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ABSTRACT
As essential parts of the unique ecosystem of Tibetan Plateau (TP), the
sizes and associated physical properties of alpine lakes have long been
investigated. However, little is known about one of the most critical
biogeochemical properties, i.e. the Chlorophyll-a (Chl-a) concentrations.
Here, for the first time, we presented a comprehensive investigation of
the temporal–spatial variations in Chl-a in 82 lakes (>50 km2) across the
entire TP region, based on MODIS observations in the period of 2003–
2017. The results showed that the 82 lakes exhibited an average long-
term mean Chl-a of 3.3 ± 4.3 mg m−3, with high Chl-a lakes
concentrated in the eastern and southern inner TP basin and
northeastern parts of the TP. An interannual trend analysis revealed that
lakes exhibiting (significantly) decreasing Chl-a trends and (significantly)
increasing Chl-a trends were comparable in numbers but differed in
distribution patterns. A correlation analysis indicated that at least 70%
of the interannual variability in Chl-a values of lakes was significantly
correlated with one of the four environmental factors (wind speed, ice
cover duration, lake water surface temperature and surface runoff) and
lake size. In addition, glacier meltwater tended to reduce lake Chl-a
while salinity levels showed minor influences.
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1. Introduction

The Tibetan Plateau (TP), which is widely regarded as the AsianWater Tower, is the cradle of many
large international rivers and serves as an indispensable part of the water supply for many countries
across Asia. Due to the harsh and unique natural conditions, the TP is minimally disturbed by
human activities but is very sensitive to climate changes characterized by significant warming
and varied changes in other important climate factors, such as precipitation, evapotranspiration,
wind and sunshine duration (Qiu 2008; Kuang and Jiao 2016b). The dense distribution of alpine
water bodies, combined with widespread glaciers and permafrost in the TP region, make the region
a unique ecosystem. Lakes in the TP are profoundly affected by regional climate change (Zhang
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et al. 2017b), which could in turn exert a significant impact on the regional climate through bio-
physical feedbacks. Therefore, the dynamics of lakes in the TP have drawn widespread attention
from society and scholars (Lei and Yang 2017).

A series of studies have focused on lake physical properties in the TP region, including lake area
(Song et al. 2014c; Zhang et al. 2017b; Sun et al. 2018a), lake level (Song et al. 2014a; Jiang et al.
2017), lake water storage (Zhang et al. 2017c; Qiao, Zhu, and Yang 2019b), lake ice phenology
(Guo et al. 2018; Cai et al. 2019), lake surface water temperature (Zhang et al. 2014a; Wan et al.
2017a) and so on. However, little attention has been given to the biogeochemical properties of
lakes in the TP, such as chlorophyll-a (Chl-a) concentration. Chl-a is a key indicator of eutrophica-
tion status and water’s primary productivity and is therefore essential for understanding related
biogeochemical processes in lakes (Guildford and Hecky 2000; Gons, Auer, and Effler 2008; Hu,
Lee, and Franz 2012; Lyche-Solheim et al. 2013). Detailed documentation of spatial and temporal
Chl-a distribution in the TP would greatly benefit regional water resource management, environ-
mental regulation and relevant research (Sayers et al. 2015).

Owing to the extreme environment (altitude above 4000 m), the majority of lakes in the TP are
located in the depopulated zone, characterized by low accessibility of traffic networks and shortages
of vessels for cruise surveys. Regular in situ sampling or field monitoring of Chl-a for the myriad lakes
across the entire TP region is therefore hampered by its inherent constraints in spatiotemporal cover-
age as well as the inconvenience and high cost resulting from the extreme environments. As a feasible
alternative, remote sensing has shown great potential in providing large-scale and continuous time
series of Chl-a observations across various spatial and temporal domains. Currently, numerous
ocean color satellite sensors have been widely applied in deriving Chl-a distributions, including the
Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), the Moderate Resolution Imaging Spectroradi-
ometer (MODIS), the Visible Infrared Imaging Radiometer Suite (VIIRS), the Medium Resolution
Spectroradiometer (MERIS) and its successor, the Sentinel-3 Ocean and Land Color Instrument
(OLCI). It is undeniable that relevant research using these satellite observations facilitates a deeper
understanding of the variations in the geochemical and biochemical properties of water bodies to a
certain extent (Behrenfeld and Boss 2006; McClain 2009). However, there is no such a study focusing
on a comprehensive assessment of the spatial–temporal Chl-a distribution over the unique region of
the TP, which is critical for its function as the Asian Water Tower.

Lakes in the TP have witnessed dramatic changes during the past few decades. For instance,
Zhang et al. studied the lakes larger than 1 km2 across the TP and observed a 31.9%’s growth in
the lake number (from 1080 to 1424) and an increase of 25.4% in the lake surface area (from ∼
4.0 × 104 to ∼ 5.0 × 104 km2) during the period of 1970s to 2018 (Zhang et al. 2014b; Zhang
et al. 2019b). The same phenomena have been found in many other studies, and further indicated
the linkage of rapid lake expansion in the TP (especially in the central TP) with the accelerated
shrinkage of glaciers since 1990 (Lei et al. 2014; Song et al. 2014c; Yang et al. 2017; Zhang et al.
2017b). In the southern part of the TP, opposite changes have been observed (Zhang et al. 2011,
2013). Associated with these observed changes, it is interesting to further explore the potential
impacts of lake size on Chl-a concentration in general. In fact, the influence of lake size variations
on Chl-a is rather complex. The dynamics of lake size are a combined result of direct impacts from
different climate factors such as air temperature, evaporation, precipitation, and climate-induced
glacial melt (Song et al. 2014b; Zhang et al. 2017a; Sun et al. 2018b; Qiao, Zhu, and Yang 2019a).
Each of these particular factors can have different magnitudes of impact on the changes in lake
size and can further trigger other processes to impact lake Chl-a. Taking glacier meltwater as an
example, as an essential contributor to lake expansion, the meltwater-associated decrease in
water temperature and increase in light attenuation were found to modulate phytoplankton growth
and thus impact lake Chl-a concentrations (Vinebrooke et al. 2010; Rose et al. 2014).

