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ABSTRACT: Phosphorus (P) losses from fertilized croplands to inland
water bodies cause serious environmental problems. During wet years, high
precipitation disproportionately contributes to P losses. We combine
simulations of a gridded crop model and outputs from a number of
hydrological and climate models to assess global impacts of changes in
precipitation regimes on P losses during the 21st century. Under the baseline
climate during 1991−2010, median P losses are 2.7 ± 0.5 kg P ha−1 year−1

over global croplands of four major crops, while during wet years, P losses
are 3.6 ± 0.7 kg P ha−1 year−1. By the end of this century, P losses in wet
years would reach 4.2 ± 1.0 (RCP2.6) and 4.7 ± 1.3 (RCP8.5) kg P ha−1

year−1 due to increases in high annual precipitation alone. The increases in P
losses are the highest (up to 200%) in the arid regions of Middle East,
Central Asia, and northern Africa. Consequently, in three quarters of the
world’s river basins, representing about 40% of total global runoff and home
up to 7 billion people, P dilution capacity of freshwater could be exceeded due to P losses from croplands by the end of this century.

1. INTRODUCTION

Losses of phosphorus (P) from croplands to aquifers, streams,
lakes, and finally oceans have resulted in severe environmental
consequences around the world,1 such as emerging eutrophi-
cation2 and spreading anoxic dead zones in the coastal ocean.3

P losses are projected to increase from croplands,4,5 with more
fertilizers needed to sustain a higher food production.6 P losses
are also sensitive to climatic factors, particularly changes in
precipitation regimes.7,8 To keep P loads below critical regional
and global boundaries,9 it is necessary to quantify and
understand the interaction between precipitation regimes and
P losses from fertilized croplands.
Under global climate change, increasing frequency and

magnitude of high precipitation are projected,10−12 which
could be an important driver of P losses in intensive cultivation
areas in the future. Michalak13 outlined the overlooked impact
of (increasing) climate extremes on water quality, especially for
intensified P and nitrogen (N) losses. Ockenden et al.14 found
that precipitation had a strong effect on P losses and future
climate (mainly precipitation) alone would increase winter P
loads up to 30% by 2050 in three catchments in the U.K. Using
P load measurements in two tributaries of Lake Mendota in the
U.S., Carpenter et al.15 found that precipitation extremes were
associated with extremes of discharge and substantial increases
in P loads. In the same region, Motew et al.16 applied a
process-based watershed model to detect the impacts of P
inputs and precipitation on P loads and found a significant and

positive relationship between these two factors and P
concentration in water bodies. On the one hand, an increase
in the balance between precipitation and evapotranspiration
causes higher runoff, and this process will dilute P pollution.
On the other hand, higher precipitation will increase the
intensity of P losses from croplands (e.g., Carpenter et al.15). It
is thus the balance between these two mechanisms that
determines how P pollution will change with precipitation in
the future. So far, studies on the influence of precipitation
changes on P losses related to agriculture have only been
conducted in a few specific watersheds.14−16 Examining future
P losses based on the projections from the General Circulation
Models (GCMs) under different climate scenarios is still
missing on a global scale. Further, previous studies did not
provide quantitative estimates of exposed populations to
degraded water quality across different catchments throughout
the world.
The objectives of this study are to project regional P losses

on the global scale from croplands in future wet years and to
determine whether increased runoff in wet years is sufficient to
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dilute increased P loads. We estimated global P losses by fitting
a linear substitute model trained to reproduce the simulation
outputs of the process-based PEPIC crop model.17,18 Then, the
substitute model was used to detect the impacts of future
precipitation in wet years on annual P losses. The concept of
gray water footprint (GWF)19 was used to investigate the
water pollution induced by P losses. We quantified the amount
of freshwater required to dilute P pollution below a critical
concentration threshold of 0.02 mg P L−1 based on the GWF
guideline.20 Then, the gray water stress (GWS) was calculated
to indicate water P pollution levels.21,22 We focused on the
detection of regions where GWS will reach above 1, meaning
that local water resources are insufficient to dilute the P
loads,21 and assessed the number of people exposed to severe P
pollution. This study, which shows the validity of a linear
substitute model to estimate the impacts of future precipitation
in wet year on P losses, helps quantify the regional mechanisms
that determine how P loads will change with precipitation
under climate change.

2. MATERIALS AND METHODS
2.1. Simulation of Phosphorus Losses. In this study, P

losses were defined as losses of P from croplands entrained
with surface runoff and leaching water as well as soil erosion as
particulate forms. All three processes were estimated by the
PEPIC model18 at a resolution of 0.5 arc degree. PEPIC is a
grid-based version of the Environmental Policy Integrated
Climate (EPIC) model23 coded under the Python environ-
ment. It performed well in simulating crop yields, crop water
use, and N dynamics at large scales.18,24,25 More recently,
PEPIC was successfully used to assess global P losses by
conducting an integrative crop-soil-management modeling
approach.17 The ratio of simulated P losses by PEPIC to P
inputs is in the middle range of previous studies and regional P
losses estimated by PEPIC matched well with reported data
(see Table 2 and Table S8 in the study of Liu et al.17). In
addition, PEPIC showed a good ability in representing
interannual variation of crop yields between 1980 and 2010
at the country level among 14 large-scale crop models26,27

participating in the Agricultural Model Intercomparison and
Improvement Project (AgMIP).28 In this study, we used the
verified PEPIC model to estimate P losses. Detailed
information on the PEPIC model and estimation of P losses
can be found in the Supporting Information.
The PEPIC model was run 100 times for each crop using

