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Abstract
Desiccation of the Namak Lake (NL) can result in the release of fine-grained dust contaminated with heavy metals, while there is
little information available on the propagation of metals in the bed sediments of this lake. In this study, contamination of metals in
the surface sediments of the NL was analyzed and the pollution status of sediments was assessed using geo-accumulation index
(Igeo), enrichment factor (EF), the consensus-based sediment quality guidelines (CBSQGs), and mean probable effect concen-
tration quotient (mPECQ). Results indicated that metal concentrations at the southern part were higher than at the middle and
northern parts of the lake. Possible reasons are (i) pollution loads mainly entered the lake through the rivers at the west and
northwest, but accumulated at the southern parts, (ii) hard layer of salt covering the bottom of the NL at the northern part
suppresses adsorption of metals to the sediment, and (iii) the muddy nature of sediments at the southern part makes it easier for
metals to be absorbed. EF results showed that sediments at the southern part of the lake were moderately enriched with lead (Pb).
The low Igeo values suggested no pollution with the metals, and CBSQG values showed that the sediments of the NL were not
toxic, while the mPECQ index suggested a toxicity probability of less than 25%. Cluster analysis classified the metals into two
clusters. In general, the results showed that metal pollution in the surface sediments of NL was generally low although the
concentration of Pb at the southern part of the lake was worrisome.
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Introduction

Most lakes contain freshwater because they are well flushed
and constituents do not accumulate in the lake. However, un-
der some conditions such as excessive evaporation and con-
stituent input, the lake becomes saline (Eugster and Hardie
1978). In specific parts of the globe, saline lakes are common.
But they have attracted less attention because they are small in
size and number (Eugster and Hardie 1978).

Saline lakes are common in Iran. Similar to other saline lakes
in Iran, Namak Lake (NL) is also facing an extensive lack of
water resources due to the recent drought, climate change, and
damming on its contributing rivers and tributaries. Meanwhile,
desertification of this lake can result in extreme environmental
crisis in the central parts of Iran as reported by the Technical
Director of Iran’s Department of Environment. Drying up NL
will provide a 200-ha source of fine-grained dust that will ad-
versely affect the cities of Tehran (capital of Iran) and Qom, and
the central provinces of Iran, which almost contain more than
half of Iran’s population. In addition, settled pollutants in the
sediments, such as heavy metals (HMs), could further add to
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the problem. HMs have low solubility and mostly (over 90%)
tend to deposit into the lake sediments (Calmano et al. 1993;
Gaur et al. 2005; Zahran et al. 2015). Accumulated metals in
the sediments can re-suspendwhen the environmental conditions
change or the sediments experience external disturbances (Noori
et al. 2018; Aradpour et al. 2020). Hence, it is vital to understand
pollution status and the origin of metal inputs into NL and inves-
tigate the potential ecological risks imposed to the surrounding
environment. In a study conducted onMaharlu Lake, Iran, it was
concluded that wastewater inputs into the lake are the major
cause of lake’s water and sediment quality degradation (Moore
et al. 2009). Gao and Li (2012) stated that sediment grain size is a
key parameter in propagation and fractionation of the HMs in the
sediments. Islam et al. (2015) reported severely contaminated
water and sediment in the Korotoa River in Bangladesh.
Zahran et al. (2015) reported high levels of cadmium (Cd) and
lead (Pb) using geo-accumulation index (Igeo) in the sediments of
Manzala Lake, Egypt. Wang et al. (2018) investigated sediments
of Hongfeng Lake and discovered that the environmental protec-
tion programs carried out by authorities had resulted in a fall in
enrichment factor (EF) trends of the sediments throughout the
lake since 1995. Some metals, i.e., copper (Cu), zinc (Zn), and
Pb, were reported to be troublesome in water and sediment of the
Swarnamukhi River, India (Patel et al. 2017).

