

1 Recent decrease in summer precipitation over the Iberian Peninsula

2 closely links to reduction of local moisture recycling

- 3 Yubo Liu^{1,2}, Monica Garcia³, Chi Zhang^{1,4}, Qiuhong Tang^{1,2*}
- 4
- 5 ¹Key Laboratory of Water Cycle and Related Land SurfaceProcesses, Institute of Geographic
- 6 Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- 7 ²University of Chinese Academy of Sciences, Beijing, China
- 8 ³Department of Environmental Engineering, Technical University of Denmark, Lyngby, 2800,
- 9 Denmark
- 10 ⁴Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and
- 11 Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- 12
- 13 ***Correspondence**: Qiuhong Tang (tangqh@igsnrr.ac.cn)
- 14

15 Abstract

16	The inherently dry summer climate of the Iberian Peninsula (IP) is undergoing drought
17	exacerbated by more intense warming and reduced precipitation. Although many
18	studies have studied changes in summer climate factors, it is still unclear how the
19	changes in moisture contribution from the source lead to the decrease in summer
20	precipitation. This study investigates the differences in the IP precipitationshed between
21	1980-1997 and 1998-2019 using the Water Accounting Model-2layers with ERA5 data,
22	and assesses the role of local recycling and external moisture in reducing summer
23	precipitation. Our findings indicate that the moisture contributions from the local IP,
24	and from the west and the east of the precipitationshed contributed 1.7, 3.6 and 1.1 mm
25	mon ⁻¹ less precipitation after 1997 than before 1997, accounting for 26 %, 57 % and
26	17% of the main source supply reduction, respectively. The significant downward trend
27	of the IP local recycling closely links to the disappearance of the wet years after 1997
28	as well as the decrease of local contribution in the dry years. Moreover, the feedback
29	between the weakened local moisture recycling and the drier land surface can
30	exacerbate the local moisture scarcity and summer drought.

32 1. Introduction

33 The Iberian Peninsula (IP) is located in the Mediterranean area, which is among 34 the global "hotspots" of climate change. The IP precipitation is characterized by the 35 diverse climatic regimes and high spatial variability as a consequence of its geographic 36 position between the Atlantic Ocean and the Mediterranean Sea and its orographic 37 configuration. In responding to climate change with frequent heatwaves and aboveaverage warming, the IP is experiencing widespread decreases in precipitation, 38 especially in summer (Brogli et al., 2019; Cramer et al., 2018; Rajczak and Schär, 2017). 39 40 This reduction in summer precipitation is a major driver of water resource depletion 41 and the evolution of drought (Lopez-Bustins and Lemus-Canovas, 2020; Páscoa et al., 42 2021; Teuling et al., 2013). To clarify the reason for the decrease in summer 43 precipitation, it is necessary to explain the changes in moisture contribution from the 44 source, such as local recycling and external sources.

45 Analysis of source supply and transportation in the hydrological cycle has become one efficient way to understand well regional precipitation. With the introduction of the 46 47 concept of precipitationshed (Keys et al., 2014; Keys P. W. et al., 2011), which better 48 reveals the contribution from upwind evaporation sources to precipitation in downwind 49 sink region, it is more scientific and systematic to explain the precipitation variations 50 by using the fluctuations of moisture contribution as a precursor. Given the importance 51 of studying the source of precipitation, that is, precipitationshed, a variety of methods 52 have been developed and adopted, including physical isotope analysis (Bonne et al.,

53	2014), and numerical analytical models, either online methods running in parallel with
54	climate models (Damián and Gonzalo, 2018; Stohl and James, 2004, 2005), or offline
55	"posteriori models" (van der Ent and Savenije, 2011; van der Ent et al., 2010; van der
56	Ent et al., 2013). Although the mechanisms of these studies are different, they all
57	emphasize that the constantly changing source-sink relationship of atmospheric
58	moisture is an essential part of climate change research as global change continues.
59	Gimeno et al. (2010) comprehensively investigated the atmospheric moisture
60	sources of the IP precipitation at different scales, and identified the tropical-subtropical
61	North Atlantic corridor, the surrounding Mediterranean Sea and the local IP as the
62	important moisture regions. The high precipitation in the cold season is mainly
63	dominated by westerly wind regimes. The mid-latitude atmospheric dynamics, such as
64	the baroclinic synoptic-scale perturbations from the Atlantic and the polar jet stream,
65	as well as the high moisture supply from an Atlantic "tropospheric river" seem to be
66	responsible for the abundant precipitation during the cold season (Cortesi et al., 2013;
67	Ulbrich et al., 2015; Zhu and Newell, 1998). Compared to the rainy winter, the summer
68	with very low precipitation receives less attention. The subtropical location under the
69	descending air extending from the North Atlantic subtropical high controls low summer
70	precipitation over the IP, and local convective events increase the importance of local
71	recycling during summer (Serrano et al., 1999). Accordingly, the summer IP
72	precipitation, a significant proportion of which is taken up by the local recycled water
73	vapor, is completely different from the precipitation in winter that is dominated by the

74 moisture transported over long distances from external sources.

75 In recent decades, the increasing severity of summer drought in the IP, which is closely related to precipitation variations, has attracted more attention. Several 76 77 mechanisms, including soil-atmosphere interactions (Boé and Terray, 2014), cloud processes (Lenderink et al., 2007; Tang et al., 2012) and large-scale circulation changes 78 79 (Boé et al., 2009; Brogli et al., 2019; Kröner et al., 2017), have been found to be potentially important for this complex summer climate change, which also appear to 80 have an impact on precipitation reduction. However, there is still a lack of 81 82 understanding of such summer precipitation decline in terms of changes in the moisture 83 contribution from the source. Therefore, tracing the precipitationshed of the IP and 84 quantifying the moisture contributions can provide us with a new perspective to analyze 85 the changes in IP precipitation. This study aims to evaluate the moisture contribution 86 of local recycling and external sources to the reduction of IP summer precipitation.