100 sets of parameter combinations to investigate uncertainties
associated with model parameters. We carefully chose 19
model parameters (related to crop growth, water balance, and
N, P, and carbon routines) and their possible ranges based on
Wang et al.29 and the EPIC user’s manual30 (Table S1).
Parameter sampling was conducted by applying the Latin
hypercube sampling method.31,32 These parameters and
sampling method were used in our previous study.17

Four major crops, i.e., maize, rice, soybean, and wheat, were
included in this study. P fertilizer consumption for these four
crops together accounts for 73% of total P fertilizers among 17
most commonly produced crops.33 P inputs from chemical
fertilizer and manure were applied along with tillage before
crop planting, consistent with widely used P application
methods.34 P losses for each grid were estimated as average P
losses weighted by cropland areas of the four crops. P losses at
the river basin level were aggregated by using area-weighted
average over cropland in the river basin. It deserves to note

that the basin-scale P losses defined here are the direct losses
without considering any biochemical processed of P in water
bodies. The estimated P loads could be higher than delivered P
from the outlet of a given basin. Here, the river basin map was
derived from the FAO GeoNetwork (http://www.fao.org/
geonetwork/srv/en/metadata.show?id=38047), consisting of
228 watersheds in total. P losses in the basins with the smallest
cropland areas (for a total of 0.1% of global total cropland
areas of the four crops) were not considered in the analysis.

2.2. Projection of Future Trend in P Losses. PEPIC
simulates P losses given the precipitation and other climate
variables through a set of complex equations controlling the
water balance of the soil and its P budget. As runoff is roughly
proportional to P losses and runoff is related to precipitation
(and evapotranspiration), one can expect a positive correlation
between P losses and precipitation. We developed a linear
substitute model by regressing modeled P losses from each of
100 simulations against precipitation at the annual level during
the baseline period 1991−2010 for each river basin, according
to

= × +ln(Pl) slope ln(pr) intercept (1)

where Pl is the time series of total annual P losses (kg P ha−1

year−1) averaged from all the cropland grid cells in each river
basin (188 basins considered here) over the croplands; ln is
natural log transformation, which is used to consider the
possible nonlinear relationship between P losses and
precipitation;35 pr is the time series of annual precipitation
(mm year−1), which was estimated as an area-weighted average
of precipitation according to the cropland fraction of each grid
cell; and slope [ln(kg P ha−1 mm−1)] and intercept [ln(kg P
ha−1 year−1)] are model parameters. The slope presents the
response of ln(Pl) to one unit change of ln(pr) over the river
basin considered. It also indicates the elasticity of P losses to
precipitation, i.e., 1% of change in precipitation corresponding
to slope% of change in P losses. The coefficient of correlation
(r) and p value by the Student t-test were used to detect the
significance of the relationship.
To determine the impacts of high annual precipitation

(during wet years) on P losses, we calculated the median
values of P losses during the wet years (P losses of high
precipitation, referred to as Plh,2000) and the median P losses
(referred to as Plm,2000) during all the years in the period
1991−2010 (referred to as subscript 2000). Wet years are
defined as the years with annual precipitation above the 75th
percentile of the whole distribution in a given period. Then,
the differences between Plh,2000 and Plm,2000 were treated as the
additional P losses due to high annual precipitation. We then
regressed ln(Plh,2000) − ln(Plm,2000) against slope × (ln(prh,2000)
− ln(prm,2000)), where prh,2000 and prm,2000 are the high and
median precipitation in the baseline period, to see whether it is
appropriate to use the linear substitute model to detect the
impacts of high precipitation on P losses as

−

= × × [ − ]a

ln(Pl ) ln(Pl )

slope ln(pr ) ln(pr )

h,2000 m,2000

h h,2000 m,2000 (2)

where ah is the regression parameter. In addition to the
comparison for high P losses, we also investigated the
agreement for maximum P losses and minimum P losses as
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−

= × × [ − ]a

ln(Pl ) ln(Pl )

slope ln(pr ) ln(pr )

max,2000 m,2000

max max,2000 m,2000 (3)

−

= × × [ − ]a

ln(Pl ) ln(Pl )

slope ln(pr ) ln(pr )

m,2000 min,2000

min m,2000 min,2000 (4)

where Plmax,2000 and Plmin,2000 are P losses in the year with
maximum (prmax,2000) and minimum (prmin,2000) baseline
precipitation, respectively; amax and amin are model fitted
parameters. The robustness of relationships expressed in eqs
2−4 was detected by the coefficient of determination (R2) and
p value. The results suggested quite good performance (Figure
1d and Figure S1). In addition, we found that the slopes
derived from eq 1 are mainly influenced by the coefficient of
variation (cv) of precipitation (Figure 1c), which will not
change much in the future. The future precipitation in wet

years generally ranges between baseline minimum and
maximum precipitation (Figure S2). Therefore, we used the
slope obtained from the historical regression model, assuming
that the slope would not change under future climate
conditions, to project the impacts of future high precipitation
on P losses for four periods: 2020−2039 (referred to as
subscript 2030), 2040−2059 (referred to as subscript 2050),
2060−2079 (referred to as subscript 2070), and 2080−2099
(referred to as subscript 2090).

