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Terrestrial water storage (TWS)—the sum of continental water 
stored in canopies, snow and ice, rivers, lakes and reservoirs, 
wetlands, soil and groundwater—is a critical component of 

the global water and energy budget. It plays key roles in determin-
ing water resource availability1 and modulating water flux inter-
actions among various Earth system components2. Further, TWS 
changes are inherently linked to droughts2–6, floods7 and global sea 
level change8–11. Despite such importance, global TWS remains less 
studied relative to hydrological fluxes (for example, river discharge, 
evapotranspiration and groundwater flow) owing to the lack of 
large-scale observations and challenges in explicitly resolving all 
TWS components in hydrological modelling12. This generally holds 
true for historical analyses; crucially, no study has to date examined 
the potential impacts of future climate change on global TWS.

Recent modelling advancements13 have improved the repre-
sentation of TWS in global hydrological models14,15 (GHMs) and 
land surface models12 (LSMs). The Gravity Recovery and Climate 
Experiment (GRACE) satellite mission provided added opportu-
nities to improve and validate TWS simulations in these models. 
GRACE TWS data and model simulations, often in combination, 
have been used for wide-ranging applications including the assess-
ment of water resources and impacts of human activities on the 

water cycle14,16, quantifying aquifer depletion12,14,17–19, monitor-
ing drought3–6,20 and assessing flood potential7. These studies have 
advanced the understanding of global TWS systems that are con-
tinually changing under natural hydroclimatic variability and 
accelerating land and water management activities, but the focus 
has been on historical variabilities in TWS. Further, future pro-
jections from general circulation models (GCMs) have been used 
to quantify climate change impacts on hydrological fluxes21–23 and 
storages, but the projections of storages are limited to a subset of 
TWS components—specifically soil moisture and snow24–26—
owing to an incomplete representation of TWS components in the 
GCMs. Lack of explicit parameterizations for surface water and 
groundwater processes and use of shallow rooting depth in GCMs  
have particularly hindered comprehensive TWS projections using 
GCM simulations25.

As TWS represents the total water availability on land, it also 
provides an integrated measure of the overall drought condition 
in a region5,6. Drought—a slow-evolving phenomenon—is among 
the costliest natural disasters27, directly affecting water resources, 
agriculture, socioeconomic development and ecosystem health 
and often linked with armed conflicts28. Substantial literature exists  
on the study of droughts using indices such as the standardized  
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precipitation index (SPI)29, Palmer drought severity index30, soil 
moisture drought index (SMI)31,32 and standardized runoff index 
(SRI)33. These conventional indices have been used in monitoring 
and projecting32,34 meteorological, agricultural and hydrological 
droughts35. Recently, a new drought index, the TWS drought sever-
ity index (TWS-DSI5), has been employed to examine droughts36,37 
in relation to the vertically integrated water storage as opposed 
to the individual storages or fluxes used in conventional indices. 
Previous studies5,36,37 have demonstrated that the TWS-DSI cor-
relates with the conventional indices in regions with long-term 
water storage change but provides an integrated measure, especially 
by capturing the effects of slow-responding terms (such as deep 
soil moisture and groundwater). Further, an increasing number 
of TWS-based drought studies have shown that combining TWS  
with traditional drought indices can provide crucial insights into 
drought impacts on hydrologic systems and vegetation growth6,36,37, 
because TWS directly responds to changes in precipitation, inte-
grates soil moisture and modulates runoff generation, hence 
encompassing the three aforementioned drought types36. However, 
as previous TWS studies have focused on historical droughts3–6,20, 
the changes in future droughts due to TWS change and variability 
remain unexamined.

Here we present a global assessment of the impacts of future 
climate change on TWS. We then examine the changes in drought 
severity and frequency resulting from climate-induced TWS change 
and variability by using the monthly TWS-DSI5 (see Methods and 
Supplementary Table 1). We use multi-model hydrological simula-
tions (27 ensemble members; Supplementary Table 2) from seven ter-
restrial hydrology models (LSMs and GHMs; Supplementary Table 
3) driven by atmospheric forcing from four GCMs (see Methods). 
Four cases of radiative forcing are considered for each GCM: the 
pre-industrial control (PIC), historical climate (HIST), and low 
(Representative Concentration Pathway (RCP)2.6) and medium–
high (RCP6.0) emission scenarios (see Methods). Simulations are 
conducted under the framework of the Inter-Sectoral Impact Model 

Intercomparison Project, phase 2b (ISIMIP2b38; https://www.isi-
mip.org/). We use the multi-model weighted mean of TWS anoma-
lies, calculated by weighting the ensemble members on the basis of 
their continent-level skill and independence scores39 (Methods and 
Extended Data Figs. 1 and 2).

TWS under climate change
By the mid- (2030–2059) and late (2070–2099) twenty-first cen-
tury, TWS is projected to substantially decline in the majority of 
the Southern Hemisphere, the conterminous United States, most of 
Europe and the Mediterranean, but increase in eastern Africa, south 
Asia and northern high latitudes, especially northern Asia (Fig. 1). 
The latitudinal mean (Fig. 1) indicates a larger decline in TWS in the 
Southern Hemisphere than in the Northern Hemisphere, driven pri-
marily by the decline in South America and Australia; this is in line 
with the projected precipitation changes (Extended Data Fig. 3) and 
could partly be due to a tendency of GCMs to overestimate27 drying 
trends in the Southern Hemisphere. The changes are evident by the 
mid-twenty-first century (under both RCPs; Fig. 1a,c), but the signal 
becomes stronger by the late twenty-first century, especially under 
RCP6.0 (Fig. 1d). Exceptions are found in parts of the conterminous 
United States, where TWS under RCP2.6 is projected to decline by 
mid-century but then increase slightly thereafter, owing to the pro-
jected increase in precipitation across most of the region (Extended 
Data Fig. 3) combined with a decrease in temperature from the mid- 
to the late twenty-first century (Extended Data Fig. 4). For RCP6.0, 
the projected changes (positive or negative) seen during mid-century 
become more pronounced later for most global regions. The differ-
ences between the two RCPs are, however, less obvious for both peri-
ods; an exception is Australia where the spatial extent of decline in 
TWS is projected to be smaller under RCP6.0 than under RCP2.6 
(Fig. 1), which aligns with wetter conditions projected in RCP6.0 
(Extended Data Fig. 3). Globally, TWS declines (increases) in 67% 
(33%) of land area (excluding Greenland, Antarctica and glaciers) by 
the late twenty-first century under RCP6.0.
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Fig. 1 | impact of climate change on TWS. a–d, The changes (multi-model weighted mean) in TWS, averaged for the mid- (2030–2059; a,c) and the late 
(2070–2099; b,d) twenty-first century under RCP2.6 (a,b) and RCP6.0 (c,d) relative to the average for the historical baseline period (1976–2005). The 
colour hues show the magnitude of change and the saturation indicates the agreement, among ensemble members, in the sign of change. The graph on 
the right of each panel shows the latitudinal mean.
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Overall, strong agreement is found across ensemble members 
in the sign of change (colour saturation in Fig. 1), indicating high 
confidence in the projections. For the late twenty-first century, an 
agreement of >50% can be seen in regions where a large decline or 
increase in TWS is projected; such agreement is >75% for regions 
such as the Amazon basin, southern Australia, the Mediterranean 
and the eastern United States (Fig. 1). This confidence is reinforced 
by the good agreement between the simulated TWS and GRACE data 
for the historical period (Extended Data Fig. 5 and Supplementary 
Figs. 1 and 2). The broad global spatial patterns and seasonal varia-
tions in TWS are accurately captured by the multi-model ensemble 
mean, although some differences are evident in the magnitude of the 
seasonal amplitude (Extended Data Fig. 5). Such differences stand 
out especially along major river channels (such as the Amazon, Nile 
and Mississippi) that are explicitly considered in the models but 
not resolved in the GRACE data. Further, the seasonal dynamics 
and interannual variability in the simulated TWS averaged over the 
major global river basins also agree reasonably well with the GRACE 
data (Supplementary Figs. 1 and 2), even though there are some dis-
agreements between the trend in GRACE and the multi-model mean 
(Supplementary Fig. 2), probably due to uncertainties in model 
parameterizations and potential biases in GCM-based forcing data.

