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Abstract: 

Hydro-climatic data are of importance to understand the water cycle and therefore for water 

resource assessment. Such data are of paramount importance for the Tibetan Plateau (TP) 

which is the source region of several large rivers in Asia. The Global Land Data Assimilation 

System (GLDAS) 2.0 and 2.1 provide abundant fine resolution hydro-climatic data. However, 

evaluations on their applicability have not been carried out for the TP. This study aims to 

evaluate and improve their applicability in basin scale hydrological applications in the TP. 

Gauge-based data, a hydrological model including biosphere, and seven state-of-the-art 

global precipitation products are utilized to carry out the study in four large basins in the TP. 

We find GLDAS2.1 shows significant warming trends from 2001 to 2010, whereas 

GLDAS2.0 shows cooling trends, although only significant in the Upper Yellow River basin. 

The contrasting trends imply caution should be taken when using them to analyze climate 

change impacts. On a monthly scale, GLDAS2.1 precipitation on average is closer to the 

gauge-based data than GLDAS2.0, but both of them have high uncertainty. Therefore, further 

quality improvements in precipitation are of importance. We also find CMORPH-BLD has 

better performance than other products in terms of Nash-Sutcliffe Efficiency (NSE), Relative 

Bias (RB) and root mean square error. Combining CMORPH-BLD with GLDAS2.0 forcing 

data generates more realistic runoff simulation than GLDAS2.1, with NSE and RB being 0.85 

and 16% on average. The results provide unique insights into the studied data, and are 

beneficial for water resource assessment in the TP.  
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1 Introduction  

Hydro-climatic data are of importance to understand the water cycle and therefore for water 

research [Qi et al., 2015; McColl et al., 2017; Wang et al., 2017a]. Nevertheless, in situ 

observations are rather sparse in mountainous regions, rural areas, and developing countries; 

e.g., some regions in the Tibetan Plateau (TP).  

 

The TP is the source region of several major Asian rivers, including the Yangtze River, 

Yarlung Tsangpo - Brahmaputra River, Lancang - Mekong River, Yellow River, etc. 

Therefore, knowledge about hydro-climatic change in the TP is very important. Most in situ 

stations are in the southern and eastern parts of the TP, and the stations are sparse in its 

northern and western parts [Gao and Liu, 2013; Yang et al., 2014; Su et al., 2016]. Therefore, 

to facilitate hydro-climatic change studies in the TP, other data sets should be implemented to 

compensate for the gauge data deficits, for example, data sets of the Global Land Data 

Assimilation System (GLDAS) [Rodell et al., 2004].  

 

Understanding uncertainty and investigating possible improvements are two key issues in 

GLDAS data applications. Many studies have evaluated GLDAS 1.0 and uncertainty 

correction approaches have been developed [Kato et al., 2007; Zaitchik et al., 2010; Wang et 

al., 2011; Chen et al., 2013; Huang et al., 2013; Zhou et al., 2013; Qi et al., 2015; Bai et al., 

2016; Wang et al., 2016; Yang et al., 2017]. For example, Gottschalck et al. [2005] 

investigated combinations of GLDAS 1.0 forcing data with four precipitation products 

seeking an optimal combination. Meanwhile, Qi et al. [2015] studied the applicability of 

GLDAS 1.0 data in a coastal region and proposed correction approaches. For GLDAS 2.0, 

only a few studies have investigated its applicability (e.g., Wang et al. [2016]). Regarding 
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GLDAS 2.1 which is the latest version of GLDAS, no studies have been conducted to 

investigate its applicability in hydrological simulations in the TP. In addition, to the best of 

the authors’ knowledge, no studies have been carried out to inter-compare GLDAS 2.0 and 

2.1 and investigate approaches to improve their applicability for the TP.  

 

It is necessary to appraise the applicability of GLDAS 2.0 and 2.1 forcing data because new 

forcing data sets have been utilized for them compared to GLDAS 1.0 [Matthew and Hiroko 

Kato, 2015; Matthew and Hiroko Kato, 2016]. In addition, GLDAS 2.0 has been utilized to 

study changes and variations in hydrological processes on both regional and global scales. 

For example, Cheng et al. [2015] investigated the variability and trends of soil moisture over 

Asia based on GLDAS 2.0 data; Cheng and Huang [2016] studied soil moisture trends on a 

global scale utilizing GLDAS 2.0 data; and, Chen et al. [2017] investigated total water 

storage changes in China based on GLDAS 2.0 data. Given the importance of these studies, it 

is essential to have an awareness of the data quality problems since this may help understand 

how reliable the results are.  

 

The overall objective of this study is to evaluate and improve the applicability of GLDAS 2.0 

and 2.1 forcing data in basin scale hydrological simulations in the TP. The GLDAS data 

studied are GLDAS_NOAH025_3H_2.0 product [Matthew and Hiroko Kato, 2015] and 

GLDAS_NOAH025_3H_2.1 product [Matthew and Hiroko Kato, 2016]. A Water and Energy 

Budget-based Distributed biosphere Hydrological Model (WEB-DHM) [Wang et al., 2009a; 

Wang et al., 2009b; Wang et al., 2009c] was implemented. WEB-DHM was calibrated and 

validated using observed runoff in four large rivers in the TP. Seven state-of-the-art global 

fine resolution precipitation products were evaluated and combined with GLDAS 2.0 and 2.1 
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forcing data to seek the best coalescence in hydrological simulations in the TP. This paper is 

unique in that, for the first time, it evaluates and inter-compares GLDAS 2.0 and 2.1 (termed 

GLDAS2.0 and GLDAS2.1 hereafter) forcing data on large river basin scales in the TP, and 

approaches are also provided to improve their applicability in hydrological simulations for 

the TP.  

