the estimated number of people affected by the 20th 

percentile water availability (Tables S2-S3) is in fact a function of where in space those water 

shortages occur. Hence our estimates are subject to uncertainty arising from spatial 

population and climate co-variability. Nonetheless, the results of the last section might not 

sufficiently address the uncertainty arising from climate variability of each ensemble 

member. Recent demonstrations (e.g., Mankin et al. 2017, Mankin and Diffenbaugh 2015, 

Desser et al. 2012, Hawkins and Sutton 2011) have shown that the concept of signal-to-

noise (S/N) ratio can be applied to compare the magnitude of the mean of a specific number 

of trends (signal) to the standard deviation of those trends (noise). The signal (S) is robust 

when the signal-to-noise (S/N) ratio exceeds one. Following this concept, for each of the 50 

ensembles (see first paragraph in Section 2.1) in the future period (i.e., +1.5˚C, +2˚C 

experiments), we calculate the percentile in the historical period (i.e., historical experiment) 

for monthly water availability corresponding to the 20th percentile in the future period. We 

determine the signal (S) as the magnitude of the mean of these 50 percentiles, and noise (N) 

as the standard deviation of these percentiles; and subsequently derive the S/N ratio. We 

repeat the calculation for all five AGCMs. The outcomes (Figures S7) confirm that the 

projections of the 20th percentile water availability in the future period are robust across all 

AGCMs, suggesting that uncertainty arising from under-sampling climate variability is 

generally small considering the large ensemble sizes (per AGCM) in HAPPI archive.  

 

Given the robustness of these projections (Figure S7), it would be interesting to understand 

the variability in drying/wetting pattern of the 20th percentile water availability among the 

AGCMs (Figures S5). The AGCMs show consistent drying/wetting pattern in some regions 

(e.g., northern America, eastern/southeastern/southern Asia) but uncertain in other regions 
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(e.g., the central part of South America, southern Africa). Similar analysis for the 5th 

percentile water availability (Figure S4) yields similar pattern (in terms of direction change) 

among the AGCMs as Figure S5. Repeating this analysis for the 50th percentile water 

availability (Figure S6), the drying/wetting pattern shifts (e.g., more variation in 

eastern/southeastern/southern Asia). These outcomes (Figures S4-S6) indicate that the 

drying/wetting patterns of the water availability below normal conditions (e.g., between 5th 

and 20th percentile) is not applicable to the higher percentiles. 

 

The estimates presented here are based on raw AGCMs water availability Q* (i.e., 

precipitation minus actual evapotranspiration, which covers the runoff, groundwater and 

snowmelt), avoiding uncertainties due to structural weakness of low flow simulation within 

many existing hydrological models (Van Loon, 2015). Furthermore, the need of removing 

spin-up period from the relatively short duration of HAPPI experiments (2006-2015, 2106-

2115) makes it much less preferable to apply hydrological modelling tools. Since these 

estimates are consistent with recent global studies (e.g., Koirala et al., 2014), despite the 

simplicity of our methodology, they adequately capture the large scale freshwater shortage 

patterns. 

 

The calculation of freshwater supplies below normal conditions here prioritized societal 

water requirements over the environmental water requirements. It implicitly excludes the 

role of existing freshwater storages (e.g., freshwater lakes, dams, reservoirs) in regulating 

the freshwater supply (mostly replenished during normal and above normal conditions, e.g., 

wet season). Estimates of water demand here made use of thresholds (e.g., 1700 m3 person-

1 yr-1, 1000 m3 person-1 yr-1) of the Falkenmark water stress indicator. The shortcomings are 
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its inability to reflect local water scarcities, availability of infrastructure which modifies 

water supplies (e.g., dams, reservoirs, river diversion) or how representative it is for 

countries with differences in lifestyle and climate conditions (Rijsbermann, 2006). It remains 

a challenge to understand and account for the uncertainty of water requirements due to 

human activities and its potential atmospheric feedback (Jaramillo and Destouni, 2015, 

Keune et al., 2018). Despite these limitations, it is commonly applied to large scale 

investigations (e.g., Schewe et al., 2014, Veldkamp et al., 2016), mainly because of its 

simplicity and broad account for water requirement covering household, agricultural, 

industrial, energy sector and the environment (Falkenmark, 1989, Rijsbermann, 2006). This 

is probably because it serves as a good proxy to gauge adequacy of water supply to meet 

the demand of the society on macro scales. The baseline data (i.e., CDR) applied in current 

study is an optimized product of multiple hydrologic data sources, hence inherited some 

uncertainty which might need further refinement. When better hydrologic products become 

available in the future, it is possible to use our methodology (Figure S1) to estimate the 

population impact with higher confidence. 

5 Summary 

The newly released HAPPI experiments enable us, for the first time, to present a global 

assessment of changes for range of water availability below normal conditions (i.e., Q*20 , 

Q*10 , Q*5) and subsequent  population impact under 1.5oC and 2oC warming scenarios. We 

found that the MEM of water availability below normal conditions would decrease in most  

of the regions (particularly in the mid-latitudes and the tropics) except for Sahara and many 

very high northern latitude regions (>70˚N) in +1.5˚C and +2˚C experiments. We confirmed 

the benefit of holding global warming at 1.5˚C instead of 2˚C above the pre-industrial levels, 

with less severe decrease in water availability below normal conditions across most of the 
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regions (except for Southeast Asia, South Africa, North Asia, Southern Europe and 

Mediterranean, East Canada, Greenland, Iceland and Alaska/Northwest Canada) and the 

globe. At the 20th percentile water availability conditions Q*20, our estimation suggested 

that more population would suffer from water shortage in most of the regions in 1.5˚C and 

2˚C warming worlds. By stabilizing warming to 1.5˚C instead of 2˚C above the pre-industrial 

levels, the number of people affected by water shortage at water availability below normal 

conditions would be lesser in many regions, i.e., East Asia, South Asia and the Central 

Europe. These findings addressed the questions raised earlier and should provide science-

based evaluation on the benefit of holding 1.5˚C warming (in the water sector) and inform 

climate policy. Future efforts involving population growth (e.g., Shared Socioeconomic 

Pathways), hydrologic simulation (when low flow simulation advances) and water 

infrastructure (e.g., dams, reservoirs, river diversion canals) at finer scales would help 

addressing the local climate adaptation and water management strategies. 
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Figure 1. Multi-model ensemble mean percentile in the historical period for monthly water availability 

corresponding to the future period Q*20 (i) and model consistency (ii) on a spatial resolution of 0.5˚ x 0.5˚ for: 

(a) +1.5˚C experiment, (b) +2˚C experiment and (c), (a) minus (b). The percentile <Q*20 (>Q*20) indicates that 

magnitude of the future period Q*20 would decrease (increase). Robustness of projections increases with higher 

model consistency and vice-versa. Legend in (a)(i) applies to (b)(i); legend in (a)(ii) applies to (b)(ii) and (c)(ii). 
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Figure 2. Multi-model mean percentile in the historical period for monthly water availability corresponding to 

the future period Q*20 in different regions (a) for: (b) +1.5˚C experiment, (c) +2˚C experiment and (d), (a) minus 

(b). These boxplots are prepared using five models. The color bar in (b)-(d) shows the multi-model maximum 

(blue), multi-model minimum (red) and multi-model ensemble mean (the dividing line between blue and red 

colors). The percentile <Q*20 (>Q*20) indicates that magnitude of the future period Q*20 would decrease 

(increase). Legend in (b) applies to (c) and (d). The asterisks in (b)-(d) indicate that changes in percentile are 

significant according to a Wilcoxon Sign Test (95% confidence). 

 