To fill the knowledge gaps in the Chl-a variations and their potential impact factors, the current
study was designed to (1) present a first comprehensive glance of the variation in lake Chl-a at both
spatial and temporal scales in the TP region using long-term Chl-a products from MODIS Aqua
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between 2003 and 2017 and to (2) explore the potential impacts of lake size variations and several
other key environmental factors on lake Chl-a. To achieve these objectives, the paper is structured
as follows. In the first step, the data and methods adopted in this study are introduced, including the
background of the study area, procedures for satellite-based Chl-a retrieval along with the selection
principles and data sources of relevant environmental driving factors. Then, a detailed description
of the interannual and monthly changes in Chl-a is presented. In the next step, the potential effects
of lake size, wind speed, lake surface water temperature (LSWT), ice cover duration (ICD), surface
runoff, glaciers and salinity are investigated, which is followed by a brief discussion on other poten-
tial factors that are not statistically explored. Finally, the uncertainty, validity and future impli-
cations of satellite-derived Chl-a in the TP region are discussed.

2. Materials and methods

2.1. Study area

Our study area, the TP, is located in the western part of China and central Asia, within latitudes 26°
00′N-39°47′N and longitudes 73°19′E-104°47′E. The TP is recognized as ‘the roof of the world’, as
its mean elevation is over 4000 m above sea level. The TP’s profound spatial variations in climate is
governed by the Asian monsoon system and the westerlies (Krause et al. 2010; Yao et al. 2012),
resulting in a relatively warm and humid climate conditions in the southeastern part of TP and
a cold and arid climate in the northwestern TP (Yin et al. 2013). The entire TP region covers
approximately 2.5 × 106 km2, and thousands of lakes can be identified (Kuang and Jiao 2016a).
Among those lakes, approximately 1400 lakes are larger than 1 km2in 2018 (Zhang et al. 2019a).

The majority of lakes on TP belong to salt or salt water lakes, especially those endorheic lakes dis-
tributed at the inner TP basin (Lin et al. 2020). The hydrochemistry condition of TP’s alpine lake sys-
tem were reported to be influenced by many geological and climatic factors, including atmospheric
precipitation, glacial meltwater, rock weathering and evapo-crystallization processes and is also inter-
vened by human activities (Pant et al. 2018; Yang et al. 2019). Like many other high altitude lakes, the
lakes on TP are generally characterized by low biodiversity and simple ecosystem structure (Kong
et al. 2017; Ren et al. 2017). In addition, a broad satellite observation on the water clarity changes
of 64 large alpine lakes also indicated that the lakes on TP are relatively clear (especially those in
the southern and northeastern TP), with a long-term mean Zsd of 4.4 m (Pi et al. 2020).

For the current Chl-a analysis, 82 lakes were selected based on the image quality (i.e. relatively
lesser cloud cover and less missing Chl-a values on satellite retrievals) and lake size (larger than
50 km2). Among these selected lakes, Qinghai Lake (4232 km2) and Keluke Lake (54 km2) are
the largest lake and smallest lake, respectively. Together, they account for around 65% of the
total lake area of the TP. Detailed information about the selected lakes is presented in Table A1.
The distribution of those lakes as well as whether they are glacier-fed lakes is presented in Figure
1a (Wang and Dou 1998), along with the percentage of lakes that fall into each size group (50–
100 km2, >500 km2, and so on) is shown in Figure 1b.

2.2. Satellite-derived Chl-a concentrations

Level-2 ocean color images from MODIS Aqua, MODSI Terra and VIIRS were obtained from the
NASA Ocean Color Web Archive (https://oceancolor.gsfc.nasa.gov/). MODIS Aqua data were used
to examine the Chl-a trends for the TP lakes, and Chl-a estimates from both MODIS Terra and
VIIRS were used to partially evaluate the fidelity of the derived trends from Aqua. All level-2
files from MODIS Aqua and Terra in the 2003–2017 period were downloaded, while data from
VIIRS were not available until 2012. The numbers of images available for MODIS Aqua, MODIS
Terra and VIIRS are 14,447, 15,188 and 6091, respectively. Note that the data between June and
October during each year was used because many lakes were covered by ice during the other
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months. The 1-km-resolution data were kept with the same cylindrical equidistance projection
through the SeaDAS software (version 7.5). Quality control flags were applied for the images to
reduce the potential errors caused by unfavorable observation conditions (i.e. clouds and straylight
in this study), and data that failed to satisfy the quality control criterion of NASA (https://
oceancolor.gsfc.nasa.gov/atbd/ocl2flags/) were discarded. Note that a 3 × 3 pixel straylight mask
was conducted in replacement of the default 7 × 5 pixel window to improve data coverage for
these lakes, as such a process has demonstrated limited impacts on data quality (Hu et al. 2019).

The Chl-a concentrations in each level 2 file were the default Chl-a product, which is estimated
with the combination of the color index-based (CI-based) algorithm (Hu, Lee, and Franz 2012) for
Chl-a poor waters (with Chl-a values <0.15 mg m−3) and the blue-to-green band ratio algorithm
(OCx-based) for Chl-a rich waters (O’Reilly et al. 1998). For lakes in the TP, the OCx algorithm
is apparently more applicable because the Chl-a values are expected to be higher than
0.3 mg m−3, as demonstrated by the in situ collected Chl-a datasets from the National Tibetan Pla-
teau Data Center (http://data.tpdc.ac.cn).