 

2 Study area, data materials, and criteria for evaluation 

2.1 The studied river basins in the TP  

Four large river basins (Figure 1) in the southern and eastern TP were utilized to carry out this 

study because most gauge stations in the TP are in these regions [Gao and Liu, 2013; Yang et 

al., 2014; Xu et al., 2016; Wang et al., 2017b]. The four basins cover a total area of 57,1471 

km
2
, which is almost one quarter of the total area of the TP. Details about the river basins 

studied are shown in Table 1.  

 

< Figure 1 here please > 

< Table 1 here please > 

 

2.2 Data sets  

Precipitation data from China Gauge-based Daily Precipitation Analysis (CGDPA) is utilized 

in this study. CGDPA is based on over 2400 daily-scale in situ rain gauges and generated by 

the National Meteorological Information Center of China with a resolution of 0.5
0×0.5

0
 

[Zhao and Zhu, 2015; Shen and Xiong, 2016]. The CGDPA data have been utilized in many 

studies showing good performance [Miao et al., 2016; Gao et al., 2017; Liu et al., 2018]. 

Other forcing data are from the China Meteorological Forcing Dataset (CMFD), including 

http://dict.cn/one-quarter
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downward shortwave radiation, downward longwave radiation, specific humidity, wind speed, 

air pressure and air temperature. CMFC was developed by the Institute of Tibetan Plateau 

Research, Chinese Academy of Sciences. CMFC is based on China Meteorological 

Administration station measurements [He and Yang, 2011], and has been implemented in 

many studies showing general good performance [Xue et al., 2013; Zhou et al., 2015; Yang et 

al., 2017].  

 

Digital Elevation Model (DEM) data were obtained from NASA Shuttle Radar Topographic 

Mission with a resolution of 30 m × 30 m [Rabus et al., 2003]. Land-use data were obtained 

from the USGS (http://edc2.usgs.gov/glcc/glcc.php), and slope data were calculated based on 

the DEM (Supplementary Information Figure S1). Soil data were obtained from the 

Harmonized World Soil Database, and Future Water’s Global Maps of Soil Hydraulic 

Property product (http://www.futurewater.eu/). The one-km, eight-day Moderate Resolution 

Imaging Spectroradiometer (MODIS) global Leaf Area Index (LAI) and Fraction of 

Photosynthetically Active Radiation (FPAR) products (MOD15A2 1-km 8-day) [Myneni et 

al., 1997] were utilized to represent vegetation dynamic.  

 

Downward solar and longwave radiation data of GLDAS2.0 are based on the Princeton 

Global meteorological Forcing (PGF) dataset. PGF dataset are generated from the National 

Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis 

(NCEP–NCAR) [Kalnay et al., 1996] and NASA Langley surface radiation budget data 

[Stackhouse et al., 2011; Cox et al., 2017]. GLDAS2.0 air temperature is produced using 

Climatic Research Unit (CRU) TS2.0 and NCEP–NCAR reanalysis. For specific humidity, 

GLDAS2.0 uses data from NCEP–NCAR reanalysis without bias-corrections because 
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observation-based data are not available on a global scale [Sheffield et al., 2006]. In 2000 and 

2001, GLDAS2.1 utilizes Global Data Assimilation System (GDAS) downward solar and 

longwave radiation data, and, after 2002, GLDAS2.1 uses downward solar and longwave 

radiation data from the air force weather agency’s agricultural meteorological modeling 

system. Air temperature and Specific Humidity (SH) data of GLDAS2.1 are from the 

National Oceanic and Atmospheric Administration (NOAA) atmospheric analysis datasets 

[Derber et al., 1991].  

 

2.3 Global precipitation data 

The studied precipitation products are shown in Table 2. The data sources of the precipitation 

products mainly include satellite-based data, reanalysis data and gauge-based data. There are 

a few approaches to estimate precipitation from satellite, such as microwave-based approach, 

infrared-based approach and precipitation radar. Microwave estimation could miss convective 

rainfall and typhoon rain because of its sparse time interval resolution; infrared estimation 

has a higher time interval resolution, but it cannot penetrate thick clouds; precipitation radar 

could offer better precipitation estimation than microwave- and infrared-based estimations, 

but its data have smaller spatial coverage than microwave- and infrared-based data. 

Reanalysis data could capture large scale precipitation events, but may have high uncertainty 

on small scales because of coarse resolutions of parameterization on small scales [Ebert et al., 

2007; Kidd et al., 2013]. Global scale gauge-based data are limited by the number of in situ 

gauges and gauge data quality.  

 

< Table 2 here please > 

 



 

 

© 2018 American Geophysical Union. All rights reserved. 

The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between NASA and 

Japan Aerospace Exploration Agency [Huffman et al., 2007]. Three instruments, i.e., Visible 

Infrared Radiometer (VIR), TRMM Microwave Imager (TMI), and precipitation radar, are 

employed to estimate precipitation. TRMM3B42 V7 estimates rainfall based on VIR, TMI 

and precipitation radar, also utilizing Global Precipitation Climatology Center (GPCP) 

monthly data [Huffman et al., 2001] and the Climate Assessment and Monitoring System 

monthly gauge data to improve its accuracy. The GLDAS2.0 precipitation data originate from 

disaggregated GPCP data [Huffman et al., 2001] based on the TRMM3B42 real time product 

(which used microwave- and infrared-based data). In addition, CRU TS2.0 and National 

Center for Atmospheric Research precipitation data are also used to produce GLDAS2.0 

precipitation [Kalnay and Cai, 2003; Sheffield et al., 2006]. Different from GLDAS2.0, 

GLDAS2.1 utilizes GPCP and a disaggregation approach developed using GDAS 

precipitation estimation [Derber et al., 1991].  