uncertainty in TWS simulations
The inter-ensemble spread in TWS simulations is a combination 
of the uncertainties arising from climate forcing (driven by GCMs) 

and GHM/LSM parameterizations (see Methods). The GCM 
uncertainty (for a given RCP scenario) is larger than the GHM/
LSM uncertainty in most regions for the historical period and 
mid-twenty-first century (Fig. 2). However, the GHM/LSM uncer-
tainty increases substantially with time, leading to a higher GHM/
LSM uncertainty in most regions by the late twenty-first century, 
especially under RCP6.0. The GHM/LSM uncertainty range (Fig. 2,  
two right panels) for the historical period is relatively small, consis-
tent with good agreement of the seasonal amplitude and temporal 
variability of TWS with GRACE data (Extended Data Fig. 5 and 
Supplementary Figs. 1 and 2), which probably reflects the relative 
benefits of bias correction using observations for the same period.

regional variability and seasonality in TWS projections
The projected changes in the seasonal cycle of TWS vary spa-
tially among regions defined by the Intergovernmental Panel on 
Climate Change (IPCC) Special Report On Extremes (SREX) 
(Fig. 3 and Supplementary Fig. 3). The Amazon (AMZ), South 
Europe/Mediterranean (MED), North Australia (NAU), Northeast 
Brazil, South Australia/New Zealand (SAU), Southeastern South 
America (SSA) and West Africa (WAF) are projected to expe-
rience a decline in TWS across all seasons. In Alaska (ALA), 
a slight increase is observed during winter months—probably 
due to an increase in snow amount—but a discernible decline is 
seen during summer-to-autumn months, potentially caused by a 
warming-driven increase in evapotranspiration. In regions where 
TWS is expected to increase, changes in the seasonal cycle vary. 
While South Asia (SAS) could experience an increase in TWS 
across all seasons, increases are projected only during late autumn 
to early spring in North Asia (NAS); in East Africa (EAF), increases 
are expected in all seasons but only under RCP6.0. Many of the 
regions projected to experience an increase in TWS overlap with 
regions with higher future precipitation (Extended Data Fig. 3). We 
find the strong drying in MED to be consistent with the historically 
observed north (wet)–south (dry) contrast in pan-European river 
flows40, implying that the regions with historical drying trends are 
expected to become even drier under climate change. Our results 
for AMZ also corroborate the widely discussed drying and length-
ening of the dry season41, suggesting that the findings are robust for 
this region and add to the long-standing debate on the fate of the 
Amazonian rainforest under a warmer, drier future42.

Soil moisture has been used previously as an indicator of total 
TWS, on the basis that its variability constitutes a large portion of 
the total TWS variability26. We find that the component contribution 
ratio (CCR; Methods) of soil moisture to total TWS varies substan-
tially among SREX regions. Generally, soil moisture contribution is 
high (>50%) in relatively dry regions, including Central America/
Mexico (CAM), MED, West Asia (WAS), Central Asia (CAS), WAF, 
Southern Africa (SAF) and SAU, and low in relatively humid and 
snow-dominated regions including ALA, NAS and AMZ (Extended 
Data Fig. 6), as also noted by previous studies16,43. The results sug-
gest that soil moisture could not be used to substitute TWS globally.

Changes in TWS are driven primarily by climate forcing, as 
opposed to land and water management and/or socioeconomic 
drivers (see Methods). This is apparent from comparing the HIST 
and RCP simulations with the PIC simulations (see Methods) for 
the baseline period and late twenty-first century (Fig. 3). As the 
PIC simulations use identical socioeconomic scenarios as the HIST 
and RCP simulations for the respective periods (Supplementary 
Table 2), the PIC (2070–2099) versus PIC (1976–2005) comparison 
suggests that TWS would have remained generally stable in most 
regions under a pre-industrial climate. Differences between the two 
simulations can, however, be seen in some regions (for example, 
EAF, SSA and WAS) even though the difference in the global aver-
age is relatively small (Fig. 3). Globally, this difference is ~11% of 
the difference between RCP6.0 (2070–2099) and PIC (1976–2005), 
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Fig. 2 | uncertainty in TWS simulations. Contributions of GCMs and 
GHMs/LSMs to the uncertainty in TWS simulations (the range statistic 
of the quantile-based TWS index; see Methods), averaged over the 
sub-continental regions defined by the IPCC SREX (a description of the 
regions is provided in Supplementary Fig. 3). The horizontal axis denotes 
the historical baseline period (1976–2005) and the mid- (2030–2059) and 
late (2070–2099) twenty-first century. A lighter colour marks a smaller 
variability in TWS simulations across GCMs or GHMs/LSMs. CEU, central 
Europe; EAS, east Asia; ENA, East North America; NEB, Northeast Brazil; 
NEU, north Europe; SEA, Southeast Asia.
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meaning that ~90% of the projected change could be attributed to 
climate change. A decrease in TWS is projected under pre-industrial 
climate in CAM, EAF and NAU. Other regions including Central 
North America (CNA), AMZ, SSA, WAS and SAU would have been 
wetter in the future under pre-industrial climate. These results sug-
gest that while the wetting caused by climate change could be offset 
by land and water management and socioeconomic drivers in some 
regions (such as EAF), the climate-induced drying could be further 
exacerbated by human activities in others (including NAU).