= ×
i

k

jjjjjjj
y

{

zzzzzzzPl Pl
pr

prh,future m,2000
h,future

m,2000

slope

(5)

where Plh,future is the future P losses of high precipitation (kg P
ha−1 year−1), slope is derived from eq 1, and prh,future is the high
precipitation in the four future periods (mm year−1). Equation
5 was only applied to river basins where the numbers of

Figure 1. Relationship between natural log-transformed phosphorus losses (ln(Pl)) and natural log-transformed annual precipitation (ln(pr)) at
the river basin level. (a) Coefficient of correlation (r) of the linear substitute model between ln(Pl) and ln(pr) for the period 1991−2010. (b) Slope
[ln(kg P ha−1 mm−1)] of the linear substitute model. (c) Influential factors of the slope. (d) Comparison of differences in ln(Pl) (losses during the
wet years minus the median of all years) between the fully fledged PEPIC model (x-axis) and the linear substitute model (y-axis). In the plot, basins
with the smallest areas (for a total of 0.1% of global total cropland areas) and numbers of simulations with significant relations (p < 0.05) between
ln(Pl) and ln(pr) lower than 50 are discarded. In subplot (c), p_r[slope, pr-cv|(pr, Pin)] is the spatial partial correlation coefficient across basins
between the slope and coefficient of variation of pr (pr-cv) when controlling pr and P inputs (Pin), p_r[slope, pr|(pr-cv, Pin)] is the spatial partial
correlation coefficient between slope and pr when controlling pr-cv and Pin, and p_r[slope, Pin|(pr-cv, pr)] is the spatial partial correlation
coefficient between slope and Pin when controlling pr-cv and pr. In subplot (d), the equation represents the linear relationship of the dashed red
line, R2 is the coefficient of determination of the equation, and the dashed blue line is the 1:1 line.
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simulations with significant (p < 0.05) linear relationship
between ln(Pl) and ln(pr) are more than 50 out of 100, while
for the other basins (responsible for only about 2% of global
croplands of the four crops), Plh,future was kept the same as
Plh,2000.
To examine whether the linear substitute model performs

well in representing the original PEPIC-simulated P losses
under future climate conditions, we also ran the PEPIC model
forced by future climate data in eight major river basins around
the world. For simplicity, only two Representative Concen-
tration Pathway (RCP) scenarios, RCP2.6 and RCP8.5, were
considered for the PEPIC simulations for the periods 2030 and
2090. Then, we compared future P losses estimated by PEPIC
to those estimated by the linear substitute model.
2.3. Assessment of Water Pollution Intensity Asso-

ciated with Phosphorus Losses. The concepts of GWF and
GWS were used to assess the water pollution intensity due to P
losses into water bodies. GWF was introduced by Hoekstra et
al.19 and it measures the water requirements to dilute
pollutants (P losses in this study) based on ambient water
quality standard and natural background concentration. It is
estimated as

= · −C CGWF 100 Pl/( )max nat (6)

where GWF is the gray water footprint over cropland (mm
year−1) associated with P losses, and Cmax and Cnat (mg P L−1)
are the ambient water quality standard and natural background
concentration of P, respectively. According to the GWF
concept, the range between Cnat and Cmax defines the dilution
capacity of a unit of freshwater. The values of Cmax and Cnat
were selected as 0.02 and 0.01 mg P L−1 according to the GWF
accounting guideline.20 These values were also used by
Mekonnen and Hoekstra.22 The GWS was calculated as a
dimensionless ratio of GWF to runoff volumes simulated by
large-scale hydrological models (HMs), indicating to which
level the dilution capacity of freshwater has been consumed by
pollutants.21,22 Here, GWF is over cropland, while runoff is
over terrestrial land. Hence, GWF is scaled by a ratio of
cropland area to terrestrial land area for each river basin. With
this concept, GWS > 1 means that freshwater has exhausted
the dilution capacity of a given pollutant. Therefore, we
focused on the regions with GWS greater than 1 to explore to
what extent land and runoff would face severe P pollution
conditions and how many people would be exposed to the
pollution for both the baseline situation (2000) and future
conditions (2030, 2050, 2070, and 2090). Similar to P losses,
we calculated median GWF and GWS and GWF and GWS
during wet years.
2.4. Data Description. Input data of PEPIC include

elevation, soil, climate, fertilizer, crop calendar, and crop land
use.18 Climate data for PEPIC historical simulation were
obtained from the WFDEI dataset,36 including precipitation,
temperature, wind speed, and relative humidity at a daily step.
Nutrient inputs of P and N from mineral fertilizer and manure
were derived from the EarthStat dataset.33,37 Crop land use
data were based on the MIRCA2000 dataset,38 which provides
irrigated and rainfed land area for 26 crop species. Detailed
information of input data of PEPIC can be found in the
Supporting Information.
Future annual precipitation data (2020−2099) were down-

loaded from the data archive of the Inter-Sectoral Impact
Model Intercomparison Project (ISIMIP, https://www.isimip.
org/).39 The ISIMIP climate data were derived from five