For each image, all valid Chl-a pixels within the lake boundary were averaged to represent the
Chl-a values of that lake. In the next step, the monthly and annual mean Chl-a values for the period
of 2003–2017 were estimated for all studied lakes in the TP. For each lake, the long-term mean Chl-
a was calculated as the average of all annual mean Chl-a values during the study period. Note that,
for otherwise specified, the annual mean of the current study is actually the mean Chl-a value
between June and October due to the absence of data caused by ice cover in other months. Linear
regression for each lake was also performed to calculate the averaged changing rate (in percentage/
year, or % yr−1, denoted as the slope of the Chl-a change trend divided by the long-termmean Chl-a
values) and the associated statistical significance based on analysis of variance (ANOVA) Table. To
assess the validity of satellite-derived Chl-a, the correction of determination (R2), root mean square
error (RMSE), and mean relative error (MRE) were measured for comparisons between MODIS
Aqua and MODIS Terra/VIIRS.

Figure 1. (a) Locations of the 82 examined lakes on the TP. Lakes annotated with red colors receive water from glacial melt, while
lakes marked by blue colors do not. (b) The histogram shows the number of lakes characterized by size.
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2.3. Selection of environmental driving factors

To identify the potential impacts of environmental factors on the interannual variations in Chl-a,
several key environmental variables were selected for correlation analysis, including lake size, wind
speed, ICD, LSWT and surface runoff. Many studies have investigated the impact of wind speed on
Chl-a, suggesting that wind regulates nutrient mixing, facilitates water column turbulence and
exerts a significant impact on water stratification, resulting in variations in both the magnitude
and distribution (horizontally and vertically, respectively) of Chl-a concentrations (Hodges et al.
2000; Carranza and Gille 2015; Liu, Feng, and Wang 2019). Ice cover also represents an important
driving factor. On the one hand, ice cover plays a critical role in sediment resuspension and thus
affects the nutrient concentration suspended by turbulent mixing (Eadie et al. 2002). On the
other hand, ice cover on lakes limits light accessibility, which is of vital significance for photosyn-
thesis function and thus the growth of phytoplankton (Horvat et al. 2017). The impacts of LSWT
take effect both through directly regulating the growth of phytoplankton and indirectly controlling
the water stratification and the mixing of nutrients in vertical direction (Kalff 2002; Carey et al.
2012; Liu, Feng, and Wang 2019). Surface runoff replenishes lakes with water and nutrients, exert-
ing profound impacts on phytoplankton growth and lake productivity (Liu, Feng, and Wang 2019).
Since many lakes in the TP region have experienced extensive dynamics in their inundation areas,
the possible effects induced by such variations should not be neglected. The datasets for those
environmental factors are described below. Note that due to data limitation, only data between
2003 and 2015 were acquired and used for analysis.

Annual inundation areas for each lake were obtained with Landsat images, where data ranged
from Thematic Mapper (TM) to Enhanced Thematic Mapper Plus (ETM+) to Operational Land
Image (OLI). All available Landsat images between 2003 and 2015 were obtained from the USGS
website (http://glovis.usgs.gov/). Only cloud-free images during the wet season (April to Septem-
ber) were selected to represent the annual situation of that year. The Normalized Difference
Water Index (NDWI) (McFEETERS 1996) with image-specific optimal thresholds was used to
determine the inundation of the lakes.

Wind speed was obtained from the China Meteorological Forcing Dataset (CMFD) (Yang et al.
2010; He et al. 2020). The performance of CMFD was considered of high quality across the China
and has also been widely applied in TP region (Qiao and Zhu 2017; Qi, Liu, and Chen 2018a; Yang
et al. 2020). CMFD is a composite dataset merged by several existing datasets: Princeton forcing
data (Sheffield, Goteti, and Wood 2006), Global Land Data Assimilation System (GLDAS) data
(Rodell et al. 2004), Global Energy and Water cycle Experiment-Surface Radiation Budget
(GEWEX-SRB) radiation data (https://gewex-srb.larc.nasa.gov/), Tropical Rainfall Measuring Mis-
sion (TRMM) precipitation data (Huffman et al. 2007) and ChinaMeteorological Administration in
situ observation data. CMFD provides data with a temporal resolution of 3h and a spatial resolution
of 0.1° × 0.1°. In our study, 3-hour data were combined to generate data on a daily scale.

Dataset regarding the surface water temperature for selected lakes from 2003 to 2015 were
acquired from Wan et al., which was specially designed for TP region and has been validated by
in-situ measurements (Wan et al. 2017b). The dataset was derived from the MODIS Land Surface
Temperature (LST) level 3 8-day composite product (MOD11A2) with a nominal spatial resolution
of 1 km. MOD11A2 is the averaged version of the daily MODIS LST product MOD11A1 over 8
days, which results in 46 8-day images for each year. A series of processing procedures was con-
ducted for extraction of LSWT, and for detailed information, please refer to the original paper
(Wan et al. 2017b). In our study, daytime LSWT was used to explore the association between temp-
erature and Chl-a.

The surface runoff data used were simulated through the Water and Energy Budget-based Dis-
tributed biosphere Hydrological Model (WEB-DHM) (Qi, Liu, and Chen 2018b; Qi et al. 2020).
WEB-DHM (Wang et al. 2009) is a distributed hydrological model that couples a biosphere scheme
(SiB2) (Sellers et al. 1996) with a geomorphology-based hydrological model (GBHM) (Yang et al.