 

The Climate Prediction Center (CPC) MORPHing technique gauge-satellite blended 

precipitation (CMORPH-BLD) estimates precipitation based on passive microwaves aboard 

the Defense Meteorological Satellite Program, NOAA advanced microwave estimation, TMI, 

and GPCP data [Joyce et al., 2004]. Gauge adjusted Global Satellite Mapping of Precipitation 

(GSMaP-Gauge) utilizes a Kalman filter approach to estimate rainfall rates based on 

microwave-based data, and NOAA CPC gauge data and GPCP data are also utilized to 

improve its accuracy [Mega et al., 2014]. Precipitation Estimation from Remotely Sensed 

Information using Artificial Neural Networks - Climate Data Record (PERSIANN-CDR) 

estimates precipitation on the basis of GPCP, TMI and NOAA microwave-based precipitation 

estimation using an artificial neural network approach [Ashouri et al., 2015]. The Climate 

https://ncar.ucar.edu/
https://ncar.ucar.edu/
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Hazards Group InfraRed Precipitation with Station data (CHIRPS) is produced based on a 

few satellite based data, such as CMORPH and TRMM3B42, and is bias-corrected based on 

gauge data from Food and Agriculture Organization of the United Nations, the Global 

Historical Climate Network and CPC [Funk et al., 2015a; Funk et al., 2015b]. Multi-Source 

Weighted-Ensemble Precipitation (MSWEP) is the latest global precipitation product 

developed by Beck et al. [2017]. MSWEP merges several satellite based precipitation 

products, such as CMORPH, TRMM3B42RT, and GSMaP-MVK, and is bias-corrected 

according to GPCP and CPC gauge data. The Watch Forcing Data methodology applied to 

ERA-Interim (WFDEI-CRU) is a gauge and reanalysis data combined global product which 

utilizes the CRU data to correct bias of ERA-Interim data [Weedon et al., 2014]. More details 

about the precipitation products used are shown in Table 2.  

 

2.4 Criteria for evaluations 

Uncertainty evaluations are based on basin average values. Four criteria are utilized: 

correlation coefficient (CC), Nash-Sutcliffe Efficiency (NSE), Relative Bias (RB), and Root 

Mean Square Error (RMSE):  
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where Xsi represents GLDAS data or simulations using GLDAS data; Xoi represents observed 
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data or simulations using observations; i represents time; n represents total number of data 

points; oX  represents average of the observed data or simulated data using observations.  

 

3 Methodology 

3.1 Overview 

The approach used in this study includes four steps. First, WEB-DHM is validated using 

observed runoff in the four large river basins in the TP. Second, downward solar radiation, 

downward longwave radiation, specific humidity and air temperature of GLDAS2.0 and 2.1 

are compared with gauge-based data. Third, precipitation data of GLDAS2.0 and 2.1 are 

evaluated against gauge-based data and compared with the global precipitation products to 

reveal their differences. Fourth, the best precipitation products are selected to replace original 

GLDAS2.0 and 2.1 precipitation to simulate runoff, and the performances of simulated runoff 

are evaluated based on observed runoff. This study is carried out on the basis of the data from 

March 2000 to December 2010 because the GSMaP-Gauge precipitation product is not 

available for January and February 2000 and there is no data for GLDAS2.0 after December 

2010.  

 

3.2 WEB-DHM model 

WEB-DHM couples a geomorphology-based hydrological model [Yang, 1998] with a simple 

biosphere scheme (SiB2) [Sellers et al., 1986; Sellers et al., 1996a; Sellers et al., 1996b] to 

describe basin scale water, energy and CO2 fluxes. Many evaluations have been carried out 

[Wang et al., 2010a; Wang et al., 2010b; Wang et al., 2012; Hu et al., 2014; Qi et al., 2015; Qi 

et al., 2016a], showing that WEB-DHM can simulate water and energy fluxes well on basin 

scales. The overall structure of WEB-DHM is shown in Supplementary Information Figure 
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S2. The input data of WEB-DHM includes air temperature, precipitation, downward solar 

radiation, air pressure, downward longwave radiation, humidity, and wind speed. The data 

used in this study are introduced in Section 2.2.  

 

One year data were utilized to calibrate WEB-DHM parameters. It took almost two months to 

finish the calibration in a personal computer with four Inter Core i7-6700 3.40 GHz 

processors. In the Yarlung Tsangpo, Upper Lancang and Upper Yangtze Rivers, the data in 

2001 were used; in the Upper Yellow River, the data in 2005 were used. The selections of the 

data for calibration considered the magnitudes of observed runoff: neither too low nor too 

high. The data in the other years were used to validate calibrated parameters. The calibration 

and validation were carried out on a monthly scale. Model parameter multipliers were 

calibrated, similar to the studies by Wang et al. [2011] and Qi et al. [2015]. The calibration 

has two steps. First, all the multiplier values were set to 1 which represents the default 

parameter values in WEB-DHM. Second, the multiplier values were optimized until an 

acceptable runoff simulation accuracy is obtained. In this study, the Dynamically 

Dimensioned Search (DDS) algorithm is used to optimize the multiplier values because DDS 

shows very good performance compared with other approaches [Tolson and Shoemaker, 2008; 

Tolson et al., 2009; Qi et al., 2016b]. 1NSE RB   is used as the objective function in the 

calibrations with an evaluation number of the objective function values up to 1000. The lower 

the objective function values, the better the multiplier values. The multiplier values with the 

best objective function value after finishing calibration processes are selected. Basin average 

values of calibrated model parameter values are shown in Table 3.  