Future projection of TWS drought
The projected changes in TWS correspond with shifts in future 
drought occurrence and severity. Many regions are projected 
to experience an increased occurrence of moderate-to-severe 
(−0.8 ≤ TWS-DSI < −1.6) and extreme-to-exceptional 
(TWS-DSI ≤ −1.6; see Methods and Supplementary Table 1) TWS 
droughts (Fig. 4a,b). The direction of change is robust among 
ensemble members, especially in regions that are projected to expe-
rience an increase in the number of drought days (for example the 
Amazon river basin, Mediterranean, conterminous United States, 
east Asia and parts of Australia). By the late twenty-first century 
(RCP6.0), the frequency of moderate, severe, extreme and excep-
tional TWS droughts is projected to increase substantially (17–34%; 
Supplementary Table 4) in all continents but Asia (Fig. 4c,e–h). 
This is caused largely by a notable reduction in the frequency of 
near-normal to abnormally dry and slightly wet conditions in Africa 
and North America, primarily of wet conditions in Europe, and of 
near-normal and wet conditions in South America and Australia. 
Further, results suggest a general reduction in the frequency of wet 
conditions globally except in Asia and, to some extent, in Africa. 
Asia stands out among all continents where the frequency of severe, 
extreme and exceptional droughts as well as that of moderately  
wet to exceptionally wet conditions is projected to increase, caused 

by a reduced frequency of near-normal and slightly dry and wet 
conditions (Fig. 4d).

Global land area and projected future population (see Methods) 
exposed to moderate-to-severe TWS drought are projected to 
increase steadily until the mid-twenty-first century and remain 
relatively stable during the late twenty-first century. However, 
those under extreme-to-exceptional TWS drought are projected 
to increase until the end of the century (Fig. 4i,j) with a notice-
able increase in inter-ensemble spread towards the late century, 
consistent with the increase in GHM/LSM uncertainty (Fig. 2). 
Under RCP6.0, both the global land area and projected popula-
tion in moderate-to-severe TWS drought increase from 15% dur-
ing the baseline period of 1976–2005 to 18% and 20%, respectively, 
by the mid- and late twenty-first century. This change in popula-
tion translates to an additional ~600 and ~859 million people, 
respectively. From the mid- to the late twenty-first century, the 
global population in moderate-to-severe TWS drought for at least 
30 days per year increases from 59% to 63%, and the population 
experiencing at least 60 days per year increases from 45% to 49%. 
For extreme-to-exceptional TWS drought under RCP6.0, land area 
increases from a 3% baseline to 4% and 7% during the mid- and late 
twenty-first century, respectively. The population exposed to these 
conditions increases from a baseline of 3% to 4% and 8%, or an 
additional ~154 and ~488 million people. The population exposed 
to at least 30 days of extreme-to-exceptional TWS drought increases 
from 19% to 27%, and at least 60 days from 11% to 18%, between 
the mid- and late twenty-first century.

At the regional scale, the frequency of extreme and exceptional 
TWS droughts is projected to increase by the late twenty-first cen-
tury in most SREX regions (Fig. 5 and Methods). The changes in 
drought frequency are evident under both RCPs but are generally 
more pronounced under RCP6.0. Overall, the probability den-
sity functions (PDFs) characterized by a symmetrical distribution 
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projections under Shared Socioeconomic Pathway 2 (SSP2; j) to experience moderate-to-severe (blue) and extreme-to-exceptional (red) droughts; shaded 
areas indicate ±1 standard deviation (s.d.) from the ensemble mean, representing the spread in the projection among ensemble members. Results for 
RCP2.6 are shown in Supplementary Fig. 4.
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(centred at TWS-DSI = 0) for the historical period tend to become 
more positively skewed in most regions where TWS is expected 
to decline (Figs. 1 and 3), meaning that these regions are likely to 
experience more frequent and intense TWS droughts in the future.  
For example, in AMZ the occurrence of severe, extreme and excep-
tional TWS droughts (Supplementary Table 1) increases substan-
tially (under both RCPs) by mid- and late twenty-first century 
(Fig. 5). The dry-season TWS deficit in the Amazon river basin 
is suggested to be increasing, causing more frequent and intense 
droughts20,44, and our findings highlight that the drying would  
further intensify, with important implications for the resilience of 
the Amazonian rainforest.

Distributions with an obvious positive skew for the future peri-
ods can be observed in CAM, CNA, MED, NAU, SAU, WAF and 
WAS. Conversely, regions such as EAF, NAS and SAS are projected 
to experience a reduced frequency of TWS droughts. For West 
North America (WNA) and the entire globe, a shift in the PDFs 
to a bimodal distribution can be seen, suggesting an increased fre-
quency of both TWS droughts and anomalously wet conditions, fur-
ther indicating a reduced TWS buffer capacity under future climate. 
Finally, the results indicate that in the absence of greenhouse gas 
forcing (PIC simulation; Fig. 5), future TWS droughts would have 
not changed noticeably or their severity could have been reduced in 
many regions, suggesting that the exacerbations in drought condi-
tions are attributable primarily to climate change.

A comparison of TWS-DSI with traditional drought indices 
(Methods and Extended Data Figs. 7–10) suggests that TWS-DSI 
provides new information on future droughts. Unlike SRI that is 
highly correlated with SPI, TWS-DSI exhibits different PDFs in 
most SREX regions (Fig. 5 and Extended Data Figs. 7 and 8) because 
it encompasses all relevant storage components related to drought 
and accounts for land and water management that directly alters 
water availability. We find that TWS-DSI also differs from soil 
moisture-based indices (Fig. 5 and Extended Data Figs. 9 and 10) 

because the soil moisture contribution to total TWS varies substan-
tially among regions (Extended Data Fig. 6); TWS-DSI captures the 
effects of groundwater and surface water storages, and accounts for 
land and water management activities not reflected in the other 
indices. These comparisons—supported by previous studies on his-
torical droughts6,36,37—indicate that TWS-DSI could be used syner-
gistically with traditional drought indices to better understand and 
predict droughts by accounting for the role of groundwater and 
human activities.