87 **2. Study Area, Data and Methods**

88 2.1 Study area

The IP is located in southwestern Europe at midlatitudes of the northern hemisphere. It covers Portugal and the mainland of Spain. The geographic location of IP is shown in Fig. 1(a) (36°N-44°N, 10°W-3°E) in a transition zone between midlatitude and subtropical atmospheric circulation regimes. It has a complex topography, surrounded by the Atlantic Ocean and Mediterranean Sea, and high in the

4

40°N

36°N

94 middle and northeast. The topographic and coastal processes affect water vapor 95 transport, forming a spatial precipitation gradient from northwest to southeast. Extracted from the land-sea mask provided by European Centre for Medium-range 96 97 Weather Forecasts (ECMWF), the red outline area composed of multiple single 1×1

degree grids is our study area of IP.

120°W 90°W 60°W 30°W 0 30°E 9°W 6°W 3°W 0 3°E N°09 Europe 40°N North America Atlantic Ocean 20°N Africa 120°W 90°W 60°W 30°W 0° 30°E 9°W 6°W 3°W 3°E 0 Sea Study Area Land Elevation 500 0 4500 (m)

100 Figure 1 Map of the IP (the area within the closure of the red line) on a grid of $1^{\circ} \times 1^{\circ}$ as the target 101 region.

102

99

98

104 The newest reanalysis data held in ECMWF data archive, ERA5 dataset 105 downloaded from the Copernicus Climate Change Service (C3S) Climate Data Store 106 (CDS) is used in this study (Hersbach et al., 2020). The variables include surface 107 pressure, precipitation, evaporation, total column water, and vertical integrated 108 eastward and northward atmospheric water fluxes (including cloud liquid water flux, 109 cloud frozen water flux and water vapor flux) on single level, as well as the horizontal

¹⁰³ 2.2Data

110	U/V components of wind fields and specific humidity at the lowest 23 rd pressure levels
111	(200-1000hPa). The time resolution and spatial resolution selected for these data are 1
112	hour and 1×1 degree, respectively. This dataset covers the period from 1980 to 2019.
113	Compared to the old version reanalysis data (e.g., ERA-Interim or ERA-40), ERA5
114	combines vast amounts of historical observations into global estimates using more
115	advanced modelling and data assimilation systems (Hersbach et al., 2020).
116	To avoid the uncertainty of ERA5 precipitation as a global forecast data, its
117	reliability in the IP needs to be verified. Therefore, an observational gridded dataset
118	generated from a dense network of stations over the IP, named Iberia01 (Herrera et al.,
119	2019), is used to verify the accuracy of ERA5 precipitation data. Iberia01 provides the
120	daily precipitation for the period of 1971-2015 at 0.1×0.1 degree.
121	2.3 Model and methods
122	2.3.1 Water Accounting Model-2layers
123	Water Accounting Model-2layers (WAM-2layers) is an offline Eulerian method

tracking the moisture cycle forwards or backwards that quantifies the source-sink relations (van der Ent et al., 2013; van der Ent et al., 2014). Its backward algorithm was used in this study to trace the precipitationshed of the IP. The model of WAM-2layers is an updated version of the original WAM. The water vapor balance equation in the WAM-2layers algorithm maintains the premise that the atmosphere is well mixed, but compared with the previous model, it takes the stratification of the atmosphere into

130 consideration. Thus, when the algorithm is applied to a specific region, the calculation

132
$$\frac{\partial W_{l,r}}{\partial t} + \frac{\partial (W_{l,r}u)}{\partial x} + \frac{\partial (W_{l,r}v)}{\partial y} = E_{l,r} - P_{l,r} \pm F_{V,r} + \alpha_{l,r} \quad (1)$$

where *W* is the atmospheric moisture storage, or namely, precipitable water; *t* is time; *u* and *v* are the wind components in *x* (zonal) and *y* (meridional) direction, respectively; *E* is evaporation; *P* is precipitation; F_V is the vertical moisture transport between the bottom and top layer; α is a residual term; the subscript *l* represents the portion in layer *l* (either the bottom layer or the top layer), and the subscript *r* represents the tagged portion provided by the source region.

Based on the assumption of a well-mixed atmosphere (Burde, 2010; Goessling and Reick, 2013), the moisture contribution, that is, the tagged evaporation E_r , can be calculated considering that the ratio of tagged to total atmospheric water storage is equal to the ratio of tagged to total evaporation, as shown in Eq. (2). Considering the proposed retention time of atmospheric moisture is about 1 week to 10 days (Numaguti, 1999), we set the backtracking time as 1 month for summer precipitation to make sure that more than 90 % of the precipitation can be redistributed to the surface.

146
$$E_r(t, x, y) = \frac{W_r(t, x, y)}{W(t, x, y)} \times E(t, x, y) \quad (2)$$

147 The main moisture source suppling IP summer precipitation, that is, 90th percentile 148 precipitationshed in this study, is divided into subregions to evaluate the role of the 149 contribution from each area, such as local recycling and external advection moisture.

150

151	contribution from all grids covered by it to the total contribution from the main source
152	region (MS) is the contribution ratio (CR), which is calculated as the following Eq. (3).
153	The precipitation recycling ratio of the IP can be substituted with IP local contribution
154	ratio CR_{IP} .
155	$CR_A = \frac{\sum E_r(t, x, y A)}{\sum E_r(t, x, y MS)} \times 100\% (3)$
156	2.3.2 Significance test
157	The slope significance of trend fitting and the significance of the difference in the
158	means are tested using Student t-test in this study. Additionally, the mutation analysis
159	for detecting significant mutation in precipitation series is the sliding t-test,

For each of the partitioned source region (A), the proportion of the moisture

160
$$T = \frac{\frac{1}{n_1} \sum_{l=1}^{n_1} x - \frac{1}{n_2} \sum_{l=n_1+1}^{n_1+n_2} x}{\frac{(n_1-1)S_1^2 + (n_1-1)S_2^2}{n_1+n_2-2} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
(4)

where *x* is the precipitation series to be tested, n_1 and n_2 are step lengths set for two sequences before and after the moving point, and S_1^2 and S_2^2 are the variances of the two

163 sequences which can be calculated as following.