 

< Table 3 here please > 
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4 Results and discussion 

4.1 WEB-DHM evaluations 

Table 4 shows the monthly NSE and RB values in the calibration and validation periods in 

the four river basins. It can be seen that WEB-DHM performs well in the calibration period 

with NSE being up to 0.93. Similarly, the performacnes of WEB-DHM are also acceptable 

with NSE being up to 0.87 in the validation period.  

 

< Table 4 here please > 

 

Figure 2 shows the observed and simulated runoff using WEB-DHM from March 2000 to 

December 2010 in the four river basins on a monthly scale. In the Yarlung Tsangpo River, the 

overall NSE and RB between 2000 and 2010 are 0.87 and -9%, respectively, indicating the 

accuracy of the model simulation is acceptable. Similarly, WEB-DHM performs well in other 

basins with overall NSE being higher than 0.80 and absolute RB being less than 8%. On a 

multi-year mean monthly scale (Figure 3), the overall NSE values are all higher than 0.88 in 

the four basins. These results indicate that WEB-DHM can simulate hydrological processes 

well in the four river basins.  

 

< Figure 2 here please > 

< Figure 3 here please > 

 

4.2 Evaluations of downward solar radiation, downward longwave radiation, specific 

humidity, and air temperature 
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4.2.1 Downward solar radiation 

Figure 4 shows the comparison of downward solar radiation (RSW) among observation based 

data (CMFD), GLDAS2.0 and GLDAS2.1. In the Yarlung Tsangpo River, the seasonal 

variations of both GLDAS2.0 and GLDAS2.1 agree well with CMFD with CC being above 

0.95 and NSE being above 0.79. However, the estimations of GLDAS2.0 and GLDAS2.1 are 

smaller than CMFD with RB being -7% and -1%, respectively. In addition, both GLDAS2.0 

and GLDAS2.1 have smaller peak estimations than CMFD in most of the summer periods 

(with the exceptions of 2007 and 2008). In 2007, the peak values of GLDAS2.0 and CMFD 

in summer agree well, and GLDAS2.1 overestimates a little, whereas the peaks values of 

GLDAS2.1 and CMFD agree well in summer 2008. At the end of 2007, both GLDAS2.0 and 

GLDAS2.1 have higher estimations than CMFD. Overall, GLDAS2.1 outperforms 

GLDAS2.0 in downward solar radiation estimation in terms of NSE, RB, and RMSE.  

 

< Figure 4 here please > 

 

Similarly, the results in other three basins also show GLDAS2.0 and GLDAS2.1 have lower 

peak values than CMFD in most of the summer periods with exceptions in a few years; e.g., 

in 2008 and 2009 in the Upper Lancang River and in 2009 in the Upper Yangtze River. The 

differences between GLDAS2.0 and 2.1 may be due to their different data sources used (as 

explained in the section 2.2). In addition, similar to the results in the Yarlung Tsangpo River, 

GLDAS2.1 also outperformed GLDAS2.0 in terms of NSE, RB and RMSE in the Upper 

Lancang, Upper Yangtze and Upper Yellow Rivers.  

 



 

 

© 2018 American Geophysical Union. All rights reserved. 

4.2.2 Downward longwave radiation 

Figure 5 shows the comparison of downward long wave radiation (RLW) among observation 

based data (CMFD), GLDAS2.0 and GLDAS2.1. In the Yarlung Tsangpo River, both 

GLDAS2.0 and GLDAS2.1 have smaller estimations than CMFD in most of the winter 

periods, and slightly overestimate in most of the summer periods. Similarly, in the Upper 

Lancang River, both GLDAS2.0 and GLDAS2.1 have smaller estimations than CMFD in 

winter. Comparatively, in the Upper Yangtze River, the three datasets agree relatively well. In 

the Upper Yellow River, GLDAS2.0 and 2.1 overestimate a little with RB being 6% and 4%, 

respectively. However, both GLDAS2.0 and 2.1 replicate the seasonal variations well with 

NSE being above 0.88 in the Upper Yellow River. Similar to the results in Figure 4, the 

differences between GLDAS2.0 and 2.1 may also result from their different data sources (as 

explained in the section 2.2). Overall, GLDAS2.0 and 2.1 can reasonably represent the 

seasonal variations of downward longwave radiation in the four river basins.  

 

< Figure 5 here please > 

 

4.2.3 Specific humidity 

Figure 6 shows the comparison of SH among observation-based data (CMFD), GLDAS2.0, 

and GLDAS2.1. In the Yarlung Tsangpo River, GLDAS2.0 largely overestimates SH (RB 

equals 46%), especially in the summer, and GLDAS2.1 agrees relatively well with CMFD 

(NSE is 0.93 and RB is 1%). Similarly, GLDAS2.0 also overestimates SH in the other three 

regions with RB being up to 36% in the Upper Yellow River. GLDAS2.1 agrees relatively 

well with CMFD in the Upper Lancang and Upper Yellow Rivers, whereas GLDAS2.1 

slightly underestimates in the Upper Yangtze River with RB being -14%. The differences 
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between GLDAS2.0 and 2.1 may result from their different data sources (as explained in the 

section 2.2). Overall, GLDAS2.0 has higher SH estimation than GLDAS2.1, especially in the 

summer.  

 

< Figure 6 here please > 

 

4.2.4 Air temperature 

Figure 7 compares air temperature among observation based data (CMFD), GLDAS2.0, and 

GLDAS2.1. The data in January and February 2000 are not included, and therefore the data 

in 2000 is not considered when calculating annual averages.  