Summary and implications
These results show that climate change could reduce TWS in 
many regions, especially in the Southern Hemisphere, the United 
States and southwestern Europe; exceptions are regions with high 
increases in precipitation, including east Africa and northern Asia. 
By the late twenty-first century and under RCP6.0, two-thirds of the 
global land could experience a reduction in TWS. We find strong 
agreement among ensemble model projections, especially in the 
direction of change, suggesting that the results are robust. We fur-
ther show that TWS extreme droughts are expected to become more 
frequent in most of the SREX regions. Globally, land area and pro-
jected population in extreme-to-exceptional TWS drought under 
RCP6.0 are projected to more than double, each increasing from 3% 
to 7% and 8%, respectively, by the late twenty-first century.

While we use state-of-the-art models and the best available 
global data available, there are limitations to our approach. First, 
even though the GHMs/LSMs reproduce historical TWS variabil-
ity well, these models and the GCM forcing data contain inherent 
biases9. Second, assessment of the relative contributions of individ-
ual TWS components is limited to soil moisture, because the other 
components are not currently available from ISIMIP2b simulations.  
Last, the implications of vegetation response to rising CO2 lev-
els on TWS and drought projections are not considered, because  
the hydrological models (except LPJmL) do not currently simulate  
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vegetation dynamics. Studies have shown that elevated atmospheric 
CO2 levels lead to increased leaf-level water-use efficiency, poten-
tially ameliorating the reduction in water availability through 
reduced evapotranspiration and increased soil moisture and run-
off45,46. This implies that the projected decline in TWS and increase 
in future droughts may be overestimated in our study. However, 
increased foliage area under elevated CO2 levels and warmer cli-
mate generally lead to increased vegetation growth and associated 
water use, resulting in decreased water availability by counterbal-
ancing the increase in runoff from water-use efficiency gains47,48. 
Thus, a comprehensive analysis of TWS projections using coupled 
hydrological–dynamic vegetation models is required for a robust 
estimation of the implications of vegetation response to elevated  
CO2 levels, which should be a priority for future studies.

Despite some limitations, our study provides a comprehensive 
assessment of climate impacts on future TWS and related droughts. 
Given large uncertainties and medium confidence in drought projec-
tions using traditional drought indices49, and as no single drought index 
can capture the diverse set of drought impacts from climate change50, 
our results provide information to better predict future droughts and 
understand water resource and vegetation growth impacts6,36,37.
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mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41558-020-00972-w.

Received: 17 December 2019; Accepted: 24 November 2020;  
Published online: 11 January 2021

references
 1. Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 

651–659 (2018).
 2. Tapley, B. D. et al. Contributions of GRACE to understanding climate change. 

Nat. Clim. Change 9, 358–369 (2019).
 3. Thomas, A. C., Reager, J. T., Famiglietti, J. S. & Rodell, M. A GRACE-based 

water storage deficit approach for hydrological drought characterization. 
Geophys. Res. Lett. 41, 1537–1545 (2014).

 4. Houborg, R., Rodell, M., Li, B., Reichle, R. & Zaitchik, B. F. Drought 
indicators based on model-assimilated Gravity Recovery and Climate 
Experiment (GRACE) terrestrial water storage observations. Water Resour. 
Res. 48, W07525 (2012).

 5. Zhao, M., Velicogna, I. & Kimball, J. S. Satellite observations of regional 
drought severity in the continental United States using GRACE-based 
terrestrial water storage changes. J. Clim. 30, 6297–6308 (2017).

 6. Long, D. et al. GRACE satellite monitoring of large depletion in water  
storage in response to the 2011 drought in Texas. Geophys. Res. Lett. 40, 
3395–3401 (2013).

 7. Reager, J., Thomas, B. & Famiglietti, J. River basin flood potential inferred 
using GRACE gravity observations at several months lead time. Nat. Geosci. 
7, 588–592 (2014).

 8. Pokhrel, Y. et al. Model estimates of sea-level change due to anthropogenic 
impacts on terrestrial water storage. Nat. Geosci. 5, 389–392 (2012).

 9. Scanlon, B. R. et al. Global models underestimate large decadal declining and 
rising water storage trends relative to GRACE satellite data. Proc. Natl Acad. 
Sci. USA 115, E1080–E1089 (2018).

 10. Reager, J. et al. A decade of sea level rise slowed by climate-driven hydrology. 
Science 351, 699–703 (2016).

 11. Wang, J. et al. Recent global decline in endorheic basin water storages.  
Nat. Geosci. 11, 926–932 (2018).

 12. Pokhrel, Y. et al. Incorporation of groundwater pumping in a global Land 
Surface Model with the representation of human impacts. Water Resour. Res. 
51, 78–96 (2015).

 13. Wada, Y. et al. Human–water interface in hydrological modelling: current 
status and future directions. Hydrol. Earth Syst. Sci. 21, 4169–4193 (2017).

 14. Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T. & Eicker, A. 
Global-scale assessment of groundwater depletion and related groundwater 
abstractions: combining hydrological modeling with information from well 
observations and GRACE satellites. Water Resour. Res. 50, 5698–5720 (2014).

 15. Hanasaki, N., Yoshikawa, S., Pokhrel, Y. & Kanae, S. A global hydrological 
simulation to specify the sources of water used by humans. Hydrol. Earth 
Syst. Sci. 22, 789–817 (2018).

 16. Felfelani, F., Wada, Y., Longuevergne, L. & Pokhrel, Y. Natural  
and human-induced terrestrial water storage change: a global  
analysis using hydrological models and GRACE. J. Hydrol. 553,  
105–118 (2017).

 17. Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of 
groundwater depletion in India. Nature 460, 999–1002 (2009).

 18. Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in 
the US High Plains and Central Valley. Proc. Natl Acad. Sci. USA 109, 
9320–9325 (2012).

 19. Famiglietti, J. S. et al. Satellites measure recent rates of groundwater  
depletion in California’s Central Valley. Geophys. Res. Lett. 38,  
L03403 (2011).

 20. Chaudhari, S., Pokhrel, Y., Moran, E. & Miguez-Macho, G. Multi-decadal 
hydrologic change and variability in the Amazon River basin: understanding 
terrestrial water storage variations and drought characteristics. Hydrol. Earth 
Syst. Sci. 23, 2841–2862 (2019).

 21. Schewe, J. et al. Multimodel assessment of water scarcity under climate 
change. Proc. Natl Acad. Sci. USA 111, 3245–3250 (2014).