164
$$S_1^2 = \frac{1}{n_1 - 1} \sum_{t=1}^{n_1} \left(x - \frac{1}{n_1} \sum_{t=1}^{n_1} x \right)^2$$
(5)

165
$$S_2^2 = \frac{1}{n_2 - 1} \sum_{t=n_1 + 1}^{n_1 + n_2} \left(x - \frac{1}{n_2} \sum_{t=n_1 + 1}^{n_1 + n_2} x \right)^2$$
(6)

166 **3. Results**

167 3.1 Evaluation and variation of precipitation data

168 The precipitation time series of ERA5 and Iberia01 data are shown in Fig. 2. The 169 fluctuations and variations of ERA5 precipitation data are in good agreement with the 170 observed data on both annual and seasonal scales, together with all correlation 171 coefficients higher than 0.95. The average annual precipitation over the IP is about 172 55.66 mm mon⁻¹ from ERA5 and 58.07 mm mon⁻¹ from Iberia01, respectively. Compared with the observed data, the reanalysis data slightly underestimates the IP 173 precipitation with the root mean square error (RMSE) of 3.46 mm mon⁻¹ on the annual 174 scale. The comparison of seasonal precipitation shows that ERA5 is lower than the 175 176 observed Iberia01 value in the rainy seasons (both winter and autumn), but higher in 177 the dry summer. The RMSE between the two datasets of seasonal precipitation is in the range of 4.30-12.65 mm mon⁻¹. Since Iberia01 data is the grid data interpolated from 178 179 observation site data (Herrera et al., 2019), some of the deviations between the ERA5 180 and Iberia01 precipitation can be partially affected by the interpolation process rather 181 than solely the result of the error generated by the reanalysis process. In general, ERA5 182 precipitation data shows the characteristics of IP precipitation reasonably well and thus 183 is suitable for studying the changes.

184

Figure 2 Variations of IP annual precipitation (a), spring (March, April and May, b), summer (June, July and August, c), autumn (September, October and November, d) and winter (December, January and February, e) during 1980-2019. The green shading covers the interval of one standard deviation of summer precipitation. The years with summer ERA5 precipitation exceeding the range of the green shading interval are circled in blue and red.

190 Only in summer, the mutation analysis of the two sets of precipitation data,

191 Iberia01 and ERA5, both show statistically significant changes in 1997. Accordingly,

192 the entire 40-year period is divided into two periods, 1980-1997 and 1998-2019, to 193 compare the difference in summer precipitation between the two periods. The average 194 summer precipitation is 34.89 and 27.17 mm mon⁻¹ before and after 1997, respectively. Compared with 1980-1997, the average summer precipitation during 1998-2019 195 196 decreases by 7.72 mm (22.13 %) in the whole study area. On the grid scale, almost all 197 grids have less precipitation after 1997, and more than half of all grids show the 198 statistically significant reductions (Fig. 3). However, this change is unevenly distributed 199 in space, as shown by the greater reduction in the grids on the northeastern IP that can 200 even exceed 10 mm mon⁻¹.

201

202 Figure 3 The difference of average summer precipitation over the IP between 1998-2019 and 1980-

203 1997 (average of 1998-2019 minus average of 1980-1997). The triangles indicate the differences

are significant at 0.05 (solid) and 0.1 (hollow) level.

205	For summer precipitation, the dry years (1991, 1994, 2005, 2012 and 2016) and
206	the wet years (1983 1987 1988 1992 and 1997) are selected, which are circled in Fig.
207	2(c). A wet year is defined as the year in which the precipitation is more than one
208	standard deviation above the average precipitation, and similarly, the precipitation in a
209	dry year is lower than a standard deviation range. Accordingly, the division of time
210	period also applies to the precipitation series of the dry and wet years. It is specifically
211	observed that the dry years are separated, with the average precipitation of 17.15 and
212	18.34 mm mon ⁻¹ before and after 1997, whereas wet years occur before 1997 with an
213	average of 51.03 mm mon ⁻¹ but disappear after 1997.
214	3.2 Changes in summer precipitationshed and regional contributions
215	From 1980 to 2019, an average of 28.53 mm mon ⁻¹ precipitation has been tracked
215 216	From 1980 to 2019, an average of 28.53 mm mon ⁻¹ precipitation has been tracked by the global surface, exceeding 93 % of IP summer precipitation with an average of
216	by the global surface, exceeding 93 % of IP summer precipitation with an average of
216 217	by the global surface, exceeding 93 % of IP summer precipitation with an average of 30.64 mm mon ⁻¹ . The climatology of the moisture contribution during the 40 years is
216 217 218	by the global surface, exceeding 93 % of IP summer precipitation with an average of $30.64 \text{ mm mon}^{-1}$. The climatology of the moisture contribution during the 40 years is shown in Fig. 4 (a). The moisture contribution to IP generally decreases as its distance
216217218219	by the global surface, exceeding 93 % of IP summer precipitation with an average of 30.64 mm mon ⁻¹ . The climatology of the moisture contribution during the 40 years is shown in Fig. 4 (a). The moisture contribution to IP generally decreases as its distance to IP increases. Although the precipitationshed of IP summer precipitation is global in
216217218219220	by the global surface, exceeding 93 % of IP summer precipitation with an average of 30.64 mm mon ⁻¹ . The climatology of the moisture contribution during the 40 years is shown in Fig. 4 (a). The moisture contribution to IP generally decreases as its distance to IP increases. Although the precipitationshed of IP summer precipitation is global in scope, the contribution of the area far away is negligible to be considered. Therefore,
 216 217 218 219 220 221 	by the global surface, exceeding 93 % of IP summer precipitation with an average of $30.64 \text{ mm mon}^{-1}$. The climatology of the moisture contribution during the 40 years is shown in Fig. 4 (a). The moisture contribution to IP generally decreases as its distance to IP increases. Although the precipitationshed of IP summer precipitation is global in scope, the contribution of the area far away is negligible to be considered. Therefore, the 90 th precipitationshed enclosed by the black line in Fig. 4 is given full attention as