CMIP5 GCMs (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-
LR, MIROC-ESM-CHEM, and NorESM1-M) under four RCP
scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5). These
precipitation data were downscaled to a resolution of 0.5° and
bias-corrected with a trend-preserving method.40 The five
GCM models account for 55% of uncertainties in precipitation
of the entire CMIP5 GCM models.41 Annual runoff data were
provided by four HMs, i.e., DBH,42 H08,43 PCR-GLOBWB,44

and WaterGAP2.45 These runoff data were generated for the
ISIMIP fast track phase.39 These models performed well in
representing global large-scale hydrological cycles.46 Grid-
based population data for the baseline and future periods were
also obtained from the ISIMIP archive, wherein the future
populations were estimated based on the Shared Socio-
economic Pathway scenario 2.
In the analysis, we used the fertilizer P inputs and land use

patterns at the baseline level for the future periods. As it is
likely that P inputs will increase in the future in response to the
higher food demand,47 future water P pollution might be
underestimated in this study.

3. RESULTS
3.1. Responses of Phosphorus Losses to Precipita-

tion. The regression between PEPIC-simulated P losses and
annual precipitation time series (both are in natural log form)
shows a strong positive linear relationship across most river
basins of the world (Figure 1a and Figure S3). Among the 188
river basins considered in this study, 177 of them (94%) have
more than 50 simulations out of 100, presenting statistically
significant positive relationships (p < 0.05) between ln(Pl) and
ln(pr). The median coefficient of correlation (r) for
simulations with significant regression relations is higher than
0.6 for 87% of the basins. The slope of the linear regression
model in each river basin reflects the overall elasticity of P
losses to precipitation (see Section 2). This slope shows high
spatial variations and takes the highest values in the North
China, central U.S., and Middle East catchments (Figure 1b).
The values of the slope are mainly influenced by the cv of
precipitation as the partial correlation between the slope and
cv of precipitation across different catchments reaches 0.7
when controlling for P inputs and median precipitation (Figure
1c). These results indicate that a linear substitute model
relating P losses to precipitation with catchment-specific slope
derived from the fully fledged PEPIC simulations can explain
most of the spatial variance of present-day estimated P losses.
The linear substitute model also has a good ability to

reproduce year-to-year changes in P losses from precipitation,
as shown by the comparison of abnormal log P losses during
high annual precipitation (log of mean P losses during the 75th
highest precipitation years in each catchment minus log of
median P losses during all the years in the period 1991−2010)
between the results from the original PEPIC model and linear
substitute model (Figure 1d). In addition, the linear substitute
model has a good performance for reproducing maximum
minus median P losses (log form) and median minus
minimum P losses (log form) from the fully fledged PEPIC
(Figure S1). It also performs well in representing PEPIC
estimated P losses forced by future climate data in eight major
river basins throughout the world. The estimated future P
losses with the linear substitute model vs with the PEPIC
model were found to be comparable (R2 = 0.86) between the
two approaches across the eight basins (Figure S4). We
noticed large standard deviation for the East Brazil basin in P
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losses estimated by both methods. This is mainly because
future high precipitation in this basin has much larger standard
deviation across GCMs than in other basins. In addition, the
level of high annual precipitation in the future generally lies in
the range between baseline minimum and maximum
precipitation and cv of precipitation would not change much
in the future (Figure S2). This suggests that the linear
substitute model calibrated on the range of baseline
precipitation variability is not extrapolated outside this range
when forced by future precipitation fields. In addition, the
slope values for the eight river basins derived from the future
simulations match well with the baseline slope values (Figure
S5), which further confirms the robustness of the linear
substitute model in estimating future P losses. However, the
approach is based on the assumption that the interannual
baseline elasticity of P losses to precipitation is conserved for
each catchment under future climate conditions. It ignores, for
instance, the effects of changes in precipitation frequency and
intensity within a year and changes in agricultural practices and
in cultivated areas from each crop type.
3.2. Effects of Baseline Phosphorus Losses on

Freshwater Pollution. The baseline median annual P losses
show quite similar spatial patterns as median annual
precipitation at the river basin level (Figure 2a and Figure
S6). That is, high P loss values occur in wet countries and
regions like Japan, Korea, south-eastern China, Southeast Asia,
and South America, where P inputs are also generally high. In
these regions, the GWF values are extremely high, reaching
over 4000 mm year−1 in some hotspot regions, meaning that a
large amount of freshwater is needed to dilute P losses (more
than available when GWS > 1). About 71% (133 out of 188) of
the river basins, mostly in China, India, the U.S., and