 22. Oki, T. & Kanae, S. Global hydrological cycles and world water resources. 
Science 313, 1068–1072 (2006).

 23. Ferguson, C., Pan, M. & Oki, T. The effect of global warming on  
future water availability: CMIP5 synthesis. Water Resour. Res. 54,  
7791–7819 (2018).

 24. Pokhrel, Y., Fan, Y. & Miguez-Macho, G. Potential hydrologic changes in the 
Amazon by the end of the twenty-first century and the groundwater buffer. 
Environ. Res. Lett. https://doi.org/10.1088/1748-9326/9/8/084004 (2014).

 25. Jensen, L., Eicker, A., Dobslaw, H., Stacke, T. & Humphrey, V. Long-term 
wetting and drying trends in land water storage derived from GRACE and 
CMIP5 models. J. Geophys. Res. Atmos. 124, 9808–9823 (2019).

 26. Freedman, F. R., Pitts, K. L. & Bridger, A. F. Evaluation of CMIP climate 
model hydrological output for the Mississippi River Basin using GRACE 
satellite observations. J. Hydrol. 519, 3566–3577 (2014).

 27. Nasrollahi, N. et al. How well do CMIP5 climate simulations replicate 
historical trends and patterns of meteorological droughts? Water Resour. Res. 
51, 2847–2864 (2015).

 28. Mach, K. J. et al. Climate as a risk factor for armed conflict. Nature 571, 
193–197 (2019).

 29. McKee, T. B., Doesken, N. J. & Kleist, J. The relationship of drought 
frequency and duration to time scales. In Proc. 8th Conference on Applied 
Climatology 179–183 (1993).

 30. Palmer, W. Meteorological Drought Research Paper No. 45 (US Weather 
Bureau, 1965).

 31. Samaniego, L., Kumar, R. & Zink, M. Implications of parameter uncertainty 
on soil moisture drought analysis in Germany. J. Hydrometeorol. 14,  
47–68 (2013).

 32. Sheffield, J. & Wood, E. F. Projected changes in drought occurrence under 
future global warming from multi-model, multi-scenario, IPCC AR4 
simulations. Clim. Dyn. 31, 79–105 (2008).

 33. Shukla, S. & Wood, A. W. Use of a standardized runoff index for 
characterizing hydrologic drought. Geophys. Res. Lett. 35, L02405 (2008).

 34. Dai, A. Increasing drought under global warming in observations and 
models. Nat. Clim. Change 3, 52–58 (2013).

 35. Van Loon, A. F. Hydrological drought explained. WIREs Water 2,  
359–392 (2015).

 36. Du, J. et al. Multicomponent satellite assessment of drought severity in the 
contiguous United States from 2002 to 2017 using AMSR‐E and AMSR2. 
Water Resour. Res. 55, 5394–5412 (2019).

 37. Geruo, A. et al. Satellite-observed changes in vegetation sensitivities to 
surface soil moisture and total water storage variations since the 2011 Texas 
drought. Environ. Res. Lett. 12, 054006 (2017).

 38. Frieler, K. et al. Assessing the impacts of 1.5°C global warming – simulation 
protocol of the Inter-Sectoral Impact Model Intercomparison Project 
(ISIMIP2b). Geosci. Model Dev. 10, 4321–4345 (2017).

 39. Sanderson, B. M., Wehner, M. & Knutti, R. Skill and independence weighting 
for multi-model assessments. Geosci. Model Dev. 10, 2379–2395 (2017).

 40. Gudmundsson, L., Seneviratne, S. I. & Zhang, X. Anthropogenic Climate 
Change detected in European renewable freshwater resources. Nat. Clim. 
Change 7, 813–816 (2017).

 41. Boisier, J. P., Ciais, P., Ducharne, A. & Guimberteau, M. Projected 
strengthening of Amazonian dry season by constrained climate model 
simulations. Nat. Clim. Change 5, 656–660 (2015).

 42. Malhi, Y. et al. Climate change, deforestation, and the fate of the Amazon. 
Science 319, 169–172 (2008).

 43. Getirana, A., Kumar, S., Girotto, M. & Rodell, M. Rivers and floodplains as 
key components of global terrestrial water storage variability. Geophys. Res. 
Lett. 44, 10359–10368 (2017).

NATurE CLiMATE CHANGE | VOL 11 | MARCH 2021 | 226–233 | www.nature.com/natureclimatechange232

https://doi.org/10.1038/s41558-020-00972-w
https://doi.org/10.1038/s41558-020-00972-w
https://doi.org/10.1088/1748-9326/9/8/084004
http://www.nature.com/natureclimatechange


ArticlesNaTurE ClimaTE CHaNgE

 44. Jiménez-Muñoz, J. C. et al. Record-breaking warming and extreme drought in 
the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 6, 
33130 (2016).

 45. Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land 
under global warming. Nat. Clim. Change 6, 869–874 (2016).

 46. Lemordant, L., Gentine, P., Swann, A. S., Cook, B. I. & Scheff, J. Critical 
impact of vegetation physiology on the continental hydrologic cycle in 
response to increasing CO2. Proc. Natl Acad. Sci. USA 115, 4093–4098 (2018).

 47. Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. 
Mid-latitude freshwater availability reduced by projected vegetation responses 
to climate change. Nat. Geosci. 12, 983–988 (2019).

 48. Singh, A., Kumar, S., Akula, S., Lawrence, D. M. & Lombardozzi, D. L. Plant 
growth nullifies the effect of increased water‐use efficiency on streamflow 

under elevated CO2 in the Southeastern United States. Geophys. Res. Lett. 47, 
e2019GL086940 (2020).

 49. Seneviratne, S. I. et al. in Managing the Risks of Extreme Events and Disasters 
to Advance Climate Change Adaptation (ed. C. B. Field) 109–230 (Cambridge 
Univ. Press, 2017).

 50. Wanders, N., Loon, A. F. V. & Van Lanen, H. A. Frequently used drought 
indices reflect different drought conditions on global scale. Hydrol. Earth Syst. 
Sci. Discuss. (in the press).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021

NATurE CLiMATE CHANGE | VOL 11 | MARCH 2021 | 226–233 | www.nature.com/natureclimatechange 233

http://www.nature.com/natureclimatechange


Articles NaTurE ClimaTE CHaNgE

Methods
Models, simulation settings and forcing data. The seven terrestrial hydrology 
models used in this study include five GHMs51: CWatM52, H0815,53,54, MPI-HM55, 
PCR-GLOBWB56 and WaterGAP257; one global LSM51: CLM4.558; and one 
dynamic global vegetation model: LPJmL59. All models simulate the key terrestrial 
hydrological (for example, soil, vegetation and river) processes (Supplementary 
Table 3). Meteorological forcing data are derived from climate simulations 
by four of the GCMs (a subset of models participating in the Coupled Model 
Intercomparison Project Phase 5) included in the Fifth Assessment Report of 
the IPCC: GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and MIROC5. The 
climate variables included in the forcing data are precipitation, air temperature, 
solar radiation (short and long wave), wind speed, specific humidity and surface 
pressure, which are bias adjusted60 and downscaled to 0.5° × 0.5° spatial resolution 
of the terrestrial hydrology models. A comprehensive description of bias 
adjustment and downscaling can be found in the previous literature60–62.