225 Atlantic corridor (Gimeno et al., 2010), as shown by the circulation in the Fig. 4(a), 226 most of the non-local source grids are located in the North American land and North 227 Atlantic Ocean to the west of the study area. The other source grids are located east of 228 North Atlantic Ocean and the IP, which is the downwind zone for water vapor transport, 229 covering Western Europe and the Mediterranean. Hence, the main moisture sources are 230 divided into the three partial regions of the local IP, the west and the east by the 231 boundary of the study area and the eastern boundary of the Atlantic Ocean (red and blue 232 lines in Fig. 4), and the contribution of each region to IP precipitation can be quantified and compared. 233

235	Figure 4 (a) Climatological 90 th precipitationshed of the IP sink region and moisture contribution
236	to IP summer precipitation from 1980 to 2019. The black outlines show the 90th precipitationshed
237	boundary during the 40 years. The vectors represent the climatological monthly water vapor flux.
238	The red line encloses the study area, and the blue line divides the precipitationshed excluding the IP
239	into the west (left area) and the east (right area) regions. (b) Difference in moisture contribution in
240	the 90th precipitationshed between 1980-1997 and 1998-2019 (average of 1998-2019 minus average
241	of 1980-1997). The dots indicate 0.1 significance of the difference.
242	Affected by the transport distance, the grids with high contribution are located in
243	and around the target IP region, with the maximum values for grids in the northwest
244	corner of the IP. The local IP contributes 3.46 mm mon ⁻¹ average summer precipitation,
245	with the precipitation recycling ratio of around 13.26 % during the 40 years. The west,
246	as the largest sub-region of the precipitationshed, contributes the most summer
247	precipitation of 19.38 mm mon ⁻¹ and occupies 76.06 % of the tracked precipitation
248	averagely. While the east region, which is in an unfavorable downwind position in the
249	summer circulation, provides only 2.81 mm mon ⁻¹ summer precipitation, accounting
250	for 10.68 %.
251	The difference in moisture contribution obtained from the 1998-2019 period minus
252	the 1980-1997 period is shown in Fig. 4(b). Almost all grid contributions show a
253	decrease after 1997. The grids with a large moisture contribution decline are mainly
254	concentrated in the IP, with the maximum reduction exceeding an average of 3 mm

255 mon⁻¹. Compared with other non-local source grids, the grids with higher contributions

- along the east coast of the North Atlantic near the IP also have a slight but significant
- 257 reduction in contribution.

Due to the uneven distribution of grid contribution reduction in space, the area of 258 259 different percentile precipitationsheds differs in the two periods. The areas with different colors in the distribution map of Fig. 5 represent the precipitationshed 260 boundaries at different percentiles in the two periods. During 1998-2019, the 261 precipitationshed boundary of each percentile extends westward in varying degrees 262 compared with those before 1997. The top decile of the contribution is still in the 263 264 western half of the IP. In the North Atlantic, the westward expansion of the western 265 boundary of the precipitationsheds is conspicuous, especially the 45th and 60th 266 percentile precipitationsheds shown in orange and green color in Fig. 5(a, b). This westward extension implies that the significant and substantial reduction in the 267 268 contribution of the local grids and its surrounding grids results in a decrease in the 269 proportion of these areas. Therefore, for the same percentile of the precipitationshed, 270 only a smaller area concentrated by high-contribution grids is sufficient before 1997. 271 However, a larger area is required for the same proportion after 1997.

272

Figure 5 Different percentile precipitationsheds during the two periods 1980-1997 (a) and 19982019 (b).

Figure 6(a) shows the quantified precipitation contributed by the local IP, the west and the east regions. The negative slopes in Fig. 6(a) indicate that the summer precipitation contributed by these three regions has a downward trend, especially significant for the IP and the west with slopes of -0.59 and -1.28 mm mon⁻¹ decade⁻¹. These decreasing trends cause a 6.38 mm mon⁻¹ difference in precipitation from the main source region in the two periods, which explain 82.64 % of the total reduction in IP summer precipitation (7.72 mm mon⁻¹). In terms of the difference in the average

287

values of each region, the precipitation contributed by the local IP, the west and the east
significantly decreases from 4.38, 21.37 and 3.41 mm mon⁻¹ in 1980-1997 to 2.71,
17.76 and 2.32 mm mon⁻¹ in 1998-2019, respectively. 26.32 %, 56.53 % and 17.15 %
of the difference in main source supply between the two periods are due to the
contribution decline from the local IP, the west and the east, respectively.

Figure 6 Variations of contributed precipitation (a, unit of the slope: mm mon⁻¹ decade⁻¹) and contribution ratios (c, unit of the slope: % decade⁻¹) from the IP, the west and the east region during 1980-2019 summer. ***' and **' represent 0.05 and 0.1 level significance of the trend.