Although understanding the metal pollution status in NL sed-
iments provides necessary information for Iran’s Department of
Environment, there is little information available on the distribu-
tion of metals in the lake’s sediment. Analysis of metals in the
sediments of the NL is crucial to determine the biological impact
of the suspended sediments in case of complete drying up of the
lake. Therefore, in this study, concentrations of metals in the
surface sediments of NL were studied using EF (Pekey 2006),
Igeo (Muller 1979), and two other indices, i.e., consensus-based
sediment quality guidelines (CBSQGs) (MacDonald et al. 2000)
and mean probable effect concentration quotients (mPECQs)
(MacDonald et al. 2000; Long et al. 2006). Also, correlation
and cluster analyseswere employed to understand the similarities
among the metals in the sediments of NL. A main unresolved
issue with the application of cluster analysis is the determination
of the optimumnumber of clusters. In this study, two indices, i.e.,
the Dunn index (DI) and Davies and Bloudin index (DBI), pro-
posed by Dunn (1974) and Davies and Bloudin (1979), respec-
tively, were used to specify the optimal number of clusters in the
application of cluster analysis method.

Material and methods

Study area

Namak Lake, as a part of the Paratethys Sea, is located ap-
proximately at an elevation of 790 m above sea level and
100 km east of Qom city and 60 km north of Kashan city

(Fig. 1a). From the east, the lake is located near Kavir
National Park. The lake has an area of approximately
1806 km2 and its bed is covered by salt sediments with a depth
varying between 5 and 54 m separated by some clay layers.
The northern part of the NL is covered with a thick hard layer
of salt and the southern part is mostly muddy.

Average annual precipitation in the NL basin is less than
200 mm for the southeast part of the basin and it raises up to
800 mm moving towards the heights at the north (Maghrebi
et al. 2020). Average annual temperature was observed to be
18 °C at the eastern part of the basin to − 3 °C at the northern
heights (Abtahi et al. 2014). According to Iran’s Ministry of
Energy, the precipitation rate over NL has reduced about
22.5% during the last 50 years, and the evaporation rate has
raised to about five times greater than the global rates. Also,
the drought intensity has accelerated inland migration from
the surrounding villages of NL to big cities like Tehran,
Esfahan, Qom, and Kashan.

Generally, NL is a seasonal lake with a triangular shape
nourished by surface runoff (mainly from Qom River) and
groundwater resources. Qom River crosses industrial and mu-
nicipal areas such as Hamedan and Qom. Jajrood and Karaj
rivers also flow into NL, which cross extensive industrial and
municipal areas as well. However, Amirkabir and Latian dams
at the upstream of Karaj and Jajrood rivers have adversely
affected the amount of flow discharge into NL. Also, the im-
plementation of 15-Khordad and Saveh dams on Qom and
Qara-Chai rivers, respectively, has further reduced the inflow
to the lake. Recent droughts have caused a major decline in the
water level of NL, and it is almost entirely dried out so that
water only covers about 1 km2 of its area. Therefore, the lake
is considered to have a big potential to release suspended dusts
in the surrounding atmosphere, which alternatively could have
severe consequences for the environment and local habitats.

Surface sediment sampling

The surface sediment samples were taken in January 2019.
Eight locations were considered as the sampling sites. It is
noteworthy to mention that field studies are both time-
consuming and expensive. Also, although more sampling lo-
cations can provide further information about the contamina-
tion status of sediments, raising the number of samples can
cause uncertainties in the results. Because of the triangular
shape of the lake, sampling locations were distributed in a
specific order to be properly representative of the whole area
of the lake. Three sampling locations were chosen at the three
vertices of the triangle, and five other sampling locations were
chosen in a way that one is located at the middle of the lake
and others at the middle of the sides of the triangle (Fig. 1b).