718 X. PI ET AL.

http://glovis.usgs.gov/
https://gewex-srb.larc.nasa.gov/


2001). The WEB-DHM model was well calibrated and validated using observed runoff in the large
river basins in the southern and eastern TP and has demonstrated its capacity for simulating runoff
in the TP (Qi, Liu, and Chen 2018b; Qi et al. 2020). The modeled daily scale surface runoff data at a
0.1° × 0.1° resolution was used for the statistical analysis. Note that the uncertainty of runoff simu-
lation on some region such as the Inner TP may be larger, as in-situ observations such as precipi-
tation, wind speed, solar radiation, air pressure and air temperature were more sparse on this
region, which was a constraint on all model simulations.

Dataset regarding lake ice cover was acquired from Cai et al., which was constructed based on
MODIS Daily Snow Cover Products with a spatial resolution of 500 m (Cai et al. 2019). Specifically,
two types of MODIS Daily Snow Cover Products were used, including MOD10A1 obtained from
the Terra satellite and MYD10A1 obtained from the Aqua satellite. Due to the relatively high cloud
cover (with an annual mean of >40%) (Yu et al. 2015), a cloud removal process was conducted to
reduce this impact on the accuracy of water cover classification (Cai et al. 2019). For extraction of
the ice cover period, a method proposed by Kropáček et al. was applied (Kropáček et al. 2013). To
exclude the impact of this disturbing noise, 5% and 95% of ice cover were used as thresholds to
indicate whether the lake completely broke up or froze to replace the values of 0% and 100%,
respectively (Kropáček et al. 2013). Then, the ICD was calculated as the end date of the break-
ing-up date minus the start date of the freezing-up period.

Similar to Chl-a, the annual mean values for the environmental driving factors listed above were
calculated for all the selected lakes during the period of 2003–2015. Then, correlation analyses
between lake Chl-a and each of the environmental driving factors was conducted and evaluated
using the Pearson correlation coefficient (r) as well as the corresponding significance for
correlation.

3. Results

3.1. Interannual variations in Chl-a

The annual mean Chl-a values of the studied lakes in the period of 2003–2017 are presented in
Figure 2 and Table A1. The long-term mean Chl-a of the studied lakes ranged from 0.3 to
23.0 mg m−3, with a mean (±standard error) of 3.3 ± 4.3 mg m−3. Clearly, the majority (55/
82) of selected lakes fitted the criteria of oligotrophic trophic class in terms of the Chl-a values
(<2.6 mg m−3), according to the Carlson’s trophic states classification scheme (i.e. oligotrophic:
Chl-a <2.6 mg m−3; mesotrophic: 2.6 mg m−3 <Chl-a <20 mg m−3; and eutrophic 20 mg m−3 <
Chl-a <55 mg m−3) (Carlson 2007). Others were all belonged to the mesotrophic level except for
Ngangze Co, Keluke Lake and Ma’erxia Co, which were identified to have long-term mean Chl-a
values close to or larger than 20.0 mg m−3. A clear spatial pattern is revealed is Figure 2. It can be
seen that the majority of lakes with higher Chl-a values were located in the eastern and southern
parts of the inner TP basin, as well as the northeastern TP region. In contrast, only a few lakes
with Chl-a values above the mean level (i.e. 3.3 mg m−3) could be found in the western TP
region.

The distribution of the Chl-a change rate for the examined lakes is presented in Figure 3 and the
exact value for each studied lake can be found in Table A1. It can be clearly seen that the majority
(69/82) of lakes exhibited an absolute change trend of <4.0% yr−1. Trend analysis indicated that
45.2% (19/42) of those lakes demonstrated a significant trend with p-values of <0.1, and 35.7%
(15/42) of them had p-values of <0.05. Similarly, for lakes showing increasing trends, the percen-
tages that experienced significant variation levels of 0.1 and 0.05 were 50.0% (20/40) and 37.5%
(15/40), respectively. In general, the lakes demonstrating decreasing trends and the increasing
trends were comparable in number but diverse in distribution pattern. While lakes with (signifi-
cant) decreasing trends were concentrated in the southeastern part of the inner TP basin, lakes
with (significant) increasing trends were distributed more evenly across the whole region, with a
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Figure 2. (a) Distributions of long-term annual mean Chl-a of the examined lakes covering the TP over the period of 2003–2017.
(b) The number of lakes characterized by different annual mean Chl-a levels.

Figure 3. (a) Distributions of the annual Chl-a change rate for the examined lakes covering the TP for the period of 2003–2017.
Lakes with a statistically significant change rate at a significance level of 0.05 were annotated with bold versions of ‘↑’ and ‘↓’,
while those at a significance level of 0.1 but not at a significance level of 0.05 were annotated with light versions of ‘↑’ and ‘↓’. (b)
The number of lakes characterized by different Chl-a change rate levels.
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moderate aggregation in the northwestern inner TP basin as well as the eastern part of the entire TP
region.