291 The variation and trend of the contribution ratio of each region are shown in Fig.

292 6(b). The proportion of contributions from the local IP and the east shows a decreasing

293	trend throughout the 40 years with the slope of -1.17 % decade ⁻¹ and -0.12 % decade ⁻¹ ,
294	which is consistent with the decreasing trends of their absolute contributions.
295	Conversely, although the precipitation contributed by the west shows a decreasing trend,
296	its proportion is significantly increasing and the slope is 1.29 % decade ⁻¹ . The average
297	contribution ratios of the local IP and the east decrease from 15.05 $\%$ and 11.49 $\%$
298	before 1997 to 11.79 % and 10.02 % after 1997, while the ratio of the west increases
299	from 73.46 % to 78.19 %.
300	3.3Differences in wet years and dry years
301	The dry years (1991, 1994, 2005, 2012 and 2016) and the wet years (1983 1987
302	1988 1992 and 1997) are selected as described in section 3.1. Of the two divided periods,
303	all the wet years only occur before 1997, while the dry years are distributed in both
304	periods with no decrease in its average value. This represents that although the average
305	summer precipitation after 1997 is reduced significantly compared with the previous
306	period, there is no decrease in the valley value of the precipitation series. Thus, the
307	disappearance of the wet years during 1998-2019 caused by the decrease of the
308	precipitation series peaks directly reflects the recent decrease in IP summer
309	precipitation.
310	During the entire 40 years, the difference in moisture contribution within the 90 th

During the entire 40 years, the difference in moisture contribution within the 90th
precipitationshed of IP summer precipitation between wet and dry years is shown in
Fig. 7(a). In the dry years, the significant reduction in the moisture contribution from

313	all grids in the main source region induces much lower precipitation than in the wet
314	years. On the grid scale, the larger declines primarily happened in the local IP, and the
315	grids with the largest drop, close to 9 mm mon ⁻¹ , are mainly concentrated in the west
316	and north of the IP. In each source region, an average of 6.41, 30.74 and 5.34 mm mon-
317	¹ of summer IP precipitation is provided from the local IP, the west and the east in the
318	wet years, with 15.15 % recycling ratio, 72.19 % and 12.66 % contribution ratio. While
319	in the dry years, the average precipitation contributed from each region is 1.92, 11.66
320	and 1.40 mm mon ⁻¹ , accounting for 12.93 %, 77.70 % and 9.37 %, respectively. All
321	three regions contribute more to summer precipitation in wet years than in dry years,
322	and compared with dry years, the contribution ratios of the local IP and the east in wet
323	years are also higher. The disappearance of wet years during 1998-2019 further
324	motivates similar changes between the two periods. The decrease in the frequency of
325	wet years with higher local recycling ratio and higher contribution ratio of the east leads
326	to an increase in the proportion of the summer precipitation originating from the
327	remaining other region, namely the west, during the same period.

328

Figure 7 (a) Difference in moisture contribution in the 90th precipitationshed between the dry years and the wet years (average of dry years minus average of wet years). The dots indicate 0.1 significance of the difference. The changes in average precipitation contributed from each region (b) and their average contribution ratios (c) between the dry years and the wet years. '**' and '*' represent 0.05 and 0.1 level significance of the difference.

The dry years in the two periods have been divided and compared with each other, and the differences between the two periods are shown in Fig. 8. From the distribution of differences, the grids with reduced moisture contribution are mainly located in the IP and the east region, and the southern part of the IP has the largest decrease (Fig. 8(a)). Mainly dominated by these negatively changing grids, both the absolute contribution

and the contribution ratio of the local IP and the east have dropped significantly, with
0.53 and 0.42 mm mon⁻¹ decrease in contributed precipitation and 3.58 % and 2.81 %
contribution ratio reduction, respectively (Fig. 8(b, c)). For the west region, however,
it raises the moisture contribution to the summer precipitation by 1.22 mm mon⁻¹ in dry
years after 1997, causing a 6.39 % increase in its contribution ratio. Despite the dry
years with no decrease precipitation between two periods, the decrease in local
recycling is still noticeable.

346

Figure 8 (a) Difference in moisture contribution in the 90th precipitationshed in the dry years
between 1998-2019 and 1980-1997. The dots indicate 0.1 significance of the difference. The

349 changes in average precipitation contributed from each region (b) and their average contribution

350 ratios (c) in the dry years between 1998-2019 and 1980-1997. *** and ** represent 0.05 and 0.1

- 351 level significance of the difference.
- 352 **4. Discussion**

353 The trends in the contribution from the three source regions, the local, the west 354 and the east regions, to all seasonal and annual precipitation over the past 40 years are 355 listed in Table 1. In general, the decreasing trend maintained by the local IP and the east 356 region are closely related to the drought in the Mediterranean basin (Ribeiro et al., 2020; 357 Russo et al., 2019), and the increasing proportion of the west can be explained by the 358 increasingly important role of the oceanic moisture in terrestrial precipitation (Gimeno 359 et al., 2020; Vicente-Serrano et al., 2018). The simultaneous decrease in the moisture 360 contribution from all three regions is responsible for the significant decrease in only the 361 summer precipitation series among all seasonal or annual precipitation. In particular, 362 the local recycling ratio in summer is obviously way down, differentiating the reduced 363 summer precipitation from the other seasons. It is worth highlighting that this significant decrease in recent summer precipitation over the IP in this study is based on 364 365 a short record (1980-2019) from ERA5, while a long-term assessment of precipitation 366 (1850-2018) from multiple sources still lacks a statistically significant decreasing trend 367 (Peña-Angulo et al., 2020). Nevertheless, the changes in the recent four decades still 368 show the significant influence of the local recycling, especially on the trend of summer 369 precipitation and variation of summer wet and dry years.