Argentina, have already exceeded their dilution capacity of P
pollution at the baseline level (Figure 2b).
Globally, precipitation in wet years (above the 75th

percentile of all the years) is about 14% higher than median
precipitation, but P losses during these wet years are 34%
larger than median P losses under baseline climate (3.6 ± 0.7
(mean ± s.d.) kg P ha−1 year−1 of P losses during wet years
compared to 2.7 ± 0.5 kg P ha−1 year−1 during median years)
(Figure 3a). This disproportionate increase in global P losses
relative to precipitation during wet years is mainly due to the
fact that the slope values in the linear substitute model are
predominantly larger than 1. Spatially, the relative increases in
P losses during high vs median precipitation years are the
largest in dry regions, e.g., the Middle East, Central Asia, the
western U.S., northern Africa and South Africa, and southern
Australia (Figure 2c). High P losses during wet years are as
much as 200% higher than median P losses in some hotspot
regions like the Middle East, Central Asia, and northern Africa.
In these regions, the relative differences between high and
median precipitation values are larger than elsewhere (Figure
S6). Consequently, GWF during wet years increases strongly in
these regions. The increases in P losses in most basins during
wet years do not imply that the resultant GWS always increases
in these basins because increased runoff also favors the dilution
capacity of P pollution of freshwater. Although increases in
GWS occurred in most regions in wet years, decreased values
can also be observed (Figure 2d). We classified 140 river
basins with GWS > 1 during wet years compared to 133 during
normal (median) years. This increase (5%) in the number of
basins exceeding P-thresholds in wet years suggests that large P
losses occur in those basins, leading to very high pollution.
About 38 ± 4% (under normal years) and 42 ± 4% (under

wet years) of global land area already experience P pollution

Figure 2. Impacts of high precipitation on phosphorus losses (Pl) and gray water stress (GWS) for the period 1991−2010. (a) Median Pl (kg P
ha−1 year−1). (b) Median GWS (dimensionless). (c) Percentage differences (%) between Pl during wet years and median Pl across all years. (d)
Percentage differences (%) between GWS during wet years and median GWS across all years.
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with baseline GWS > 1 (Figure S7a). The related basins
represent about 40% of total global runoff (Figure S7b). About
5 billion people are affected by polluted waters (Figure 3b).
3.3. Impacts of Future Wet Years on Freshwater

Pollution. With the projected increases in high precipitation
given by GCMs (Figure S8), future P losses are simulated to
increase gradually from 4.0 ± 0.9 kg P ha−1 year−1 in 2030 to
4.5 ± 1.1 kg P ha−1 year−1 in 2090 (Figure 3a). Under the
scenario RCP2.6, the increases in P losses are more
pronounced in 2050 but less in 2070 and 2090. P losses
under RCP2.6 are higher than those under the other three
scenarios during the periods of 2030 and 2050, mainly due to
the higher precipitation over the croplands under RCP2.6
(Figure S8). The highest global average P losses are found for
2090 under scenario RCP8.5, with losses in wet years of 4.7 ±
1.3 kg P ha−1 year−1, which is 75 ± 48% higher than baseline
median P losses and 31 ± 36% higher than baseline high P
losses. Percentage increases in P losses are larger than 200% in
the Middle East, north-eastern Africa, and south Asia (Figure
4a), but relative decreases are found in a few basins, e.g.,
northern Africa and Northwest China, where future high
precipitation is lower than baseline median precipitation due to

a general drying trend in these areas (Figure S2). In many
basins, GWS under future high precipitation is estimated to be
smaller than under baseline high precipitation (Figures 2d and
4b), holding the fertilizer inputs constant. In some regions, the
GWS during wet years in 2090 will become even lower than
GWS under the baseline median precipitation, e.g., in several
basins in northern African, south-eastern Brazil, and Southeast
Asia. These decreases in GWS are mainly due to the increases
in runoff under future high precipitation to be larger in
magnitude than the estimated increases in P losses, a process
that dilutes P pollution. Nevertheless, GWS during the four
future periods exceeds 1 in most intensively cultivated basins
(Figure S9), especially in South and East Asia, West Europe,
and eastern U.S., accounting for about 90% of global cropland
of the four crops.
Although the land areas and runoff volumes affected with

GWS > 1 are projected to increase only slightly during wet
years in the future (Figure S7), the populations exposed to
severe P pollution will increase from 5 billion people under
baseline high precipitation to 7 billion people under future
high precipitation mainly due to increases in future populations
(Figure 3b). We also observed that increases in affected

Figure 3. Responses of phosphorus losses (Pl) to high precipitation (pr) and affected popultion with gray water stress exceeding 1. (a) Median Pl
and high Pl during wet years (kg P ha−1 year−1) for the baseline period (around the year 2000) and high Pl during wet years for four future periods
(2030, 2050, 2070, and 2090) and four Representative Concentration Pathway (RCP) scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5). (b)
Total affected populations (billion). Whiskers plots give 95th, 5th, median, and interquartile values. Red square points represent mean values. M
stands for median and H for high. Background colors indicate different periods.
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Figure 4. Relative changes in phosphorus losses (Pl) and gray water stress (GWS) in 2090 compared to baseline situation (around the year 2000).
(a) Percentage differences (%) of Pl of high precipitation in 2090 in comparison to median P losses in 2000. (b) Percentage differences (%) of
GWS of high precipitation in 2090 in comparison to median GWS in 2000.