A hard layer of salt covers the lake so that its thickness
varies from one point to another. Under the salty layer, there
existed a muddy layer. Because the upper layer of the lake’s
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sediment was hard, hatchet and shovel were used for sam-
pling. The color of samples varied from point to point. At
points A, C, B, and F, the colors of the samples were a com-
bination of green, white (from salt), and brown. The color of
the samples was entirely brown at points E and G and mostly
red at points D and H. At points A and F, the surface of the
lake was covered with water to a depth of nearly 3 cm, and a
hard layer of salt covered the lake’s bed. At points B and C,
the surface of the lake was dry, but the sediments were moist.
At points D and H, the surface of the lake had entirely dried
out, but the soil had finer grains in comparison to other sam-
pling locations. At points G and E, the surface of the lake was
entirely dry, and the sediments were extremely salty (Fig. S1).
However, eight samples were taken randomly from sediments
within a circular zone with a radius of 2 m at each sampling
location. Thereafter, the samples were mixed together and the
final mixture was put into pre-cleaned polyethylene bags,
sealed and preserved in 4 °C, and transferred to the lab. The
sediment samples were sieved and air-dried for 12 h at 80 °C
in a laboratory and then, a blend of HNO3, HCL, HCLO4, and
HF was used to digest samples according to the test method
guideline suggested by U.S. EPA 3050B (USEPA 1996).
Analysis of the sediment samples was performed using induc-
tively coupled plasma optical emission spectroscopy (ICP-
OES) and concentrations of the following metals were mea-
sured for each sample: aluminum (Al), Cd, Pb, Cu, iron (Fe),
Zn, manganese (Mn), vanadium (V), chromium (Cr), nickel
(Ni), cadmium (Cd), arsenic (As), cobalt (Co), and mercury

(Hg). Also, to check the accuracy of ICP-OES measurements,
the liquid reference materials NIST 1643 (trace elements in
natural water) and NIST 1640 (trace elements in water) were
used. To check the quality of the measurements, blanks and
certified reference material NIST 2709a were used. Also, ac-
ceptable recovery rate and standard deviation of 92–104% and
SRD ≤ 5% were observed as a result of duplicate analysis of
samples, blanks, and certified reference materials.

Indexing approach

To clarify natural and anthropogenic sources of the metals
from each other, EF was used. In this regard, observed metal
concentrations are normalized using a conservative constitu-
ent such as Fe, Al, and Mn (Mishra et al. 2004; Yongming
et al. 2006; Karbassi et al. 2008; Zahra et al. 2014; Torabi
Kachoosangi et al. 2020). Aluminum is very abundant in the
clay minerals. Since the NL’s bed consisted of dense clay
layers and Al was widely used by other researchers as a con-
servative constituent (Rubio et al. 2000; Pekey 2006; Karbassi
et al. 2008), the conservative element was considered to be Al.
However, EF was calculated as Eq. (1) and the computed
enrichment values for each element were classified using
Table 1 (Birch 2003):

EF ¼ CSample=AlSample

CShale=AlShale
ð1Þ

Fig. 1 a Basin of Namak Lake, located in the center of Iran. b Digital elevation map of NL and sampling locations
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where CSample is the sample metal concentration, AlSample is
the Al concentration in the sediment, CShale is the metal shale
concentration, and Al concentration in the Earth’s crust is
AlShale.

To evaluate the sediment pollution, Igeo was also used and
calculated as Eq. (2), and the results were evaluated using
Table 2 (Muller 1979), as well.

Igeo ¼ log2
Cn

1:5� Bn

� �
ð2Þ

where the concentration of metal in the sediment is Cn and the
available metal concentration in the Earth’s crust is Bn.

To account for the lithogenic differences between the sam-
pling locations and the shale values provided in Table 3
(Taylor and McLennan 2001), factor 1.5 was considered as
suggested by Hejabi (2011) and Gao and Li (2012).

The CBSQGs were employed to determine the toxicity of
the sediments (MacDonald et al. 2000). The CBSQGs were
derived from sediment quality guidelines (SQGs). Two
threshold values were calculated in CBSQGs: (i) threshold
effect concentration (TEC) and (ii) the probable effect concen-
tration (PEC). Thereafter, sediment toxicity was evaluated
using Table 4 (MacDonald et al. 2000). According to
MacDonald et al. (2000), sediment samples were considered
to be nontoxic if the observed concentration of the metals was
below the TEC value. On the other hand, sediments were
estimated to be toxic for concentrations higher than the PEC
value. Note that the concentrations between PEC and TEC
values were classified to be neither nontoxic nor toxic
(MacDonald et al. 2000).

To further evaluate the toxicity of sediments considering
the combined effect of toxic metals, mean mPECQ was also
used and calculated by Eq. (3) (MacDonald et al. 2000;
Ingersoll et al. 2001; Long et al. 2006).

mPECQ ¼ ∑n
i¼1 Ci=PECið Þ=n ð3Þ

where Ci is the calculated concentration of the ith metal, PEC
is the probable effect concentration of the ith metal, and the
number of metals is n.