371	Table 1 Trends	of contributions	from the IP,	the west and the	ne east to annual and seasonal
-----	----------------	------------------	--------------	------------------	--------------------------------

Contributed precipitation (mm mon ⁻¹ decade ⁻¹)						Contribution ratio (% decade ⁻¹)				
	Annual	Spring	Summer	Autumn	Winter	Annual	Spring	Summer	Autumn	Winter
IP	-0.24**	-0.30	-0.59**	-0.03	-0.03	-0.49**	-0.66**	-1.17**	-0.14	-0.08
West	0.53	1.67	-1.28*	1.23	0.52	0.81**	0.80	1.29**	0.38	0.77
East	-0.17	-0.06	-0.28	-0.05	-0.29	-0.32	-0.14	-0.12	-0.24	-0.69

372 precipitation, and the trends of their contribution ratios.

373 ***** and **** represent 0.05 and 0.1 level significance of the trend.

374 The remarkable decrement of summer precipitation can be attributed to the 375 simultaneous and large reduction of contributions from all three source regions. The 376 strong land-sea contrast caused by the warming land surface makes the advected air 377 mass from Atlantic experience drying (Cramer et al., 2018; Kröner et al., 2017), 378 resulting in a decrease in the moisture contribution from the Atlantic Ocean in the west to the IP precipitation. In addition, the extension of Hadley circulation makes the IP 379 380 more strongly affected by subsidence with higher static stability and lower frequency 381 of extreme heavy precipitation (Brogli et al., 2019). However, the ocean warming 382 patterns and thermodynamics can promote precipitation in cold seasons (Brogli et al., 383 2019), just as shown by the increasing contributed precipitation from the west in autumn and winter in Table 1. It suggests the drivers leading to less summer 384 precipitation do not generally cause a similar change in precipitation in the other 385 386 seasons.

387

As an important indicator to describe the interaction between the surface and

388	atmospheric processes, the change in precipitation recycling ratio takes into account
389	changes in both precipitation and the contribution of local evaporation (Goessling and
390	Reick, 2011). For the IP, its significant reduction in local moisture contribution is most
391	likely due to the weakening of local evaporation (Fig. 9). Due to the positive correlation
392	between soil moisture and precipitation in summer, the declining precipitation leads to
393	the shortage of soil water supply, the limitation of soil water evaporation capacity and
394	the consequent reduction in surface evaporation (García-Valdecasas Ojeda et al., 2020;
395	Ruosteenoja et al., 2018). Especially in summer, when the soil moisture and recycling
396	process driven by evaporation are regarded as an active source of moisture (Jung et al.,
397	2010; Vicente-Serrano et al., 2014) , this weakening of the local moisture recycling
398	again leads to a decrease in precipitation. This continuous feedback of the interactions
399	of soil moisture evaporation and precipitation can exacerbate the water resource
400	depletion and summer drought.

403 mm mon⁻¹ decade⁻¹). '**' represents 0.05 level significance of the trend.

404 **5. Conclusions**

405	In this study, using the reanalysis data ERA5 and WAM-2layers model, we
406	investigated how changes in moisture contribution from the source affect the reduction
407	in summer precipitation between 1980-1997 and 1998-2019. The major findings are
408	summarized below.
409	1) The reduction of contribution to IP summer precipitation is mainly concentrated in
410	the IP and its neighboring grids. The local IP grids show the greatest reduction, and
411	the surrounding grids show a slight but significant decrease.
412	2) Compared with the period of 1980-1997, the decrease in the moisture contribution
413	from the IP, the west and the east during 1998-2019 results in the reductions of 1.7,
414	3.6, and 1.1 mm mon ⁻¹ of the IP precipitation, accounting for 26 %, 57 %, and 17 %
415	of the main source supply reduction, respectively.
416	3) The contributions from the local IP and the east keep declining during the 40 years.
417	In particular, the significant reduction in local recycling, reflected in the
418	disappearance of wet years after 1997 and the reduction of local contributions in
419	dry years, suggests a close link with the decrease in summer precipitation.
420	
421	Code and Data availability
422	Code and data used in this manuscript are available from the corresponding author upon
423	a reasonable request.

425 Author contributions

- 426 MG and QT designed the study; YL performed the analysis and calculation; CZ
- 427 contributed to the application of the model in this study; YL prepared the manuscript
- 428 draft, and all co-authors reviewed and edited the manuscript.
- 429

430 Competing interests

- 431 The authors declare no competing interests.
- 432

433 Acknowledgements

This study was partly funded by the National Natural Science Foundation of China (41730645) and the Strategic Priority Research Program of Chinese Academy of Sciences (XDA20060402). The authors would like to thank the EU and Innovation Fund Denmark (IFD) for funding within the framework of the FORWARD collaborative international consortium financed through the ERA-NET co-fund WaterWorks2015 integral part of the 2016 joint activities developed by the "Water Challenges for a Changing World" joint programme initiative (Water JPI).

