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Abstract: 

As one of the major agricultural regions in the world, water scarcity problems in Northeast 

China have drawn much attention recently. Because of cold and long winter period, snow is an 

important component in the hydrological system. Yet, few studies have been conducted to 

systematically assess its role. This study quantified the effects of snow on runoff and soil 

moisture in the entire region in a 30-year time period (1982-2011) for the first time. A water 

and energy budget-based distributed biosphere hydrological model with improved snow 

physics after calibration and validation is employed. A Standardized Snow depth Index (SSdI) 

is also proposed to quantify snow variations. Result show that snow contributes 11% to runoff 

annually on average and 66% and 33% in April and May (main months for crop planting). Soil 

moisture could decrease by at least 20% in March, April and May if there would be no snow, 

and the major agriculture area suffers more than other regions. We also found that SSdI is 

indicative of standardized soil moisture index and standardized runoff index in spring, 

particularly useful for supporting water management in agriculture. These results indicate that 

snow performs like an important reservoir: redistribute water resources among months. This 

study provides unique insights into the importance of snow in the entire region. The results 

improve the awareness of the importance of snow to water resources management, and indicate 

that it is worth paying attention to snow in water resources management in this region.  
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Plain language summary 

Because of cold and long winter period in Northeast China, snow plays a role as natural 

reservoir to store water in winter and to release water to ameliorate water shortage in spring. 

In addition, snow can influence agriculture through affecting soil moisture. However, studies 

on the role of snow in the region are limited so far. Here, we evaluate the importance of snow 

as a reservoir in entire Northeast China for the first time. We found on average snow contributes 

11% to the annual runoff, and 66% and 33% in April and May (the main crop planting months). 

Soil moisture in the region can decrease by at least 20% in March, April and May if there would 

be no snow, and the major agriculture area suffers more than other regions. Therefore, snow is 

an important source of water resources in this region, and worth paying attention to in water 

resources management.  

 

Highlights:S  

We quantified snow contribution to runoff in entire Northeast China for the first time, and found 

it is 11% on average and 66% in April 

 

Snow plays an important role in keeping soil moisture. In March, April and May, soil moisture 

decreases by at least 20% when no snow 

 

SSdI is proposed to quantify snow variations, and it is indicative of runoff and soil moisture 

variations in spring 
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1. Introduction  

Northeast China covers a total area of around 1.22 million square kilometres, and is an 

important region for agricultural production, such as soybean, maize and rice. Due to increasing 

population and intensification of agricultural production, the water shortage problems in the 

region have drawn much attention recently.  

 

Because of cold and long winter period in Northeast China, snow plays a role as natural 

reservoir to store water in winter and to release water to ameliorate water shortage in spring. 

In addition, snow also can influence agriculture through affecting soil moisture [Long et al., 

2019]. It is, hence, necessary to understand the role of snow in Northeast China for supporting 

the water resources management in this region. However, studies on the role of snow in the 

region are limited so far. Zhang et al. [2010] used the Moderate-resolution Imaging Spectro-

radiometer (MODIS) snow cover product to investigate snow cover variations in Liaoning 

Province which is located in southern part of Northeast China and covers an area of only about 

12% of the total area of Northeast China. Ding and Gao [2015] studied the number of snow 

days in Northeast China based on meteorological station data. Feng and Chen [2016] 

investigated snow intensity changes in Northeast China based on meteorological station data. 

Tian et al. [2018] studied snow changes in the upper Second Songhua River basin in Northeast 

China, which has an area of only about 1.5% of the total area of Northeast China. Despite the 

progresses, the previous studies did not analyse snow influence on runoff/soil moisture 

specifically, or investigated regions that only cover a small fraction of Northeast China. A 

systematic study on snow contribution to runoff and influence on soil moisture covering the 

entire region is not available.  
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In snow covered regions, snow plays an important role in spring to ameliorate water shortage 

[Li et al., 2017; Dierauer et al., 2019; Milly et al., 2020]. Staudinger et al. [2014] introduced a 

standardized melt and rainfall index to consider snow influence on runoff. This standardized 

melt and rainfall index was based on the sum of precipitation and snowmelt water, and therefore 

can consider snow influence. However, it is not indicative of soil moisture deficit. Zhang et al. 