 

< Figure 7 here please > 

 

In the Yarlung Tsangpo River, GLDAS2.0 agrees well with CMFD, whereas GLDAS2.1 

largely underestimates air temperature before 2005 and slightly underestimates air 

temperature in winter after 2006 (Figure 7a). Similarly, in the Upper Lancang River, 

GLDAS2.1 has lower estimations than GLDAS2.0 and CFMD in winter before 2005. In 

addition, it can be seen that GLDAS2.1 has higher estimations than GLDAS2.0 in summer 

after 2006 in the Upper Lancang River (Figure 7c). Comparatively, Figures 7e and f show the 

three datasets agree relatively well in the Upper Yangtze and Upper Yellow Rivers (NSE 

values are above 0.93) though with some exceptions, e.g., in the winter of 2000 and 2001 and 

the summer of 2006 and 2010. Over the four river basins, the average RMSE of GLDAS2.0 

and 2.1 are 1.63 and 3.03, and the average NSE are 0.94 and 0.76. Therefore, GLDAS2.1 has 

higher overall uncertainty than GLDAS2.0 in the TP.  
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On a yearly scale, GLDAS2.1 shows a significant warming trend in the four river basins on 

the basis of a Mann-kendall test at a significance level of 0.05. CMFD also shows a warming 

trend but it is not significant in the Upper Yangtze and Upper Yellow Rivers. Different from 

GLDAS2.1 and CMFD, GLDAS2.0 shows a cooling trend in the Yarlung Tsangpo, Upper 

Yangtze and Upper Yellow Rivers (significant in the Upper Yellow River) and a warming 

trend in the Upper Lancang River. These differences indicate that caution should be taken 

when analyzing climate change impacts from 2001 to 2010 in the TP using the different 

datasets. The differences between GLDAS2.0 and 2.1 may be due to their different data 

sources (as explained in the section 2.2). The PGF air temperature used in GLDAS2.0 is 

based on NCEP reanalysis data [Kalnay et al., 1996]. NCEP calculates near surface 

temperature based on modeled atmosphere variables, and therefore is influenced by model 

parameterization [Sheffield et al., 2006]. Several studies have suggested that the uncertainty 

in the parameterization of NCEP could lead to large uncertainty in the trend of air 

temperature (e.g., Kalnay and Cai [2003]; Simmons et al. [2004]). 

 

4.3 Precipitation evaluations by comparing measuring data and other global 

precipitation products 

4.3.1 Daily scale 

Figure 8 shows the evaluation results of GLDAS2.0 and 2.1 precipitation data and 

comparisons with global precipitation products based on the four criteria on a daily scale. 

Each row represents the results in one river basin, and each column represents the results of 

one evaluation criterion. The larger the circles, the better the precipitation products.  
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< Figure 8 here please > 

 

In terms of CC, GLDAS2.0 has higher CC values than GLDAS2.1 in all four river basins. 

Regarding NSE, GLDAS2.0 is also better than GLDAS2.1, though the NSE values are not 

high in the four river basins (the highest value is 0.37 in the Upper Yellow River). With 

respect to RB, GLDAS2.0 has a better RB value (51%) than GLDAS2.1 (72%) in the Yarlung 

Tsangpo River, though both of their RB values show large uncertainty. RB values of 

GLDAS2.1 are better than GLDAS2.0 in the Upper Lancang, Upper Yangtze, and Upper 

Yellow Rivers. Regarding RMSE, GLDAS2.0 has better RMSE values than GLDAS2.1 in all 

four river basins. Concerning the average values of the four criteria, GLDAS2.0 is better than 

GLDAS2.1 in terms of CC, NSE, and RMSE. With regards to absolute values of RB (|RB|), 

GLDAS2.1 is better than GLDAS2.0 though their average |RB| values are high (42% and 29% 

for GLDAS2.0 and 2.1 respectively). The high bias in rainfall estimation in GLDAS2.0 may 

result from uncertainties in PGF data and TRMM data because TRMM3B42RT data were 

used to generate GLDAS2.0 precipitation. For GLDAS2.1, the uncertainties may come from 

GDAS precipitation data which are used to develop GLDAS2.1 precipitation.  

 

For other precipitation products, CMORPH-BLD is the best in all the four river basins in 

terms of CC, NSE, and RMSE. Regarding RB, CMORPH-BLD has the best RB value (-16%) 

in the Yarlung Tsangpo River; in the Upper Lancang River, the RB values of CMORPH-BLD 

and CHIRPS2 are the same and lower than others. Different from the results in the Yarlung 

Tsangpo and Upper Lancang Rivers, CHIRPS2 has the best RB values in the Upper Yangtze 

and Upper Yellow Rivers (-15% and 1% respectively), and CMORPH-BLD has the second 

best RB value (4%) in the Upper Yellow River. The average values of CC, NSE, |RB|, and 
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RMSE over the four river basins are shown in the bottom row of Figure 8. It can be seen that 

CMORPH-BLD is the best in terms of the average values of CC, NSE, |RB|, and RMSE. 

Therefore, CMORPH-BLD is better than other precipitation products overall on the daily 

scale.  

 

4.3.2 Monthly scale 

Figure 9 shows the evaluation results of GLDAS2.0 and 2.1 precipitation data and 

comparison with global precipitation products on a monthly scale. The larger the circles, the 

better the precipitation products.  

 

< Figure 9 here please > 

 

In terms of CC, GLDAS2.1 is better than GLDAS2.0 in all four river basins, whereas 

GLDAS2.0 is better than GLDAS2.1 in the Yarlung Tsangpo River with respect to NSE and 

RMSE. In the Upper Lancang, Upper Yangtze, and Upper Yellow Rivers, GLDAS2.1 is better 

than GLDAS2.0 regarding NSE and RMSE. With regard to the average values of CC, NSE, 

and RMSE, GLDAS2.1 is better than GLDAS2.0 overall.  