For each GCM, four radiative forcing cases are considered for varying 
periods (Supplementary Table 2): the pre-industrial control (PIC; pre-industrial 
climate; 1861–2099), historical climate (HIST; which includes the effects of 
human emissions including greenhouse gases and aerosols63; 1861–2005), a low 
greenhouse gas concentration scenario (RCP2.6; 2006–2099) and a medium–
high greenhouse gas concentration scenario (RCP6.0; 2006–2099). Simulations 
are conducted under the standard protocol of the Group-2 simulation scenario 
design of ISIMIP2b38 (https://www.isimip.org/). The two RCPs are the only 
RCPs for which TWS results from all models were available from ISIMIP2b 
simulations. The hydrology models are run for each GCM–radiative forcing 
combination by considering time-varying land and water management activities 
and socioeconomic conditions for the HIST runs but fixed at the present day 
(that is, 2005) level for future projections (2006–2099; RCP2.6 and RCP6.0). For 
the PIC simulations, climate forcing is set at the pre-industrial level and land and 
water management activities and socioeconomic conditions vary for the historical 
period but are fixed at 2005 level for the future periods (see Fig. 1 in Frieler et al.38). 
Thus, while the difference between PIC and other radiative forcing cases results 
from pure climate change, the difference between historical and future PIC runs 
reflects the time-varying effects of human activities and socioeconomic drivers, 
not climate change. The human activities and socioeconomic indicators considered 
are population, national gross domestic product, land-use and land-cover change, 
irrigated areas, fertilizer use and reservoir operation including water withdrawal, 
depending on the model schemes. Land-use and land-cover change and irrigated 
areas are prescribed on the basis of the HYDE3–MIRCA data64–66 and data for 
dams and reservoirs are taken from the GRanD database67. Irrigation (and other 
water-use sector) schemes vary among models (Supplementary Table 3) but all 
models simulate global irrigation requirements within plausible limits of reported 
datasets based on country statistics (see the reference to each model for more 
details). The reservoir operation schemes are based on Hanasaki et al.68 (H08 and 
WaterGAP2), Biemans et al.69 (LPJmL) and a combination of Haddeland et al.70 
and Adams et al.71 (CWatM and PCR-GLOBWB); reservoirs are not represented 
in MPI-HM and CLM4.5. Soil column depth and layer configuration and 
groundwater representation vary among models (Supplementary Table 3).

Multi-model weighted mean. The multi-model mean is calculated by weighting 
the ensemble members on the basis of their skill (that is, the root mean squared 
error (RMSE) of the area-weighted seasonal cycle of TWS relative to GRACE 
data) and independence (that is, a measure of how different model results are) 
scores, following previous studies39,72. The continent-based, temporally static 
weights (wo(i)) for the 27 ensemble members (Extended Data Fig. 1) are calculated 
as the normalized product of the skill and independence weights so that their 
sum is unity39,72; that is, 

P27
i¼1 wo ið Þ ¼ 1

� 

I
. The independence weight of member 

i, wu(i), is computed as the inverse of the summation of the pairwise similarity 
score, S(δi,j), which ranges between 1 (for identical members) and 0 (for the 
most distinct members). Mathematically,wu ið Þ ¼ 1

1þ
P27

j≠i
S δi;jð Þ

I

. The pairwise 

similarity score is calculated as a function of the Euclidean distance39 between 
the members (δi,j), represented by the RMSE of the continent-level average TWS 
seasonal cycle from two members, and a parameter called the radius of similarity 
(Du): S δi;j

� �
¼ exp � δi;j

Du

� �2
� �

I

, where δi,j is normalized by the mean of pairwise 

inter-model distances (Extended Data Fig. 2). The parameter Du is the distance 
below which models are marked as similar and is resolved for each continent as a 
fraction of the distance between the best performing member (that is, the model 
with the smallest RMSE) and GRACE through an iterative process39. The skill 
weighting of member i, wq(i), is calculated on the basis of the stretched exponential 
function73 of the distance from GRACE (δi,GRACE; the normalized RMSE of member 
i’s TWS seasonal cycle against GRACE for 2002–2016) and the radius of model 

quality Dq
� �

: wq ið Þ ¼ exp � δi;GRACE
Dq

� �2
� �

I

, where smaller distances from the 

GRACE seasonal cycle result in larger skill scores/weights. The parameter Dq is 
also defined as a fraction of the distance between the best performing member 
and GRACE. This parameter controls the strength of the skill weighting. That is, 
when Dq approaches zero, most of the simulations get largely down-weighted and 
only the best performing model is assigned a high skill score. Conversely, as Dq 

approaches infinity, all ensemble members are allotted a high (that is, close to 1) 
skill score alike, and therefore, the multi-model weighted mean approaches the 
non-skilled weighted mean. Finally, the continent-based Dq values are estimated 
for the 2002–2016 period and tested for RCP6.0 late century simulations following 
a perfect model test and through an iterative procedure39. The perfect model test is 
conducted to ensure that out-of-sample simulations (that is, simulations out of the 
GRACE period) are also improved with the weighting scheme. Note that the model 
weights are estimated by using the seasonal cycle of TWS, rather than the trend 
or interannual variability, because the original study39 that described the weighing 
scheme used the seasonality of climate variables, and no studies have demonstrated 
the applicability or robustness of the schemes based on trend or interannual 
variability. Further, the GRACE data period is relatively short to rely on temporal 
trends, which are highly sensitive to the time window chosen.