3.2. Long-term monthly means and variations in Chl-a

Figure 4 demonstrated the monthly mean Chl-a of the entire region from June to October, as well as
the monthly coefficient of variance (CV, a result of the division of the mean by standard deviation)
for the period of 2003–2017. The monthly median Chl-a for the studied lakes was generally close to
one another (1.8–2.0 mg m−3). However, the seasonal discrepancy did exist in which August had
the lowest number of lakes with Chl-a values of <1.0 mg m−3 and the highest number of lakes
with Chl-a values of >10.0 mg m−3, while the situation in June and October was exactly the oppo-
site. Despite of the seasonal discrepancy, the spatial pattern of monthly Chl-a in the overall region
was consistent with the annual results stated above. In addition, the CV map (Figure 4) showed that
lakes located in the western inner TP basin had higher monthly variations than the eastern TP inner

Figure 4. (a-e) Distributions of long-term monthly mean Chl-a (a-e represent June-October, respectively) in the examined lakes
covering the TP for the period of 2003–2017. (f) The CV between the long-term monthly mean Chl-a in panels a-e.
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basin, where more than half of the lakes in the western inner TP basin had CV values >20%, while
CV values of the majority of lakes in the eastern inner TP basin were <20%.

Figure 5 further reveals the monthly shift for each studied lake across the entire TP region. It is
clearly presented that the lakes that had the lowest Chl-a in September and October were aggregated
in the northwestern and northeastern parts of the TP region, respectively. In contrast, the south TP
region was occupied by lakes with the lowest Chl-a observed from June to August. Statistically,
approximately two-thirds of lakes reached minimum Chl-a levels in June and October. A different
picture can be revealed when considering the spatial distribution of the months in which lakes pre-
sented the highest monthly Chl-a levels. In general, the number of lakes that had the highest Chl-a
in August was the largest, accounting for 30.5% (25/82) of the total lakes. In terms of the spatial
pattern, while the majority of lakes with the highest Chl-a in June and July were concentrated in
the eastern (especially northeastern) inner TP basin, the lakes demonstrating the highest Chl-a
in September and October were primarily located in the southern and northwestern inner TP
basin. For lakes showing the highest Chl-a in August, their distributions were relatively scattered
across the whole region, although a higher proportion can be observed in the south.

In summary, the monthly climatologies (i.e. long term monthly mean) of lakes in the TP region
are revealed as follows: In June and July, when the Chl-a values in more than 60% of the studied
lakes located in the southern TP began to increase from the bottom, the lakes in the northwestern
inner TP basin had already reached their maximum levels throughout the examined months. In
August, more than 30% of lakes spreading across the whole region reached the maximum. In con-
trast, only a few lakes located in the southeastern TP inner basin exhibited the Chl-a minima during
this month. In September and October, a large proportion of lakes in the southern and northwes-
tern inner TP basin show large Chl-a values, while many lakes in the northeastern and northwestern
inner TP basin demonstrated minimum Chl-a concentrations accordingly.

3.3. Correlations with lake sizes and four environmental factors

Analysis showed that the Chl-a of 35.4% (29/82) of studied lakes were strongly correlated with lake
area, indicating that profound alternations in aquatic environments would occur during the process
of expansion or shrinkage of lakes. Indeed, the dynamics of lakes in area/volume is a combined
effect of various environmental factors, which would simultaneously influence the aquatic environ-
ment. However, the variations in Chl-a may not be fully explained by the expansion/shrinkage of
lakes alone. Other environmental factors may also play essential roles. Figure 6 demonstrates the
percentages of lakes that exhibited significant correlations between Chl-a and the other four
environmental factors. The corresponding correlation coefficients for each lake are displayed in
Table A1. Except for lake size, the Chl-a value of 20.7% (17/82) of lakes was significantly correlated
with wind speed, while the values for LSWT, ICD and surface runoff were 18.3% (15/82), 23.1% (9/
39) and 23.2% (19/82), respectively, with both positive and negative correlations being identified.
Indeed, the impacts of those environmental factors on lake Chl-a are complex and may vary across
different lakes. For example, wind strongly impacts the mixing of nutrients and water column tur-
bulence. A previous study showed that a high wind speed facilitates a high Chl-a concentration, in a
way that high wind deepened the mixed layer, leading to a greater entrainment of deep nutrients
and Chl-a being brought to the surface (Kahru et al. 2010). However, high wind speeds were
also found to not favor water stability and thus disrupted the accumulation of phytoplankton, indi-
cating a negative impact on Chl-a (Cao et al. 2006; Zhang et al. 2012). Such a diversity of impacts
may also exist in other environmental factors. It is acknowledged that mechanism-based modeling
on lacustrine Chl-a dynamics of this region would better facilitate our understanding of the specific
roles these environmental factors play in regulating lake Chl-a.

In summary, lake size and other environmental factors were found to be important factors affect-
ing Chl-a. Statistically, 70% of the variations in lake Chl-a were significantly associated with at least
one of the five environmental drivers studied above. Although the analysis conducted above could
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only explain part of the Chl-a variations, the analysis indicates relative importance of the influen-
cing factors. Particularly, the expansion or shrinkage of lakes in this region has played an important
role in the variations of Chl-a.

Figure 5. The months in which lakes exhibit the (a) lowest mean Ch-a and (b) highest mean Chl-a for the period of 2003–2017, as
well as the corresponding histograms of the number of lakes in different months.
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4. Discussion

4.1. Potential impacts from other forces

Except for the environmental factors discussed above, there are some environmental factors that are
hard to quantify (owing to a lack of data) but may also exert significant influences on the dynamics
of lake Chl-a, including salinity, glacial melt, nutrients and other possible driving factors.