442 **References**

443	Boé, J., and Terray, L.: Land-sea contrast, soil-atmosphere and cloud-temperature
444	interactions: interplays and roles in future summer European climate change,
445	Clim. Dyn., 42, 683-699, https://doi.org/10.1007/s00382-013-1868-8, 2014.
446	Boé, J., Terray, L., Cassou, C., and Najac, J.: Uncertainties in European summer
447	precipitation changes: role of large scale circulation, Clim. Dyn., 33, 265-276,
448	https://doi.org/10.1007/s00382-008-0474-7, 2009.
449	Bonne, J. L., Masson-Delmotte, V., Cattani, O., Delmotte, M., and Steen-Larsen, H. C.:
450	The isotopic composition of water vapour and precipitation in Ivittuut, Southern
451	Greenland, Atmos. Chem. Phys., 14, 4419-2014, https://doi.org/10.5194/acp-
452	<u>14-4419-2014</u> , 2014.
453	Brogli, R., Sørland, S. L., Kröner, N., and Schär, C.: Causes of future Mediterranean
454	precipitation decline depend on the season, Environ. Res. Lett., 14, 114017,
455	https://doi.org/10.1088/1748-9326/ab4438, 2019.
456	Burde, G. I.: Bulk recycling models with incomplete vertical mixing. Part I: Conceptual
457	framework and models, J. Clim., 19, 1461-1472,
458	https://doi.org/10.1175/jcli3687.1, 2010.
459	Cortesi, N., Trigo, R. M., Gonzalez-Hidalgo, J. C., and Ramos, A. M.: Modeling
460	monthly precipitation with circulation weather types for a dense network of
461	stations over Iberia, Hydrol. Earth Syst. Sci., 17, 665-678,
462	https://doi.org/10.5194/hess-17-665-2013, 2013.
463	Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, JP., Iglesias, A., Xoplaki,
464	E.: Climate change and interconnected risks to sustainable development in the
465	Mediterranean, Nat. Clim. Chang., 8, 972-980, https://doi.org/10.1038/s41558-
466	<u>018-0299-2</u> , 2018.
467	Damián, IC., and Gonzalo, M. M.: A new moisture tagging capability in the Weather
468	Research and Forecasting model: formulation, validation and application to the
469	2014 Great Lake-effect snowstorm, Earth Syst. Dynam., 9, 167-185,
470	https://doi.org/10.5194/esd-9-167-2018, 2018.
471	García-Valdecasas Ojeda, M., Yeste, P., Gámiz-Fortis, S. R., Castro-Díez, Y., and
472	Esteban-Parra, M. J.: Future changes in land and atmospheric variables: An
473	analysis of their couplings in the Iberian Peninsula, Sci. Total Environ., 722,
474	137902, https://doi.org/10.1016/j.scitotenv.2020.137902, 2020.
475	Gimeno, L., Nieto, R., and Sorí, R.: The growing importance of oceanic moisture
476	sources for continental precipitation, npj Clim. Atmos. Sci., 3, 27,
477	https://doi.org/10.1038/s41612-020-00133-y, 2020.
478	Gimeno, L., Nieto, R., Trigo, R. M., Vicente-Serrano, S. M., and López-Moreno, J. I.:
479	Where does the Iberian Peninsula moisture come from? An answer based on a
480	Lagrangian approach, J. Hydrometeorol., 11, 421-436,
481	https://doi.org/10.1175/2009JHM1182.1, 2010.

482	Goessling, H. F., and Reick, C. H.: What do moisture recycling estimates tell us?
483	Exploring the extreme case of non-evaporating continents, Hydrol. Earth Syst.
484	Sci., 15, 3217-3235, https://doi.org/10.5194/hess-15-3217-2011, 2011.
485	Goessling, H. F., and Reick, C. H.: On the "well-mixed" assumption and numerical 2-
486	D tracing of atmospheric moisture, Atmos. Chem. Phys., 13, 5567-5585,
487	https://doi.org/10.5194/acp-13-5567-2013, 2013.
488	Herrera, S., Cardoso, R. M., Soares, P. M., Espírito-Santo, F., and Gutiérrez, J.: Iberia01:
489	a new gridded dataset of daily precipitation and temperatures over Iberia, Earth
490	Syst. Sci. Data, 11, 1947-1956, https://doi.org/10.5194/essd-11-1947-2019,
491	2019.
492	Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J.,
493	Thépaut, JN.: The ERA5 global reanalysis, Quarterly Journal of the Royal
494	Meteorological Society, 146, 1999-2049, <u>https://doi.org/10.1002/qj.3803</u> , 2020.
495	Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L.,
496	Zhang, K.: Recent decline in the global land evapotranspiration trend due to
497	limited moisture supply, Nature, 467, 951-954,
498	https://doi.org/10.1038/nature09396, 2010.
499	Keys, P., W., Gordon, L., J., R.: Variability of moisture recycling using a
500	precipitationshed framework, Hydrol. Earth Syst. Sci., 18, 3937-3950,
501	https://doi.org/10.5194/hess-18-3937-2014, 2014.
502	Keys, P. W., Ent, R., Gordon, L. J., Hoff, H., and Savenije, H.: Analyzing
503	precipitationsheds to understand the vulnerability of rainfall dependent regions,
504	Biogeosciences, 8, 733-746, https://doi.org/10.5194/bg-9-733-2012, 2011.
505	Kröner, N., Kotlarski, S., Fischer, E., Lüthi, D., Zubler, E., and Schär, C.: Separating
506	climate change signals into thermodynamic, lapse-rate and circulation effects:
507	theory and application to the European summer climate, Clim. Dyn., 48, 3425-
508	3440, https://doi.org/10.1007/s00382-016-3276-3, 2017.
509	Lenderink, G., van Ulden, A., van den Hurk, B., and van Meijgaard, E.: Summertime
510	inter-annual temperature variability in an ensemble of regional model
511	simulations: analysis of the surface energy budget, Clim. Change, 81, 233-247,
512	https://doi.org/10.1007/s10584-006-9229-9, 2007.
513	Lopez-Bustins, J. A., and Lemus-Canovas, M.: The influence of the Western
514	Mediterranean Oscillation upon the spatio-temporal variability of precipitation
515	over Catalonia (northeastern of the Iberian Peninsula), Atmos. Res., 236,
516	104819, https://doi.org/10.1016/j.atmosres.2019.104819, 2020.
517	Numaguti, A.: Origin and recycling processes of precipitating water over the Eurasian
518	continent: Experiments using an atmospheric general circulation model, J.
519	Geophys. ResAtmos., 104, 1957-1972,
520	https://doi.org/10.1029/1998JD200026, 1999.
521	Páscoa, P., Russo, A., Gouveia, C. M., Soares, P. M. M., Cardoso, R. M., Careto, J. A.
522	M., and Ribeiro, A. F. S.: A high-resolution view of the recent drought trends