Figure 5. Uncertainties related to slopes, climate models (GCMs), and hydrological models (HMs). (a) Phosphorus losses (Pl) (kg P ha−1 year−1)
under future wet years averaged across different GCMs. (b) Pl under future wet years averaged across different slope values. (c) Affected
populations (billion) with gray water stress >1 averaged across different GCMs and HMs. (d) Affected populations with gray water stress >1
averaged across different slope values.
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populations level off after 2050 and affected populations
become lower in 2090 than 2050. This is mainly because the
increases in total populations are projected to slow down after
2030 and the numbers in some populous regions start to
decline after 2050, e.g., in the Ganges basin in India and the
Yangtze basin in China.
3.4. Uncertainty Analyses. We find that uncertainties in

projecting future high P losses are more related to slope values,
derived from different PEPIC parameter combinations, than
different precipitation outputs from GCMs (Figure 5). As for
affected populations, both slope values and combination of
GCMs and HMs play an important role in the projection
uncertainties. In addition to uncertainties associated with slope
values, GCMs, and HMs, we also explicitly investigated the
uncertainties due to the selection of different percentiles for
defining wet years, that is, 65th, 70th, 75th, 80th, 85th, 90th,
and 95th of the distributions of both baseline and future
climates (Figure S10). A large difference in P losses during wet
years can be observed when choosing varied percentiles. P
losses will become higher when using a higher percentile for
wet year definition, with the highest P losses reaching about 6
kg P ha−1 year−1. However, there is only a minor effect on the
affected populations with GWS > 1 under the different wet
year definitions.

4. DISCUSSION
The impacts of high precipitation on P losses during the
baseline period are the largest over dry regions with high
sensitivity of P losses to precipitation, like in the Middle East,
Central Asia, and the western U.S. (Figure 2b and Figure S6a).
This is mainly due to high variations of precipitation, causing
accumulation of P in the soil during dry years followed by high
P losses during wet years in these arid regions (Figure S2).
Therefore, more attention should be paid to fertilizer
management in dry lands for lessening the impacts of high
precipitation on P-related pollution, e.g., optimizing P
application rates and timing and the types of applied P
fertilizers according to crop P demand and prior soil P
information, and avoiding P fertilization just after heavy rainfall
events in the wet season.48 Moreover, little freshwater is
available to assimilate pollution in those dry areas, which leads
to further degraded water quality. On the other hand, P losses
are already high (Figure 2a) in humid regions, concurrent with
high P inputs.17 Although future high precipitation would not
increase P losses that much in a relative term in these humid
regions, any increase in P losses in an absolute term will further
deteriorate water quality there. Interestingly, we find that
future high precipitation will increase P losses, but the affected
land areas and runoff with GWS > 1 will be almost consistent
with baseline high precipitation conditions (Figure S7).
Although future GWS in wet years would increase in many
highly polluted river basins, it still stays lower than 1 in most
less polluted basins as of the baseline conditions. This implies
that the dilution effect of future increased runoff is comparable
to the effect of a future increase in the flow of P from cropland
soils to water in these less polluted basins with baseline GWS <
1. This finding holds consistent with different percentiles for
defining wet years (Figure S10).
It is worth noting that the GWF concept is based on the

dilution effect of freshwater, which is different from the
capacity of inland water P assimilation. Although the
assimilation effect was also referred in previous GWF studies,49

it implies to account for the removal mechanisms of P in water

bodies, e.g., microbial uptake, sediment burial, and sorption on
mineral particles before delivery to rivers. Modeling future
changes of P concentration at the outlet of a basin involves
complex chemical and biological processes in the cascade of
inland water. In this study, we did not model inland water P
concentration changes under future climate change as it would
require hydrological and biogeochemical models and knowl-
edge to simulate the transport, burial in aquatic sediment, and
reactivity of P, which is out of the scope of this study.
Addressing this question should be integrated into the future
development of GWF theory.
Unlike nitrate pollution, which could cause methemoglobi-

nemia and cancers in infants,50 high P concentration in water
does not directly impair human health. However, with a
growing number of people living in regions with degraded
aquatic environments (e.g., dilution capacity for P will be
exhausted in about three-fourths of global total river basins
shown in this study), continuous P pollution will pose
significant indirect impacts on human well-being.8 A high
level of precipitation will further amplify P losses under
projected future climate changes, particularly in regions with
high P inputs in China, India, and eastern U.S.4 Sinha et al.51

reported that high precipitation will increase N losses in these
regions. The concurrent additional losses in P and N triggered
by high precipitation could greatly challenge ecological and
human health as both elements have largely transgressed their
global safe planetary boundary.52,53 In particular, P could cause
more serious environmental problems due to its much lower
acceptable concentrations in water bodies. Therefore, it is
necessary to take urgent actions to reduce P losses, e.g.,
through precision farming and better nutrient manage-
ment,17,37 international food trade for improving global
nutrient use efficiency,54,55 and better P recycling and
recovery.56