Glacial melt introduces cold water along with nutrients, providing the minerals required for
algae growth while cooling the lake surface temperature and reducing light availability for phyto-
plankton simultaneously. To investigate the impact of glacial melting, the studied lakes were por-
tioned into two groups (status of glaciation for each lake is presented in Table A1), with one
containing glaciated lakes and the other consisting of non-glaciated lakes (Figure 7a, c). Consider-
ing the long-term annual Chl-a mean, a significant difference (p = 0.033) could be identified among
the two groups based on t-test. Compared with groups that were made up of non-glaciated lakes,
lakes fed by glaciers had lower mean (5.4 mg m−3 for non-glaciated lakes and 2.8 mg m−3 for gla-
ciated lakes) and median (3.3 mg m−3 for non-glaciated lakes and 1.7 mg m−3 for glaciated lakes)
Chl-a values. In terms of the change trend, the non-glaciated lakes exhibited a larger variations in
both increasing rate and decreasing rate than the glaciated lakes while no significant difference
between the two groups was identified. Overall, the results suggested a potential negative impact
of glacier meltwater on Chl-a concentrations for lakes in the TP region, from the perspectives of
long-term annual mean values. This result may be achieved mainly through the cooling effects
of glacier meltwater on phytoplankton living in lakes.

To further investigate the contribution of glacier meltwater to the fluctuation of lake Chl-a, sev-
eral pairs of lakes in close proximity to each other are displayed for comparison (see Figure 8). The
annual changes in Chl-a for Nam Co and Ringco Kongma were first compared, with the former
receiving glacier meltwater and the latter not receiving meltwater. Overall, Nam Co (glacier-fed)
experienced a significantly decreasing trend during the study period at a rate of −3.8% yr−1. In con-
trast, Ringco Kongma (non-glacier-fed) experienced a significantly increasing trend during the
same period at a rate of 4.8% yr−1. Since the two lakes are geographically close to each other
(with a distance of ∼60 km), the climatic influence on these lakes can be minimized. In this case,
the difference in Chl-a values between the lakes may primarily be induced by glacier meltwater
(Song et al. 2014b). A similar situation could be observed for Lake Pung Co (glacier-fed) and
Dung Co (non-glacier-fed). While the Chl-a values of the former lake decreased, an increasing
trend could be observed for the latter, suggesting a potential negative impact of glaciers on lake
Chl-a. For comparison, Yamzho Yumco and Puma Yumco are a pair of lakes that are not only

Figure 6. The percentages of lakes with significant correlations (blue for p < 0.05 and red for p < 0.1) between different environ-
mental factors and annual mean Chl-a.
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located in spatially adjacent areas but also receive meltwater from glaciers. These two lakes exhib-
ited comparable mean Chl-a values as well as similar decreasing trends, which was also true for Lake
Mapam Yumco and Langa Co. The analysis above further confirmed the important role of glacier
meltwater in modulating lake Chl-a. For the lakes in the TP region, the glacier meltwater primarily
lowers the lake Chl-a levels.

Another potentially influential environmental factor is salinity. Salinity is used to describe the
content of dissolved inorganic salt in water bodies. Saline water may also exert an influence on
Chl-a concentrations through possible regulation of cell division and algae development (Ding
et al. 2013; Desmit, Ruddick, and Lacroix 2015; Lin et al. 2017). To investigate the actual impact
of salinity on the lakes in the TP, group difference analyses were conducted (Figure 7b, 7d).
Note that the status of salinity for each lake is presented in Table A1. The annual mean Chl-a
was 4.0 ± 4.9 mg m−3 for fresh lakes and 3.8 ± 4.3 mg m−3 for saline lakes, which was a minor differ-
ence. Statistically nonsignificant group difference results based on a t-test in view of either long-
term annual mean values (p = 0.848) or long-term trends (p = 0.349 for an increasing trend and
p = 0.103 for a decreasing trend) further confirmed the limited impact of salinity on lake Chl-a
in the TP.

In terms of nutrient, previous studies have revealed nutrient (especially for nitrogen and phos-
phorous) as one of the most important factors because of their evident impact on facilitating phy-
toplankton growth (Warner and Lesht 2015; Zhang et al. 2016; Rowe et al. 2017; Huang et al. 2019).
However, due to the data limitation on nutrient loads discharged in lakes, the direct impact of nutri-
ents cannot be assessed in this study. In this case, surface runoff and glacier were chosen to partially
reflect the potential impact of nutrients, as surface runoff and glacier meltwater are the most impor-
tant nutrient inputs for many lakes in the TP region.

In addition, solar radiation, water turbidity and hydrological conditions including water level
and water residence time are also believed to be potential factors regulating lake Chl-a (Wu et al.

Figure 7. Boxplot of the impact of (a) glacial melt and (b) salinity on Chl-a in the studied lakes.
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2013; Feng et al. 2014; Wang et al. 2015; Yang et al. 2016; Cha et al. 2017; Blauw et al. 2018; Liu,
Feng, and Wang 2019). In general, these factors take effect through either direct or indirect regu-
lations on the availability of light or nutrients that are indispensable for phytoplankton growth. In
addition, there may be other unknown factors that play significant roles; however, the underlying
mechanism remains to be explored.

4.2. Validity and uncertainty of remotely sensed Chl-a

Due to the harsh environment, as well as the limited accessibility for cruise surveys, in situ measure-
ments of Chl-a throughout lakes in the TP are rare. To our knowledge, an intensive field obser-
vation was conducted in 2017, and the relevant dataset was available in the National Tibetan
Plateau Data Center (http://data.tpdc.ac.cn). The water quality dataset contained vertical profiles
of ∼30 observation points in lakes across the TP. However, due to the presence of clouds and
other nonoptimal observational conditions, daily valid observational coverage is unsatisfactory,
leading to limited match-ups between in situ data and satellite-derived Chl-a. In practice, only
10 valid match-ups with day gaps ≤3 days were extracted successfully from the 30 in situ data
samples, which was inadequate for model development and validation. In fact, the function of
the in situ data in most cases was an adjustment of the empirical coefficients of the Chl-a algorithm,