 

For other precipitation products, CHIRPS2 has higher CC values than the others in the Upper 

Lancang and Upper Yangtze Rivers. In the Yarlung Tsangpo River, TRMM3B42 and 

GLDAS2.1 have the same CC values and are better than the others, while in the Upper 

Yellow River, TRMM3B42 has better CC values than the others. Regarding NSE and RMSE, 

CMORPH-BLD is better than the others in the Yarlung Tsangpo and Upper Yellow Rivers, 

whereas CHIRPS2 is better than the others in the Upper Lancang and Upper Yangtze Rivers. 
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In the Upper Yellow River, TRMM3B42 and CHIRPS2 have the same NSE and RMSE 

values as CMORPH-BLD. Concerning the average criteria values, TRMM3B42 is better than 

the others in terms of CC; regarding NSE, CMORPH-BLD is the best; and CHIRPS2 is better 

than the others with respect to RMSE. These results appear to indicate that it is difficult to 

identify the best precipitation products on a monthly scale.  

 

4.3.3 Multi-year average scale 

Figure 10 shows the evaluation results of global precipitation products on a multi-year 

average monthly scale. The bigger the circles, the better the precipitation products.  

 

< Figure 10 here please > 

 

Regarding CC, GLDAS2.0 is the best in the Yarlung Tsangpo, Upper Lancang, and Upper 

Yellow Rivers. Meanwhile, in the Upper Yangtze River, CHIRPS2 is the best. With respect to 

NSE and RMSE, CMORPH-BLD is the best in the Yarlung Tsangpo and Upper Yellow 

Rivers, whereas CHIRPS2 is the best in the Upper Lancang and Upper Yangtze Rivers. In the 

Upper Yellow River, the NSE value of CHIRPS2 is the same as CMORPH-BLD. The average 

values of CC, NSE, and RMSE over the four river basins are shown in the bottom row of 

Figure 10. Regarding CC, all the precipitation products have CC values above 0.98 and 

TRMM3B42 has the highest CC value. With respect to NSE and RMSE, CMORPH-BLD is 

the best among all the studied precipitation products. Compared with the results on the daily 

scale, it can be seen that CMORPH-BLD is better than the other precipitation products in 

terms of the averages of |RB|, NSE, and RMSE on both daily and multi-year average monthly 

scales.  
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Figure 11 compares the precipitation data on a multi-year average monthly scale in time 

series plots. In the Yarlung Tsangpo River basin, NSWEP has the lowest rainfall intensity 

estimation in July and August among all the precipitation products investigated. Similarly, 

MSWEP also has the lowest rainfall intensity estimation from May to August in the Upper 

Yellow River. In the Upper Lancang and Upper Yangtze Rivers, MSWEP has lower rainfall 

estimation than the observation-based data, especially in June, July, and August. MSWEP 

utilizes GPCP and NOAA CPC gauge data to correct bias of satellite and reanalysis 

precipitation data, whereas a limited number of rain gauges used in CGDPA are included in 

GPCP and CPC, especially in western China [Chen et al., 2008; Shen and Xiong, 2016; Gao 

et al., 2017]. As a new global precipitation product developed in 2017, MSWEP has rarely 

been specifically evaluated in the TP. To the best of the authors’ knowledge, this is the first 

time that it has been found that MSWEP underestimates precipitation in all the four large 

river basins, especially in summer.  

 

< Figure 11 here please > 

 

4.4 Hydrological evaluations in runoff simulations 

Because the results on a multi-year average monthly scale show CMORPH-BLD can 

outperform the other products, this section will compare the performance of CMORPH-BLD 

with other precipitation products in terms of runoff simulation. Figure 12 shows evaluations 

of simulated runoff using GLDAS2.0 forcing data and global precipitation products on a 

multi-year average monthly scale. Here, the forcing data refer to downward solar radiation, 

downward longwave radiation, specific humidity and air temperature. The first four rows are 
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the results of the four evaluation criteria in the four river basins, and the last two rows present 

average criteria values over the four river basins.  

 

< Figure 12 here please > 

 

Regarding CC, MSWEP and CMORPH-BLD generate the highest and the second highest 

values in the Yarlung Tsangpo River, and CMORPH-BLD generates the highest CC values in 

the other three basins. With respect to NSE, RB, and RMSE, the best precipitation products 

vary as the river basins change. Therefore, the average values of the evaluation criteria over 

the four river basins are compared. With respect to the average value of CC, CMORPH-BLD 

generates the highest value (0.99). Similarly, CMORPH-BLD also generates the best average 

values in terms of NSE, |RB| and RMSE. Thus, CMORPH-BLD could be a good substitution 

for the precipitation data in GLDAS2.0 in the TP.  

 

Figure 13 shows the evaluations of simulated runoff using GLDAS2.1 forcing data and global 

precipitation products on a multi-year average monthly scale. In the Yarlung Tsangpo River, 

CMORPH-BLD is the best in terms of all the four criteria, and PERSIANN-CDR is the best 

in the Upper Yellow River according to the four criteria. In terms of NSE, RB and RMSE, 

CHIRPS2 is the best in the Upper Lancang River, and PERSIANN-CDR is the best in the 

Upper Yangtze River. In terms of the average criterion values, it can be seen that 

CMORPH-BLD generates the best average criterion values, which is similar to the results in 

Figure 12. Compared to the average criterion values in Figure 12, all the average criterion 

values of CMORPH-BLD in Figure 13 are worse. For example, the average NSE is 0.85 for 

CMORPH-BLD in Figure 12, and 0.79 in Figure 13; the average |RB| is 16% for 
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CMORPH-BLD in Figure 12, and 22% in Figure 13. These results indicate the coalescence of 

GLDAS2.0 forcing data and CMORPH-BLD could be better than the coalescence of 

GLDAS2.1 forcing data and CMORPH-BLD in runoff simulation in the TP.  