The modeling framework developed in this study provides
an effective and robust tool to quantify the impacts of changing
precipitation on P losses, especially in arid regions where P
losses are sensitive to changes in precipitation (Figure 1b).
However, the results are still subject to uncertainties. For
instance, uncertainties related to fertilizer types and fertilizer
data as well as application timing affect the estimation of P
losses.57 However, due to data unavailability, we had to use a
simple P application method on large scale with only one
global P dataset from EarthStat. We considered land use
pattern unchanged for the future conditions, which may lead to
underestimation of P losses because global cropland area is still
growing.58 Future work can combine our approach with
variable land use scenarios. We apply the baseline relations
between P losses and precipitation to estimate future P losses,
which relies on future precipitation regimes only, but do not
directly simulate future P losses globally based on crop
modeling. Lacking future crop-specific P fertilizer information
and difficulties on handling nutrient management in crop
modeling for a long period59 prevent us from doing a direct
centurial simulation with PEPIC for the globe. The approach
to translate future changes in high precipitation to P losses is
verified for baseline precipitation regimes and several major
river basins by running PEPIC with future climate, and the
future contrasts between high and median precipitation are
found not far out of the range from the baseline contrast values
(Figure S2a). P fertilizer consumption is expected to
continuously increase toward the end of this century.60

Although this increase in P uses may not increase the
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elasticities of P losses to annual precipitation (Figure 1c), it
will certainly increase P losses.17 We also noticed that cv of
future precipitation in a few river basins is slightly different
from the baseline cv (Figure S2b). This change, to some
degree, could affect the projection of P losses under the future
climate. Therefore, further local investigation is needed in
these specific regions in future studies.
In addition to the agricultural sector, P losses from other

sectors, e.g., domestic and industry, also generate P loads in
inland water bodies. For instance, exposed populations with
GWS > 1 increase by 0.5−1 billion (Figure S11) when
considering industrial and domestic P losses obtained from
Mekonnen and Hoekstra.22 As nonagricultural P losses are
with high uncertainty to project,60 we did not consider them in
this study. Instead, we isolated the impacts of precipitation
changes on P losses as changes in future precipitation can
hardly be avoided through local management. We focused on
interannual patterns of precipitation in this study, while
changing distribution on precipitation within a year will also
affect P losses.15 Therefore, investigation on the effects of P
input increases and intra-annual precipitation changes on P
losses should be the focus of future research. This study, for
the first time, to our best knowledge, explicitly estimates the
impacts of future precipitation changes on P losses and
highlights the hotspot regions and associated negative
consequences on a global scale. It is of particular importance
to inform policy decisions for controlling P-related pollutions
in the context of changing climate.
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(47) Mogolloń, J. M.; Beusen, A. H. W.; van Grinsven, H. J. M.;
Westhoek, H.; Bouwman, A. F. Future agricultural phosphorus
demand according to the shared socioeconomic pathways. Global
Environ. Change 2018, 50, 149−163.
(48) Bindraban, P. S.; Dimkpa, C. O.; Pandey, R. Exploring
phosphorus fertilizers and fertilization strategies for improved human
and environmental health. Biol. Fertil. Soils 2020, 56, 299−317.
(49) Zhi, Y.; Yang, Z.; Yin, X.; Hamilton, P. B.; Zhang, L. Using gray
water footprint to verify economic sectors’ consumption of
assimilative capacity in a river basin: model and a case study in the
Haihe River Basin, China. J. Cleaner Prod. 2015, 92, 267−273.
(50) Ward, M. H.; Jones, R. R.; Brender, J. D.; de Kok, T. M.;
Weyer, P. J.; Nolan, B. T.; Villanueva, C. M.; van Breda, S. G.
Drinking water nitrate and human health: An updated review. Int. J.
Environ. Res. Public Health 2018, 15, 1557.
(51) Sinha, E.; Michalak, A. M.; Balaji, V. Eutrophication will
increase during the 21st century as a result of precipitation changes.
Science 2017, 357, 405−408.
(52) Carpenter, S. R.; Bennett, E. M. Reconsideration of the
planetary boundary for phosphorus. Environ. Res. Lett. 2011, 6,
No. 014009.
(53) Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.
S., III; Lambin, E. F.; Lenton, T. M.; Scheffer, M.; Folke, C.;
Schellnhuber, H. J.; Nykvist, B.; de Wit, C. A.; Hughes, T.; van der
Leeuw, S.; Rodhe, H.; Sörlin, S.; Snyder, P. K.; Costanza, R.; Svedin,
U.; Falkenmark, M.; Karlberg, L.; Corell, R. W.; Fabry, V. J.; Hansen,