Simulated TWS, GRACE data, model evaluation and TWS variability under 
climate change. The monthly scale simulated TWS is derived by vertically 
integrating the surface and subsurface water storages, which include snow, canopy, 
river, reservoir (if simulated), lake (if simulated), wetland (if simulated), soil and 
groundwater storages74,75. TWS derived from GRACE satellite measurements is 
used to evaluate the simulated TWS for the 2002–2016 period. We use the mean 
of mascon products76 from two processing centres: the Center for Space Research 
at the University of Texas at Austin, and the Jet Propulsion Laboratory at the 
California Institute of Technology. For model results, as the evaluation period is 
not covered completely by HIST simulations, we combine the results from HIST 
simulations (2002–2005) with results from RCP2.6 (2006–2016). The seasonal 
mean of TWS anomalies (Extended Data Fig. 5 and Supplementary Fig. 1) is 
derived by first calculating the climatological mean seasonal cycle of TWS for the 
evaluation period and then taking the mean for each season. For consistency, the 
same reference period (2002–2016) is used in calculating the seasonal anomalies 
for both GRACE data and model simulations. Changes in TWS for the mid- 
(2030–2059) and late (2070–2099) twenty-first century (for the two RCPs) are 
calculated by taking the difference of the mean TWS for those periods to the mean 
TWS for the historical baseline period of 1976–2005, which is the last 30-year 
period of the historical simulations; simulations from the year 2006 are conducted 
under future climate scenarios.

Quantification of uncertainty in TWS simulations. The contribution of 
uncertainties from GCMs (that is, forcing data) and GHMs/LSMs to TWS is 
quantified by using the sequential sampling approach77. In this approach, the 
uncertainty contribution of GCMs and GHMs/LSMs is calculated using the range 
statistic77 of monthly TWS (represented as the quantile-based TWS index) averaged 
over the SREX regions for the historical baseline period, and mid- and late 
twenty-first century. The GCMs (GHMs/LSMs) uncertainty—characterized as the 
range of the mean in the quantile-based TWS index—for a given RCP scenario is 
computed by first averaging the quantile-based TWS index across all GHMs/LSMs 
(GCM) for each of the GCMs (GHMs/LSMs) and then calculating the range across 
GCMs (GHMs/LSMs). The quantile-based TWS index, spatially averaged over 
SREX regions, is calculated31 by fitting a non-parametric kernel density function to 
TWS data, estimating the PDF and numerically integrating the PDF between zero 
and the simulated TWS.

Component contribution of soil moisture to total TWS. A dimensionless 
metric, CCR16,78, is used to quantify the contribution of soil moisture to total TWS 
(Extended Data Fig. 6). CCR represents the ratio of the seasonal amplitude of 
soil moisture to that of TWS. The CCR is used to assess the differences between 
the drought projected by the TWS-DSI and SMI. The contribution of other TWS 
components could not be examined as those variables are not currently available 
from ISIMIP2b simulations.

TWS-DSI and drought severity under climate change. Monthly 
TWS-DSI is estimated for all ensemble members following Zhao et al.5; 
TWS-DSIi,j = (TWSi,j − μj)/σj, where TWSi,j is the TWS anomaly in year i and 
month j, and μj and σj are the climatological mean and standard deviation, 
respectively, of monthly TWS anomalies for the reference period. TWS-DSIi,j is a 
non-dimensional index that defines droughts with varying degrees of severity, also 
representing wet conditions (Supplementary Table 1). In calculating the mean and 
standard deviation of TWS for any specified period, a common reference period 
set to 1861–2099 is used to avoid potential exaggeration in the estimates of TWS 
variability and drought evolution79, and for consistent comparison. The drought 
trend (Fig. 4a,b) is calculated as the linear least-squares trend using the time series 
of annual drought occurrence presented in days per year. The significance of 
trend values is evaluated using the non-parametric Mann–Kendall trend test80,81 
with a 5% significance level. Note that for the trend calculations, four drought 
types are re-grouped into two major categories for simplicity: moderate-to-severe 
(−1.6 < TWS-DSI ≤ −0.8) and extreme-to-exceptional (TWS-DSI ≤ −1.6) droughts 
(see Supplementary Table 1 for more details).

The frequency of droughts with varying severities used for continental-scale 
drought analysis (Fig. 4c–h) is estimated by considering the TWS-DSI calculated 
for all ensemble members, normalized such that the results show the PDF at 
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bins corresponding to the classes of drought and wet conditions (Supplementary 
Table 1). For the analysis of the global population affected by drought, we use 
the time-varying (2006–2100) gridded global population data generated by 
scaling the 2005 population data from the Center for International Earth Science 
Information Network at Columbia University (https://sedac.ciesin.columbia.
edu/) with the country-level future population growth rate (https://tntcat.iiasa.
ac.at/SspDb) for SSP2 (ref. 82) Among the five SSPs, SSP2 reflects an intermediate, 
middle-of-the-road scenario in which population growth is medium83. The changes 
in future population under drought are estimated relative to the baseline period 
of 1976–2005 but using static population data for 2005. Finally, the PDFs for 
each IPCC SREX region (Fig. 5) are estimated using the non-parametric kernel 
density method84 and by considering all ensemble members. There is a bimodality 
in the PDF of TWS-DSI in some regions as a result of preferential states in water 
stores such as soil moisture85,86, thus using the non-parametric kernel density 
method is more appropriate compared to the parametric unimodal distributions 
with underlying assumptions such as normality27,31. We find that using the kernel 
density method to estimate the PDF of TWS-DSI results in almost identical PDF 
estimation (not shown) to that from the conventional standardized drought 
indices29—that is, by first fitting the TWS data to a secondary distribution  
(for example, gamma, Pearson type III) and then transforming it to a standard 
normal distribution.

The SPI29 and SRI33 (Extended Data Figs. 7 and 8) are calculated by first fitting 
the monthly precipitation and runoff data, respectively, to the gamma distribution 
function to obtain monthly climatological distributions for the reference period 
(1861–2099). These distributions are then used to estimate the cumulative 
probability of the variable (precipitation or runoff) for a certain period. Finally, 
the cumulative probabilities are converted to standard normal deviates (μ = 0 
and σ = 1) by inversing the respective cumulative distribution function. The 
SMI is estimated on the basis of two approaches. For the direct comparison with 
TWS-DSI, SMI is obtained using the same methodology as TWS-DSI5, however 
using soil moisture data instead of TWS (Extended Data Fig. 9). Additionally, 
a more conventional quantile-based SMI (Extended Data Fig. 10) is calculated 
following Samaniego et al.31 and Sheffield and Wood32. To do so, soil moisture 
is first fitted to a non-parametric kernel density function to derive the monthly 
climatological PDFs for the reference period (1861–2099). The quantile-based 
drought index corresponding to a given soil moisture for month i (xi) is then 
derived by numerically integrating the respective PDF31 f̂

� �

I

 as: SMIi ¼
R xi
0 f̂ uð Þdu

I
. 