 

< Figure 13 here please > 

 

4.5 Discussion 

Gao and Liu [2013] evaluated four precipitation products (i.e., TRMM3B42 V6, 

TRMM3B42RT V6, CMORPH without gauge corrections and PERSIANN) in the TP based 

on in situ gauge data. Wang et al. [2015] evaluated five global precipitation products (i.e. 

TRMM3B42 V7, TRMM3B42RT V7, CMORPH gauge adjusted product, CMORPH real 

time product, and CMORPH-BLD) in two sub-basins (covering a total area of 32,652 km
2
) of 

the Yarlung Tsangpo River. Tong et al. [2014] assessed TRMM3B42 V7, TRMM3B42RT V7, 

CMORPH without gauge corrections, and PERSIANN in two river basins, i.e., the Upper 

Yellow River basin and the Upper Yangtze River basin. Compared to these prior studies, our 

study was carried out in four large river basins with a total area of 57,1471 km
2
 (almost one 

quarter of the total area of the TP) and examined more precipitation products. Wang et al. 

[2015] concluded that CMORPH-BLD is better than TRMM3B42, TRMM3B42RT, and 

CMORPH real time product in runoff simulation. This result seems to support our results, but 

their study area is much smaller. Similarly, Su et al. [2017] also indicated CMORPH-BLD 

has better performance than CMORPH real time product, PERSIANN-CDR, and 

TRMM3B42 V7. Nevertheless, their study was carried out only for the Upper Yellow River 

basin. Compared to the research by Qi et al. [2016a], our study evaluated the new version 

datasets of GLDAS and more global precipitation products in four larger river basins. 

http://dict.cn/one-quarter
http://dict.cn/one-quarter
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Therefore, the results of our study are much more comprehensive and informative than the 

prior studies.  

 

The different performance of GLDAS2.0 and 2.1 in runoff simulations may be due to their 

different uncertainty in the forcing data. Although GLDAS2.1 outperforms GLDAS2.0 in 

downward solar radiation estimation in terms of NSE, RB and RMSE, the air temperature 

estimation of GLDAS2.1 has a larger uncertainty than GLDAS2.0. This difference may lead 

to the higher uncertainty in simulated runoff using GLDAS2.1 forcing data than GLDAS2.0. 

According to the best of the authors’ knowledge, this is the first time that runoff simulations 

of different combinations of the global precipitation products and GLDAS2.0 and 2.1 forcing 

data have been investigated in the TP. We find that CMORPH-BLD could be the best 

substitution for GLDAS2.0 and 2.1 precipitation data in hydrological simulation for the TP.  

 

It should be noted that the performance of global precipitation products may change as study 

regions and application purposes vary [Qi et al., 2016a; Beck et al., 2017]. In this study, we 

investigated the performance of the global precipitation products in the TP for runoff 

simulations. The identified best precipitation product may change when study region and 

simulated hydrological variables are different. However, our results do show CMORPH-BLD 

product has better performances on average than other products in runoff simulations on a 

multi-year average monthly scale. This finding could be beneficial for hydrological 

simulations in ungauged regions in the TP.  

 

In this study, the initial land surface states on March 1 2000, such as soil moisture in different 

soil layers, are assumed to be the default values in WEB-DHM in the first model run. After 
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the first run, the simulated land surface states on March 1 2010 is used as the new initial land 

surface states on March 1 2000 for the model calibrations. After the model calibrations, the 

simulated land surface states on March 1 2010 using calibrated parameters are used as new 

initial land surface states on March 1 2000 in other simulations. The results in Figures 2 and 3 

indicate the simulated runoff are satisfactory. Therefore, the approach used to spin the model 

up is acceptable.  

 

In this study, the WEB-DHM model was calibrated using one year data and 1000 objective 

function evaluations because of the computational burden of the calibration. Nevertheless, the 

calibrated parameters show good performance in runoff simulations (as shown in Figures 2 

and 3) and the calibration approach used is therefore acceptable. In addition, the DDS 

algorithm was utilized in the calibration. However, other appropriate optimization algorithms 

can also be utilized, even though DDS was implemented in this study. The simulated runoff 

replicates observation well. Therefore, using DDS is acceptable.  

 

5 Conclusions  

GLDAS2.0 and 2.1 data utilize new sources compared with GLDAS1.0 and benchmarking is 

important. However, the two new versions have been validated at very limited locations, and 

inter-comparisons have not been carried out in the TP. This study aimed to evaluate, 

inter-compare and improve their applicability in basin scale hydrological studies in the TP. 

Gauge based meteorological forcing data, seven global fine resolution precipitation products, 

and a water and energy budget-based distributed biosphere hydrological model were utilized 

to conduct the study. The results provide unique insights into the similarities and differences 

of the studied data, and promising coalescence of GLDAS2.0 and 2.1 forcing data and global 
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precipitation products in hydrological simulation in the TP have also been identified. The 

results could be beneficial for a broad range of applications in the TP. The following 

conclusions are presented on the basis of this study.  

 

First, GLDAS2.1 shows significant warming trends in all the four river basins from 2001 to 

2010, whereas GLDAS2.0 shows cooling trends which are only significant in the Upper 

Yellow River basin. Therefore, caution should be taken when using them to analyze and 

interpret climate change impacts in the TP.  

 

Second, on a monthly scale, GLDAS2.1 precipitation is better than GLDAS2.0 data with 

regards to average values of CC, NSE, |RB| and RMSE over the four large river basins. 

Nevertheless, both of them have high uncertainty: averages of |RB| are 42% and 29% for 

GLDAS2.0 and 2.1. Therefore, improvements in precipitation data are of importance for their 

practical applications in the TP.  