Values of mPECQ are classified in three categories: (i)
mPECQ < 0.1 at which the incidence of toxicity is considered
to be relatively low (< 25%) and sediment is regarded to be
nontoxic; (ii) 1 < mPECQ< 5 at which sediment is predicted
to be toxic with the toxicity incident of 70–75%; and (iii)
mPECQ > 5 at which sediment is toxic with the probability
of more than 75% (Liu et al. 2017; Farkas et al. 2007;
Ingersoll et al. 2001).

Statistical analysis

To evaluate the relationship among metals in the sediments of
NL, correlation analysis was employed. Correlation analysis
is a means to differentiate the sources of constituents from
each other (Niu et al. 2015; Noori et al. 2019). Ward’s hierar-
chical cluster method was used to classify the sampling loca-
tions and metal concentrations based on their similarities
(Bostanmaneshrad et al. 2018).

Table 3 Metal shale values in the earth’s crust (Taylor and McLennan
2001)

Metals Shale values* (μg/g) ICP-OES Detection limit** (μg/L)
Wave length

Al 80,400 328.068 5.04

As 1.5 188.980 6.87

Cd 0.098 228.802 0.05

Co 17 228.615 2.20

Cr 85 267.716 1.10

Cu 25 324.754 1.10

Fe 35,000 259.940 1.10

Hg 0.40 435.834 22.08

Mn 600 260.568 0.06

Ni 50 231.604 1.10

Pb 16 220.353 6.12

V 110 292.401 1.1

Zn 71 334.502 1.1

*Taylor and McLennan (2001)

**Provided by the Lab

Table 1 EF classification (Birch 2003)

Enrichment factor Status

EF < 1 No Enrichment

1 < EF < 3 Minor enrichment

3 < EF < 5 Moderate enrichment

5 < EF < 10 Moderately severe enrichment

10 < EF < 25 Severe enrichment

25 < EF < 50 Very severe enrichment

EF > 50 Extremely severe enrichment

Table 2 Igeo
classification (Muller
1979)

Igeo Status

< 0 Unpolluted

0–1 Unpolluted to moderately polluted

1–2 Moderately polluted

2–3 Moderately to strongly polluted

3–4 Strongly polluted

4–5 Strongly to very strongly polluted

> 5 Very strongly polluted
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DI and DBI methods were employed to specify the optimal
number of clusters. DI is an internal evaluation method in
which the result is based on the clustered data. In DI, clusters
are ascertained in a way that they are compact, scattered well,
and have little variance between cluster members, and the
means of different clusters are satisfactorily far apart in com-
parison to the variance within cluster. DI is calculated as fol-
lows (Dunn 1974):

DI ¼
min

1≤ i≤ j≤q d Ci:C j
� �

max
1≤k≤q diam Ckð Þ

ð4Þ

where d(Ci. Cj) is the similarity function between Ci and Cj;
diam(Ck) is the cluster diameter which can be used as a metric
to determine the diffusion and dispersion of the cluster
members.

The DBI is an internal assessment methodwhere validation
takes place using features and quantities inherent to the
dataset. The DBI can be calculated as follows (Davies and
Bloudin 1979):

DBI ¼ 1
�
q∑

q
k¼1

max
k≠1

δk þ δl
dkl

� �
ð5Þ

where dkl is the distance between the center of masses of Ck

and Cl clusters and δk and δl are the compact factor of the Ck

and Cl clusters.

Results and discussion

Sediment analysis

Concentrations of metals in the NL sediment are shown in
Fig. 2. Point E metal concentrations preceded the order, as
follows: Al > Fe >Mn >V >Cr > Pb > Cu = Zn >Ni. This or-
der is also accurate at most of the sampling locations. The As,
Cd, Co, and Hg concentrations were below the detection limit.
Thus, in further analyses, they were omitted.