Figure 8. Interannual variation of Chl-a and trend (% yr−1) for the period of 2003–2017 for several pairs of lakes that are in close
proximity. Lake names and long term annual mean Chl-a values (mg m−3) are presented in the upper left corner, while change
rates and corresponding p-values are displayed in the bottom right corner.
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which had little impact on the calculated long-term Chl-a trend. Such conclusion has been
confirmed by Lewis (Lewis, van Dijken, and Arrigo 2020) in the study of Chl-a variations in Arctic
Ocean where the standard empirical algorithms adopted by NASA showed consistent trend with
their tuned algorithm. In addition, our validation results showed that the R2 was 0.79 and a signifi-
cant correlation (p < 0.001 through the Spearman’s rank correlation, which are widely used to
describe nonlinear correlation relationship) can be identified between in-situ Chl-a and satellite-
derived Chl-a. Since the number of match-up was not adequate and the temporal differences
between satellite and in situ observations are up to 3 days, we did not tune the empirical coefficients
of the standard NASA algorithm. Nevertheless, the results supported our opinion that the trend
captured by the Chl-a product were consistent with the ‘true value’. Therefore, since the major
objective of this study is to examine the variations of lake Chl-a rather than the exact Chl-a values,
the results demonstrated here would not be strongly influenced by the lack of sufficient in situ data
to conduct re-calibration and validation of the satellite Chl-a retrieving algorithm.

On the other hand, the capability of Aqua-derived Chl-a observations in capturing Chl-a change
trend can also be partially assessed through a comparison with similar satellite products, including
MODIS Terra and VIIRS. Because data from VIIRS are not available until 2012, long-term annual
mean Chl-a in the period of 2003–2017 were applied for comparison of MODIS Aqua and Terra,
while the 2012–2017 long-term annual mean data were used for comparison of MODIS Aqua and
VIIRS. The processing procedures were the same for all satellites, and the results are shown in
Figure 9. The R2 was 0.99 for both correlations in terms of long-term annual mean (Figure 9a), indi-
cating high consistency between the Chl-a derived from the three satellites. The comparison results
in the Chl-a trend (Figure 9b) further confirmed the high level of agreement among the three
instruments, with R2 = 0.89 and 0.87, respectively. In addition, a detailed examination for each
lake showed that the annual mean Chl-a of 96.3% in the studied lakes exhibited a significant cor-
relation between MODIS Aqua and Terra, while the percentage is 81.7% in terms of MODIS Aqua
and VIIRS. In fact, the percentage for the latter may be higher in the future once longer time series
of data for VIIRS are available for correlation analysis. Although Chl-a values derived fromMODIS
Terra were consistently larger than those from MODIS Aqua and Chl-a derived from VIIRS exhib-
ited systematically lower values, the uncertainties among the three satellites, represented either as
RMSE or MRE, were moderate. In general, Chl-a observed from MODIS Aqua exhibited higher

Figure 9. Comparison of (a) long-term annual mean Chl-a and (b) long-term Chl-a trend of 82 examined lakes derived from
MODIS Aqua with MODIS Terra and VIIRS.
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proximity with those obtained from Terra (RMSE = 0.65 mg m−3, MRE = 5.68%) than those from
VIIRS (RMSE = 0.94 mg m−3, MRE = 20.89%). This finding is most likely because the instrument
and algorithmic designs of Aqua and Terra are similar except for the 3 h temporal differences; how-
ever, all three types of differences exist among MODIS Aqua and VIIRS.

In summary, the Chl-a derived from the three satellites exhibited high consistency for most
studied lakes (with an average R2 = 0.84) in the TP, which confirmed the long-term trend of
Chl-a variations in this region. Since the trend of the dynamics and the broad picture rather
than the absolute values of lake Chl-a are of more importance in improving our understanding
of Chl-a distribution and lake ecology in the TP region, it is reasonable to conclude that the remo-
tely sensed results in this study were fairly reliable and valuable.

Several uncertainty sources that may exert impacts on Chl-a estimations can be identified in this
study. The first type of uncertainty is closely related to data gaps under unfavorable measurement
conditions. Under conditions of cloud cover, straylight, sun glint and imperfect solar/viewing
angles, the validity of Chl-a retrievals are profoundly diminished and typically discarded according
to corresponding data quality flags. In practice, a 7 × 5 pixel straylight mask is implemented for data
exclusion in SeaDAS. However, a large quantity of valid data would also be screened out during this
process, resulting in a reduction in valid coverage as well as an increase in uncertainty because less
valid data can be used for zonal statistics (Feng and Hu 2015). Such a problem can be partially
addressed by applying Feng and Hu’s data recovery method, where a 3 × 3, rather than a standard
7 × 5, pixel window was implemented for low-quality data screening, leading to an average of
approximately 40% increases in valid observations globally (Hu et al. 2019). This method has
been proven to be efficient in recovering valid data close to nonoptimal observational conditions
and hence reducing product uncertainty without compromising data quality (Feng and Hu 2016;
Hu et al. 2019).