J.; Walker, B.; Liverman, D.; Richardson, K.; Crutzen, P.; Foley, J. A.
A safe operating space for humanity. Nature 2009, 461, 472−475.
(54) Liu, W.; Yang, H.; Liu, Y.; Kummu, M.; Hoekstra, A. Y.; Liu, J.;
Schulin, R. Water resources conservation and nitrogen pollution
reduction under global food trade and agricultural intensification. Sci.
Total Environ. 2018, 633, 1591−1601.
(55) Lassaletta, L.; Billen, G.; Garnier, J.; Bouwman, L.; Velazquez,
E.; Mueller, N. D.; Gerber, J. S. Nitrogen use in the global food
system: past trends and future trajectories of agronomic performance,
pollution, trade, and dietary demand. Environ. Res. Lett. 2016, 11,
No. 095007.
(56) Powers, S. M.; Chowdhury, R. B.; MacDonald, G. K.; Metson,
G. S.; Beusen, A. H. W.; Bouwman, A. F.; Hampton, S. E.; Mayer, B.
K.; McCrackin, M. L.; Vaccari, D. A. Global opportunities to increase
agricultural independence through phosphorus recycling. Earth’s
Future 2019, 7, 370−383.
(57) Wang, Q.; Zhou, F.; Shang, Z.; Ciais, P.; Winiwarter, W.;
Jackson, R. B.; Tubiello, F. N.; Janssens-Maenhout, G.; Tian, H.; Cui,
X.; Canadell, J. G.; Piao, S.; Tao, S. Data-driven estimates of global
nitrous oxide emissions from croplands. Natl. Sci. Rev. 2020, 7, 441−
452.
(58) The future of food and agriculture − Alternative pathways to
2050; Food and Agriculture Organization: 2018; p 224.
(59) Folberth, C.; Gaiser, T.; Abbaspour, K. C.; Schulin, R.; Yang,
H. Regionalization of a large-scale crop growth model for sub-Saharan
Africa: Model setup, evaluation, and estimation of maize yields. Agric.,
Ecosyst. Environ. 2012, 151, 21−33.
(60) Van Vuuren, D. P.; Bouwman, A. F.; Beusen, A. H. W.
Phosphorus demand for the 1970-2100 period: A scenario analysis of
resource depletion. Global Environ. Change 2010, 20, 428−439.

Environmental Science & Technology pubs.acs.org/est Article

https://dx.doi.org/10.1021/acs.est.0c03978
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

K

https://dx.doi.org/10.1002/2014WR015638
https://dx.doi.org/10.1002/2014WR015638
https://dx.doi.org/10.1038/nature11420
https://dx.doi.org/10.1038/nature11420
https://dx.doi.org/10.1029/2008GB003435
https://dx.doi.org/10.1029/2008GB003435
https://dx.doi.org/10.1029/2008GB003435
https://dx.doi.org/10.1073/pnas.1312330110
https://dx.doi.org/10.1073/pnas.1312330110
https://dx.doi.org/10.5194/esd-4-219-2013
https://dx.doi.org/10.1016/j.cliser.2016.02.001
https://dx.doi.org/10.1016/j.cliser.2016.02.001
https://dx.doi.org/10.1016/j.cliser.2016.02.001
https://dx.doi.org/10.1175/JHM589.1
https://dx.doi.org/10.1175/JHM589.1
https://dx.doi.org/10.1175/JHM589.1
https://dx.doi.org/10.5194/hess-22-789-2018
https://dx.doi.org/10.5194/hess-22-789-2018
https://dx.doi.org/10.5194/hess-22-789-2018
https://dx.doi.org/10.5194/esd-5-15-2014
https://dx.doi.org/10.5194/esd-5-15-2014
https://dx.doi.org/10.5194/esd-5-15-2014
https://dx.doi.org/10.5194/hess-20-2877-2016
https://dx.doi.org/10.5194/hess-20-2877-2016
https://dx.doi.org/10.5194/hess-20-2877-2016
https://dx.doi.org/10.1073/pnas.1222460110
https://dx.doi.org/10.1073/pnas.1222460110
https://dx.doi.org/10.1016/j.gloenvcha.2018.03.007
https://dx.doi.org/10.1016/j.gloenvcha.2018.03.007
https://dx.doi.org/10.1007/s00374-019-01430-2
https://dx.doi.org/10.1007/s00374-019-01430-2
https://dx.doi.org/10.1007/s00374-019-01430-2
https://dx.doi.org/10.1016/j.jclepro.2014.12.058
https://dx.doi.org/10.1016/j.jclepro.2014.12.058
https://dx.doi.org/10.1016/j.jclepro.2014.12.058
https://dx.doi.org/10.1016/j.jclepro.2014.12.058
https://dx.doi.org/10.3390/ijerph15071557
https://dx.doi.org/10.1126/science.aan2409
https://dx.doi.org/10.1126/science.aan2409
https://dx.doi.org/10.1088/1748-9326/6/1/014009
https://dx.doi.org/10.1088/1748-9326/6/1/014009
https://dx.doi.org/10.1038/461472a
https://dx.doi.org/10.1016/j.scitotenv.2018.03.306
https://dx.doi.org/10.1016/j.scitotenv.2018.03.306
https://dx.doi.org/10.1088/1748-9326/11/9/095007
https://dx.doi.org/10.1088/1748-9326/11/9/095007
https://dx.doi.org/10.1088/1748-9326/11/9/095007
https://dx.doi.org/10.1029/2018EF001097
https://dx.doi.org/10.1029/2018EF001097
https://dx.doi.org/10.1093/nsr/nwz087
https://dx.doi.org/10.1093/nsr/nwz087
https://dx.doi.org/10.1016/j.agee.2012.01.026
https://dx.doi.org/10.1016/j.agee.2012.01.026
https://dx.doi.org/10.1016/j.gloenvcha.2010.04.004
https://dx.doi.org/10.1016/j.gloenvcha.2010.04.004
pubs.acs.org/est?ref=pdf
https://dx.doi.org/10.1021/acs.est.0c03978?ref=pdf