Since the distribution of metals in sediments is spatially
auto-correlated (Kishnéet al. 2003; Hu et al. 2006), interpola-
tion techniques such as inverse distance weighting (IDW)
could help the researchers to clearly study the pollution maps
regarding each element (Amini et al. 2005; Lee et al. 2006;
Xie et al. 2011). In this study, the pollution distribution map
for some metals in the sediments of NL was established using
IDW as well (Fig. 3). The observed concentrations of metals
at point A, the northern part of the NL, were at the lowest
level, and at points D and C (mostly D) were at the highest
level. These variations are due to a hard salt layer covering the
bed of NL in the northern part so that this layer suppresses
adsorption of constituents such as metals to the sediment in
the lake. Meanwhile, the southern parts of NL are mostly
muddy, making it easier for the constituents to get absorbed.
Besides, the elevation of the northern part is higher than that of
the southern part making the inlet water to flow southward
carrying constituents to the muddy area of the lake (Fig. 1b).
In general, the northern part of NL shows lower metal con-
centrations compared to the southern part.

Table S1 shows metal concentrations in the surface sedi-
ments for different lakes and reservoirs around the world. This
table indicates that the concentrations of all analyzedmetals in

Table 4 Consensus-
based sediment quality
guideline values
(MacDonald et al. 2000)

Metals PEC (μg/g) TEC (μg/g)

As 33 9.79

Cd 4.98 0.99

Cr 111 43.4

Cu 149 31.6

Pb 128 35.8

Hg 1.06 0.18

Ni 48.6 22.7

Zn 459 121
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Fig. 2 Observed metal concentrations in the sediments of Namak Lake (concentrations in μg/g except for Al, Fe, and Mn in mg/g)
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the NL were lower than those in the mean earth’s crust pro-
vided by Taylor and McLennan (2001). Therefore, it may be
concluded that metal concentrations in the surface sediments
of NL are not affected by anthropogenic activities. Table S1
reveals that metal concentrations in NL are far below those
values of the Rogoznica lake, Croatia (Mihelcic et al. 1996),
Wadi El Natrun lake, Egypt (Taher and Soliman 1999), and

Maharlu lake, Iran (Moore et al. 2009). Also, freshwater lakes
and reservoirs such as Wisconsin lake, USA (Iskandar and
Keeney 1974), Lake Constance, Switzerland (Muller 1977),
Great Slave Lake, Canada (Allan 1979), Lake Balaton,
Hungary (Nguyen et al. 2005), Bangalore urban lakes, India
(Jumbe and Nandini 2009), Avsar reservoir, Turkey (Ozturk
et al. 2009), Shadegan (Alhashemi et al. 2011) and Anzali,

Namak Lake Namak Lake Namak Lake

Namak Lake Namak Lake Namak Lake

Namak LakeNamak LakeNamak Lake

Fig. 3 Spatial distribution of some of the metals in the surface sediments of Namak Lake (concentrations in μg/g)
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Iran (Jamshidi-Zanjani and Saeedi 2013), Dongting lake,
China (Li et al. 2013), and Three Gorges Dam’s reservoir,
China (Tang et al. 2014) showed much lower metal concen-
trations than those of NL.

Indexing approach results

The calculated EF values are illustrated in the middle panel of
Fig. 4. The As, Co, Cd, and Hg concentrations were below the
limit of detection so they were omitted from the analysis. All
EF values were compared with the classification suggested by

Birch (2003) (Table 1). For most metals, the calculated EF
values were higher at point D. The EF values for Cr, Fe, Ni,
V, and Zn were almost below 1 indicating no anthropogenic
enrichment for these metals in the sediments of the NL. A
minor enrichment of Cu was observed at all sampling loca-
tions. For Pb, point E was at moderate enrichment status,
while at other sampling locations, sediments were observed
to have minor enrichment and no enrichment was observed at
point A.

The calculated Igeo values for each metal are shown in the
top panel of Fig. 4. Note that As, Cd, Co, and Hgwere omitted
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Fig. 4 The EF, Igeo, and mPECQ values calculated for each sampling location in Namak Lake
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from the analysis because their concentrations were below the
detection limit. Evaluation of the sediments using Igeo re-
vealed that the NL was not polluted with metals.

The CBSQG values are only available for As, Cd, Cr, Cu, Hg,
Ni, Pb, and Zn (Table 4). Concentrations of As, Cd, and Hg were
below the detection limit of themethodology used for the analysis.
Concentrations of all the considered metals were below the TEC
limit. This indicates that the concentrations of metals in the sedi-
ments of NL are not hazardous to sediment-dwelling organisms.