The PDFs of the drought indices (SPI, SRI and SMI) are generated for different 
periods using the kernel density method (Extended Data Figs. 7–10).

Data availability
The model results are freely available from the ISIMIP project portal (https://www.
isimip.org/outputdata/) and the two GRACE products used for model evaluation 
can be obtained from http://www2.csr.utexas.edu/grace/ and https://podaac.jpl.
nasa.gov/GRACE. The processed data used to generate the figures in the main 
text are available on CUAHSI HydroShare and Figshare (https://doi.org/10.6084/
m9.figshare.13218710).

Code availability
All figures were produced using the freely available visualization libraries in Python 
3.5 (such as Matplotlib), and statistical analysis was performed using built-in 
functions in Python 3.5. The relevant portions of the computer code used to 
process the results and develop the figures are available at https://doi.org/10.5281/
zenodo.4266999.
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Extended Data Fig. 1 | Continent-based model skill and independence weights (see Methods for details) for 27 ensemble members. The weights are 
temporally static.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Continent-based pairwise inter-model distance matrix for ensemble simulations and GrACE observations. Each row or column 
associates with a single ensemble member or GRACE observations, and each cell represents a pairwise distance of that member compared to the others. 
Distances are evaluated based on the root mean squared error (RMSE) of TWS seasonal cycle (calculated for 2002–2016 period by combining the results 
from HIST simulations with RCP2.6), spatially averaged over each continent. The distance for each member is normalized by the mean of pair-wise distances 
for all members. Lower values of the pairwise distance between two members indicate a better agreement between the two members, and vice versa.
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Extended Data Fig. 3 | Spatial patterns of change in precipitation by the mid- (2030–2059) and late- (2070–2099) twenty-first century under rCP 2.6 
and 6.0. Shown are the absolute differences in the 30-year mean (mm/year) between the two future periods and historical baseline period of 1976–2005, 
calculated as the mean of the results from four Global Climate Models (GCMs) used to drive the hydrological models: HadGEM2-ES, GFDL-ESM2M, 
IPSL-CM5A-LR, and MIROC5. Note that Greenland is masked out. The graph on the right of each panel shows the latitudinal mean.
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Extended Data Fig. 4 | Spatial patterns of change in air temperature by the mid- (2030–2059) and late- (2070–2099) twenty-first century under 
rCP 2.6 and 6.0. Shown are the differences in the 30-year mean (Kelvin) between the two future periods and historical baseline period of 1976–2005, 
calculated as the mean of the results from four GCMs used to drive the hydrological models: HadGEM2-ES, GFDL-ESM2M, IPSL-CM5A-LR, and MIROC5. 
Note that Greenland is masked out. The graph on the right of each panel shows the latitudinal mean.

NATurE CLiMATE CHANGE | www.nature.com/natureclimatechange

http://www.nature.com/natureclimatechange


Articles NaTurE ClimaTE CHaNgE

Extended Data Fig. 5 | Spatial patterns of seasonal TWS anomalies from models and GrACE data. Shown are the seasonal averages 
(December-February (DJF), March-May (MAM), June-August (JJA), and September-November (SON)) of the simulated (multi-model ensemble mean) 
and GRACE-based monthly TWS deviation from the mean for the GRACE period (2002–2016). Model results for the 2002–2005 period are taken 
from the historical simulations (see Supplementary Table 2), and for 2006–2016 from RCP2.6 runs (2005soc). Anomalies are calculated by using the 
mean for 2002–2016 period for both model results and GRACE data. Note that we use the simple ensemble average (not the weighted mean) for these 
comparisons to provide an unbiased evaluation of the models and to ensure that the model-GRACE agreement is not a result of the weighting that is based 
on the GRACE data. The results from RCP6.0 (not shown) are almost identical to that shown here. GRACE data shown are the mean of mascon products76 
from two processing centers: the Center for Space Research (CSR) at the University of Texas at Austin (http://www2.csr.utexas.edu/grace/) and NASA Jet 
Propulsion Laboratory (JPL; https://podaac.jpl.nasa.gov/GRACE).
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Extended Data Fig. 6 | Soil moisture (SM) component contribution ratio (CCr16,78). The background map depicts the spatial variability of SM CCR (the 
ratio of seasonal amplitude of SM to that of TWS; see Methods) based on the ensemble mean results for the historical baseline period (HIST; 1976–2005). 
The insets present the SM CCR averaged over the IPCC SREX regions for the historical baseline period, mid-twenty-first century (2030–2059), and 
late-twenty-first century (2070–2099); results from both RCPs (RCP 2.6 and 6.0) are shown. Evidently, and as discussed in the main text, SM CCR shows a 
large spatial variability.
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Extended Data Fig. 7 | Probability density function of monthly standardized precipitation index (SPi29; see Methods). Shown are ensemble simulations 
grouped for different cases (that is, HIST, PIC, RCP2.6, and RCP6.0). Labels are indicated in the inset for the entire globe; x-axis labels indicate the SPI. A 
description of SREX regions (background map) is provided in Supplementary Fig. 3.
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Extended Data Fig. 8 | Probability density function of monthly standardized runoff drought index (Sri33; see Methods). Shown are ensemble simulations 
grouped for different cases (that is, HIST, PIC, RCP2.6, and RCP6.0). Labels are indicated in the inset for the entire globe; x-axis labels indicate the SRI. A 
description of SREX regions (background map) is provided in Supplementary Fig. 3.

NATurE CLiMATE CHANGE | www.nature.com/natureclimatechange

http://www.nature.com/natureclimatechange


Articles NaTurE ClimaTE CHaNgE

Extended Data Fig. 9 | Probability density function of monthly soil moisture drought index calculated based on Zhao et al. (ref. 5), that is, by using 
only soil moisture instead of total TWS. Shown are ensemble simulations grouped for different cases (that is, HIST, PIC, RCP2.6, and RCP6.0). Labels 
are indicated in the inset for the entire globe; x-axis labels indicate the soil moisture drought index. A description of SREX regions (background map) is 
provided in Supplementary Fig. 3.
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Extended Data Fig. 10 | Probability density function of monthly soil moisture drought index (SMi31,32; see Methods). Shown are ensemble simulations 
grouped for different cases (that is, HIST, PIC, RCP2.6, and RCP6.0). Labels are indicated in the inset for the entire globe; x-axis labels indicate the SMI. A 
description of SREX regions (background map) is provided in Supplementary Fig. 3. Note the different y-axis scale for MED.
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