523	over the Iberian Peninsula, Weather Clim. Extremes, 32, 100320,
524	https://doi.org/10.1016/j.wace.2021.100320, 2021.
525	Peña-Angulo, D., Vicente-Serrano, S. M., Domínguez-Castro, F., Murphy, C., Reig, F.,
526	Tramblay, Y., El Kenawy, A.: Long-term precipitation in Southwestern
527	Europe reveals no clear trend attributable to anthropogenic forcing, Environ.
528	Res. Lett., 15, 094070, https://doi.org/10.1088/1748-9326/ab9c4f, 2020.
529	Rajczak, J., and Schär, C.: Projections of future precipitation extremes over Europe: A
530	multimodel assessment of climate simulations, J. Geophys. ResAtmos., 122,
531	10,773-710,800, https://doi.org/10.1002/2017JD027176, 2017.
532	Ribeiro, A. F. S., Russo, A., Gouveia, C. M., and Pires, C. A. L.: Drought-related hot
533	summers: A joint probability analysis in the Iberian Peninsula, Weather Clim.
534	Extremes, 30, 100279, https://doi.org/10.1016/j.wace.2020.100279, 2020.
535	Ruosteenoja, K., Markkanen, T., Venäläinen, A., Räisänen, P., and Peltola, H.: Seasonal
536	soil moisture and drought occurrence in Europe in CMIP5 projections for the
537	21st century, Clim. Dyn., 50, 1177-1192, https://doi.org/10.1007/s00382-017-
538	<u>3671-4</u> , 2018.
539	Russo, A., Gouveia, C. M., Dutra, E., Soares, P. M. M., and Trigo, R. M.: The synergy
540	between drought and extremely hot summers in the Mediterranean, Environ.
541	Res. Lett., 14, 014011, https://doi.org/10.1088/1748-9326/aaf09e, 2019.
542	Serrano, A., García, J. A., Mateos, V. L., Cancillo, M. L., and Garrido, J.: Monthly
543	modes of variation of precipitation over the Iberian Peninsula, J. Clim., 12,
544	2894-2919, 1999.
545	Stohl, A., and James, P.: A Lagrangian analysis of the atmospheric branch of the global
546	water cycle. Part I: Method description, validation, and demonstration for the
547	August 2002 flooding in Central Europe, J. Hydrometeorol., 5, 656, 2004.
548	Stohl, A., and James, P.: A Lagrangian analysis of the atmospheric branch of the global
549	water cycle. Part II: Moisture transports between earth's ocean basins and river
550	catchments, J. Hydrometeorol., 6, 961-984, https://doi.org/10.1175/JHM470.1,
551	2005.
552	Tang, Q., Leng, G., and Groisman, P. Y.: European hot summers associated with a
553	reduction of cloudiness, J. Clim., 25, 3637-3644, https://doi.org/10.1175/JCLI-
554	<u>D-12-00040.1</u> , 2012.
555	Teuling, A. J., Van Loon, A. F., Seneviratne, S. I., Lehner, I., Aubinet, M., Heinesch,
556	B., Spank, U.: Evapotranspiration amplifies European summer drought,
557	Geophys. Res. Lett., 40, 2071-2075, https://doi.org/10.1002/grl.50495, 2013.
558	Ulbrich, U., Christoph, M., Pinto, J. G., and Corte-Real, J.: Dependence of winter
559	precipitation over Portugal on NAO and baroclinic wave activity, International
560	Journal of Climatology, 19, 379-390, https://doi.org/10.1002/(SICI)1097-
561	0088(19990330)19:4<379::AID-JOC357>3.0.CO;2-8, 2015.
562	van der Ent, R. J., and Savenije, H. H. G.: Length and time scales of atmospheric
563	moisture recycling, Atmos. Chem. Phys., 11, 1853-1863,

564	https://doi.org/10.5194/acp-11-1853-2011, 2011.
565	van der Ent, R. J., Savenije, H. H. G., Schaefli, B., and Steele-Dunne, S. C.: Origin and
566	fate of atmospheric moisture over continents, Water Resour. Res., 46,
567	https://doi.org/10.1029/2010WR009127, 2010.
568	van der Ent, R. J., Tuinenburg, O. A., Knoche, H. R., Kunstmann, H., and Savenije, H.
569	H. G.: Should we use a simple or complex model for moisture recycling and
570	atmospheric moisture tracking?, Hydrol. Earth Syst. Sci., 17, 4869-4884,
571	https://doi.org/10.5194/hess-17-4869-2013, 2013.
572	van der Ent, R. J., Wang-Erlandsson, L., Keys, P., and Savenije, H.: Contrasting roles
573	of interception and transpiration in the hydrological cycle - Part 2: Moisture
574	recycling, Earth Syst. Dynam., 5, https://doi.org/10.5194/esdd-5-281-2014,
575	2014.
576	Vicente-Serrano, S. M., Azorin-Molina, C., Sanchez-Lorenzo, A., Morán-Tejeda, E.,
577	Lorenzo-Lacruz, J., Revuelto, J., Espejo, F.: Temporal evolution of surface
578	humidity in Spain: recent trends and possible physical mechanisms, Clim. Dyn.,
579	42, 2655-2674, https://doi.org/10.1007/s00382-013-1885-7, 2014.
580	Vicente-Serrano, S. M., Nieto, R., Gimeno, L., Azorin-Molina, C., Drumond, A., El
581	Kenawy, A., Peña-Gallardo, M.: Recent changes of relative humidity:
582	regional connections with land and ocean processes, Earth Syst. Dynam., 9,
583	915-937, https://doi.org/10.5194/esd-9-915-2018, 2018.
584	Zhu, Y., and Newell, R. E.: A proposed algorithm for moisture fluxes from atmospheric
585	rivers, Mon. Weather Rev., 126, 725-735, https://doi.org/10.1175/1520-
586	<u>0493(1998)126</u> <0725:Apafmf>2.0.Co;2, 1998.