ThemPECQvalues are depicted in the bottompanel of Fig. 4.
Comparing the estimated mPECQ values with the classification
proposed by Ingersoll et al. (2001), it can be concluded that
sediments of NL are nontoxic and the incidence of toxicity is

lower than 25%. It should be noted that this conclusion is only
valid for the eight metals as described before, and mPECQ does
not take into account the effect of other metals in the sediment.

Statistical analysis results

Pearson correlation analysis was performed among the metals in
the sediments of NL (Table 5).Metals with concentrations below
the detection limit were eliminated from the analysis. The anal-
ysis showed that Alwas highly correlatedwith Cr, indicating that
their source of origin may be similar. Furthermore, Cu, Fe, Ni,
and V were highly correlated with each other stating a possible
common source. Since V is mostly a result of anthropogenic

Table 5 Correlation analysis among metals in the bed sediment of Namak Lake

Al Cr Cu Fe Mn Ni Pb V Zn

Al 1.00

Cr 0.96** 1.00

Cu 0.77 0.90* 1.00

Fe 0.89* 0.97** 0.97** 1.00

Mn 0.74 0.85 0.86 0.92* 1.00

Ni 0.91* 0.98** 0.95* 0.99** 0.92* 1.00

Pb 0.84 0.75 0.49 0.59 0.31 0.60 1.00

V 0.84 0.94* 0.99** 0.99** 0.92* 0.99** 0.51 1.00

Zn 0.89* 0.93* 0.92* 0.97** 0.89* 0.98** 0.55 0.97** 1.00

**Correlation is significant at the 0.01 level (2-tailed)

*Correlation is significant at the 0.05 level (2-tailed)
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activities (Karbassi et al. 2009), it suggests that the source of Cu,
Fe, and Ni is likely from human activities.

Ward’s hierarchical cluster method was performed to ana-
lyze the similarities among metals at sampling locations in NL
(Fig. 5a). The optimum number of clusters was determined
according to the DI and DBI methods. The results indicated
three clusters for the sampling locations as (i) A, (ii) B, and
(iii) E, C, and D. It seems that the elevation variation of the
lake plays an important role in the collection of metals in the
sediments of NL since the sampling locations with higher
elevation were classified in same clusters while lower sam-
pling locations, i.e., points C, D, and E, appear to show similar
behavior. Cluster analysis using Ward’s method was also per-
formed to classify metals in the sediments of NL and two
clusters were recognized based on the DI and DBI methods
(Fig. 5b). The first cluster included Al and Fe. The second
cluster contained Cr, Cu, Ni, Zn, Pb, V, and Mn. It is probable
that Fe was derived from lithogenic sources since it has been
classified with Al in the same cluster (Karbassi et al. 2005).
Since the second cluster joined the first one at a high level of
correlation, the source of metals in the second cluster was
probably anthropogenic activities.

Conclusions

Due to recent droughts and poor water management strategies,
saline lakes such as NL are desiccating. The desiccation of saline
lakes can have severe consequences for the surrounding environ-
ment since the contaminated sediments with heavy metals can
spread out in the atmosphere as fine-grained dusts. An increasing
concern has emerged that the desertification of NL may have
severe impacts on the air quality of the surrounding cities such
as Tehran, Qom, and Kashan. Nevertheless, there is little infor-
mation available on the heavymetal distribution in the sediments
of this lake. In this study, metal concentrations of some 13 ele-
ments were evaluated in the surface sediments of NL using in-
ductively coupled plasma optical emission spectroscopy (ICP-
OES). The pollution degree of the sediments was assessed using
sediment quality guidelines and pollution indices like the EF,
Igeo, CBSQGs, and mPECQ. Considering EF, sediments of NL
weremoderately enrichedwith Pb at the southern part of the lake.
The values of Igeo were generally low, suggesting that the NL
was not polluted with metals. The concentrations of the metals
were not toxic to biota, according to the CBSQGs. The mPECQ
results also suggested that the sediments were not toxic with a
low probability of toxicity (less than 25%). The statistical analy-
sis using correlation and cluster analyses shows that the northern
part of the lake was different from the southern part regarding the
metal concentration distributions. The lake’s bathymetry at the
southern part is lower than at the northern part. It seems that the
pollution loads carried by the rivers tend to accumulate in the
deep-water sediments in NL.
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