 

Third, CMORPH-BLD offers the best precipitation on average in terms of CC, NSE, RB, and 

RMSE on a daily scale and in terms of NSE and RMSE on a multi-year average monthly 

scale. Combining CMORPH-BLD with GLDAS2.0 forcing data generates better runoff 

simulations than combining CMORPH-BLD with GLDAS2.1 forcing data. Therefore, it is 

promising to utilize CMORPH-BLD precipitation and GLDAS2.0 forcing data in 

hydrological simulation in data sparse regions in the TP.  
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Table 1 Details of the studied river basins in the Tibetan Plateau 

Basins 
Area (km

2
) 

Mean 

elevation (m) 

Mean annual 

precipitation 

(mm/year) 

Mean annual 

temperature 

(
o
C) 

Yarlung Tsangpo River basin 256,864 4627 559 0.1 

Upper Yangtze River basin 137,371 4762 471 1.1 

Upper Yellow River basin 123,580 4125 550 -1.7 

Upper Lancang River basin 53,656 4557 641 -0.8 
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Table 2 Details of the global precipitation products 

Product 

Spatial 

resolution 

Temporal 

resolution 

Areal coverage 

Temporal 

coverage 

Data 

sources 

TRMM3B42 V7 0.25
o
 3h Global 50°N-S 1998-present G, S 

GSMaP-Gauge V5 0.1
o
 1h Global 60°N-S 2000-present G, S 

CMORPH-BLD 1.0 0.25
o
 Daily Global 90°N-S 1998-present G, S 

CHIRPS V2.0 0.25
o
 Daily Global 50°N-S 1981-present G, S, R 

MSWEP V2.01 0.25
o
 3h Global 1979-present G, S, R 

WFDEI-CRU 0.5
o
 3h Global 1979-2016 G, R 

PERSIANN-CDR 0.25
o
 Daily Global 60°N-S 1983-present G, S 

GLDAS2.0 0.25
o
 3h Global 90

o
N-60

o
S 1948-2010 G, S, R 

GLDAS2.1 0.25
o
 3h Global 90

o
N-60

o
S 2000-present G, S, R 

G: gauge; S: satellite; R: reanalysis.  
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Table 3 Basin average values of calibrated model parameters 

 

Yarlung Tsangpo 

River 

Upper Lancang 

River 

Upper Yangtze 

River 

Upper Yellow 

River 

KS(m/s) 1.33E-05 4.86E-06 5.99E-06 6.44E-05 

anik 4.92  5.18  3.37  2.09  

Smax(m) 1.82E-05 5.01E-03 2.54E-02 7.32E-03 

a 4.05E-02 6.55E-02 3.88E-02 1.68E-02 

n 2.47  2.62  2.06  2.04  

θs 0.21  0.41  0.60  0.69  

f 2.16  4.24  2.09  2.68  

KS: saturated hydraulic conductivity for soil surface; anik: hydraulic conductivity anisotropy 

ratio; Smax: maximum surface water storage; a: van Genuchten parameter; n: van Genuchten 

parameter; θs: saturated water content; f: hydraulic conductivity decay factor.  

  



 

 

© 2018 American Geophysical Union. All rights reserved. 

Table 4 NSE and RB values in the calibration and validation periods in the four river basins 

 
 

Calibration 

period 

Validation 

period 

Yarlung Tsangpo River 
NSE 0.92 0.87 

RB 0% -10% 

Upper Lancang River 
NSE 0.92 0.85 

RB -6% 2% 

Upper Yangtze River 
NSE 0.79 0.80 

RB -11% 10% 

Upper Yellow River 
NSE 0.93 0.76 

RB -4% -7% 
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Figure 1 The four river basins studied in the Tibetan Plateau.  
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Figure 2 WEB-DHM evaluations based on monthly runoff. ‘Q’ represents runoff; ‘R’ 

represents rainfall intensity.  

  



 

 

© 2018 American Geophysical Union. All rights reserved. 

 

Figure 3 WEB-DHM evaluations based on multi-year average monthly runoff. ‘Q’ represents 

runoff; ‘R’ represents rainfall intensity.  
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Figure 4 Downward solar radiation (RSW) comparison among the three datasets in the four 

river basins studied in the Tibetan Plateau.   
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Figure 5 Downward longwave radiation (RLW) evaluations in the four river basins studied in 

the Tibetan Plateau.  
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Figure 6 Specific Humidity (SH) evaluations in the four river basins studied in the Tibetan 

Plateau. 
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Figure 7 Comparison of air temperature (K) among CMFD, GLDAS2.0 and GLDAS2.1. The 

dashed lines represent the trend lines.  
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Figure 8 Evaluation results of GLDAS2.0 and 2.1 precipitation products and comparison with 

global precipitation products based on four criteria on a daily scale. |RB| represents the 

absolute values of Relative Bias (RB). The larger the circles, the better the precipitation 

products.  
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Figure 9 Evaluation results of GLDAS2.0 and 2.1 precipitation data and comparison with 

global precipitation products on a monthly scale.  
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Figure 10 Evaluation results of GLDAS2.0 and 2.1 precipitation data and comparison with 

global precipitation products on a multi-year average monthly scale.  
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Figure 11 Precipitation data evaluations on a multi-year average monthly scale in time series 

plots. 
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Figure 12 Evaluations of simulated runoff using GLDAS2.0 forcing data and precipitation 

product data on a multi-year average monthly scale. The ‘Average’ represents the average 

values of the evaluation criteria over the four river basins studied. The average values of |RB| 

represent the average of absolute RB values.  
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Figure 13 Evaluations of simulated runoff using GLDAS2.1 forcing data and precipitation 

product data on a multi-year average monthly scale.  