Another type of uncertainty may be induced by residual errors from atmospheric correction
(AC) algorithms. Indeed, it is ultimately difficult to remove the effects of aerosols in AC procedures
due to the distinct variations in aerosol properties; hence, the residual errors introduced by aerosols
are embedded in current AC methods (Liu et al. 2015; Pahlevan et al. 2017; Liu et al. 2019). How-
ever, as the TP is characterized by nominal human activities, such an impact may be limited (Feng
et al. 2019). On the other hand, the standard AC approach (Gordon and Wang 1994) is established
with the assumption that the water-leaving radiance (Lw) in the two near-infrared (NIR) bands is
close to zero, which works well for most open oceans (McClain 2009). As the turbidity increases, it
is argued that the water signal in the NIR bands may no longer be zero, and the shortwave infrared
(SWIR) bands are recommended (Wang and Shi 2007) for AC instead because the Lw (SWIR) in
this case can be zero (due to high absorption in SWIR bands). However, using Chesapeake Bay as an
example, Werdell et al. discovered that extra errors in the derivation of Lw(λ) would be introduced
into the SWIR-based AC owing to poor signal-to-noise (SNR) ratios inherent in the SWIR bands of
MODIS Aqua (Werdell, Franz, and Bailey 2010). Such deficiency in the design of MODIS Aqua
instruments restricted the applicability of SWIR-based AC. In addition, many lakes in the TP are
relatively clearer than Chesapeake Bay, leading to more satisfactory results in the NIR-based AC.
Therefore, although potential uncertainties may exist, the NIR-based standard AC was used in
this study. Moreover, the look-up tables for AC embedded in SeaDAS were based on sea level,
while the current study area has an altitude of >4000 m that may also increase the uncertainties
in AC processes. However, the accuracy of this currently used dataset has been confirmed through
comparison of MODIS Rrs corrected in the AC process and in situ samplings in Qinghai Lake con-
ducted by Feng et al (Feng et al. 2019). Both the magnitude and spectral shape of MODIS Rrs are
observed to be highly consistent with the in situ measurements (see Figure 8 in [Feng et al. 2019]).

Other sources that may contribute to estimation uncertainties include the bottom reflectance as
well as the optical properties impacted by water constituents like colored dissolved organic matter
(CDOM). Bottom reflectance is often regarded as an essential contributor to the water-leaving radi-
ance for optically shallow inland waters, exerting negative impacts on the accuracies of bio-optical
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algorithms (Lee et al. 2001; Li et al. 2017). However, for optically deep inland waters, the light
reflected by bottom sediments is significantly attenuated by the water column as well as its constitu-
ents and is expected to exert a negligible impact on the total water-leaving signals at a certain depth
(Dogliotti et al. 2015). Since many examined lakes in the TP have an average depths of tens of
meters, the uncertainty caused by bottom reflectance, if present, would be limited under these cir-
cumstances (Wang and Dou 1998). For the optical disturbance of nonliving water constituents, it is
acknowledged that those substances may induce variant bias among different lakes in terms of the
estimation of absolute Chl-a values. However, similar to the uncertainty introduced by AC, it is
believed that such an influence would be less significant in the evaluation of long-term Chl-a fluctu-
ations across oceans and comparably in inland waters less impacted by human activities across the
TP region (Hu et al. 2019).

4.3. Future implications

The results of this study provide a baseline for studying the biogeochemical characteristics of lakes
in the TP and have significant implications for understanding the responses of lake Chl-a to future
climate changes. Given the current climate variations and future trends, majority of lakes in this
region have experienced rapid expansions since the 2000s and will continue to expand for a certain
period (Sun et al. 2018b). These changes would in turn result in considerable alterations in the
aquatic environment. Functioning as the Asian Water Tower, water security in the TP is critical
and thus drawing increasing attention and scientific investment from society and governments.
In the future, it is expected that denser in situ observation networks will be developed in this region,
along with the initiation of new satellites with higher spatial/temporal/spectral resolutions and
mature cross-sensor calibrations among different instruments for multiple data infusion. Under
such conditions, a more detailed understanding of the biogeochemical properties of lakes will be
achieved, which is of great significance in addressing the potential risks induced by variations in
inland water quality and maintaining water security in this region.

5. Conclusion

In this study, the interannual and monthly changes of Chl-a in various lakes across the entire TP
region was quantified using multiple ocean color products. A total of 82 lakes were investigated
in the period of 2003–2017. The derived Chl-a from MODIS Aqua exhibited high consistency
with the values retrieved from MODIS Terra and VIIRS, indicating the validity of the results in
revealing spatiotemporal variations and change trend in lake Chl-a across the TP. A clear spatial
pattern in the long-term annual mean Chl-a can be observed, where lakes with high Chl-a values
were primarily distributed in the eastern and southern inner TP basin together with the northeast-
ern part of the whole TP region. In term of long-term trends, nearly half of the lakes were observed
to experience a significant change trend during the study period. Overall, lakes with (significantly)
decreasing trends were primarily located in the southeastern part of the inner TP basin, while the
northwestern inner TP basin and the eastern part of the entire TP region were mainly occupied by
lakes manifesting (significantly) increasing trends. Analysis of monthly mean values indicated a
higher monthly variation for lakes located in the western inner TP basin. Statistically, a large pro-
portion (approx. 65.9%) of the lakes represented the lowest Chl-a in June or October. In contrast,
the percentage of lakes presenting the highest Chl-a in August is the largest, accounting for 30.5% of
the total numbers with a scatter distribution across the whole region.

The Chl-a values in 35.4% of the lakes studied were strongly correlated with the dynamics of lake
area. Another four environmental factor, wind speed, ICD, LSWT and surface runoff were also
found contribute to the changes of Chl-a in lakes. In addition, the Chl-a levels could be lowered
by glacier meltwater while there was no significant difference in Chl-a values between saline and
fresh lakes. In summary, the influence of environmental factors on Chl-a is complicated and
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may behave differently for individual lakes. Further research focusing on the specific role of these
factors as well as other unexplored factors requires mechanism-based modeling equipped with
more comprehensive datasets. Nevertheless, this study demonstrates the applicability of satellite
remote sensing in retrieving regional-scale Chl-a data, and the dataset is valuable for lake ecology
monitoring and water security in this unique region.
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