[2019] developed a standardized moisture anomaly index which incorporates snowmelt runoff 

in soil moisture anomaly analysis. Despite the progress in considering snow, the previous 

studies are generally based on snowmelt water. It represents the situation that water has been 

released from storage, and is not indicative of how much water is stored as a solid form at 

present for future use. Therefore, the snowmelt-based index is weak in predicting snow induced 

water shortage. Thus, it is useful to develop a snow related index that is indicative of snow 

related water resources changes in the coming months of a year.  

 

The overall objective of this study is to evaluate the contribution of snow to runoff/discharge 

and influence of snow on soil moisture in Northeast China. A Standardized Snow depth Index 

(SSdI) is proposed to quantify snow depth variations, which represents water stored at present 

for future potential use. The larger the snow storage, the greater the capacity of the natural 

reservoir to ameliorate later water shortage. This paper is unique in that, for the first time ever, 

it evaluates the importance of snow as a reservoir in entire Northeast China.  

 

2. Study region and datasets 

2.1SNortheastSChina 

Fig. 1 shows the location of Northeast China. Its western and northwestern parts are the Greater 

Khingan Range, and its eastern and southeastern parts are the Lesser Khingan Mountains and 

Changbai Mountain. The southern parts are the Yanshan Mountain, Bohai Sea and Huanghai 
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Sea. There are two large rivers in Northeast China: Liao River and Songhua River. Liao River 

is located in the southern parts of Northeast China; Songhua River is located in the northern 

and eastern parts, and is the largest tributary of the Heilongjiang River (the Amur River). The 

Heilongjiang River forms the national boundary between Russia and China. The Songliao Plain 

is located in central parts of Northeast China, and the Sanjiang Plain is located in the eastern 

parts. The Songliao Plain and Sanjiang Plain form the largest plain in China, i.e., Northeast 

China Plain. It is one of the largest chernozem regions in the world, and is also one of the major 

regions for soybean and maize production [Yang et al., 2007; Kent et al., 2017]. Because 

Northeast China is a heavily managed region for agriculture and industry, the water resources 

utilization rate is higher than 40% according to the report of the Songliao Water Conservancy 

Committee of the Ministry of Water Resources of China (http://www.slwr.gov.cn/szy2011/). 

There are many reservoirs along the main rivers for hydropower generation and irrigation, as 

well as urban uses.  

 

2.2SDatasets 

The Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation 

of Water Resources (APHRODITE) [Xie et al., 2007; Yatagai et al., 2012] data is used. 

APHRODITE is purely based on precipitation gauge data, and it used data from both Northeast 

China and the Russian Far East. APHRODITE is considered the best precipitation data and has 

been used in many studies (e.g., Qi et al. [2016a]; Chen et al. [2018]; Pritchard [2019]). 

Downward shortwave and longwave radiation, specific humidity, wind speed and air 

temperature are from the China Meteorological Forcing Dataset (CMFD) developed by the 

Institute of Tibetan Plateau Research, Chinese Academy of Sciences [He et al., 2020]. 

APHRODITE and CMFD data from 1982 to 2011 (30 years) are used in the study. CMFD has 

a spatial resolution of 0.1 degree, and APHRODITE has a spatial resolution of 0.25 degree. 

https://en.wikipedia.org/wiki/Northeast_China_Plain
https://en.wikipedia.org/wiki/Northeast_China_Plain
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Soil hydraulic property data are from the Future Water’s Global Maps of Soil Hydraulic 

Property product (http://www.futurewater.eu/). The vegetation Leaf Area Index (LAI) and 

Fraction vegetation absorbed Photosynthetically Active Radiation (FPAR) were utilized to 

represent vegetation dynamic. The LAI and FPAR data are available from July 1981 to 

December 2011 developed by Zhu et al. [2013], and have a monthly temporal resolution and a 

1/12 degree spatial resolution. Land-use data were collected from the United States Geological 

Survey (http://edc2.usgs.gov/glcc/glcc.php). Digital elevation model (30-meter resolution) is 

collected from the NASA Shuttle Radar Topographic Mission [Rabus et al., 2003]. The remote 

sensing based snow depth data were collected from Dai Liyun and Che Tao [2015] 

(http://www.tpdc.ac.cn/zh-hans/data/df40346a-0202-4ed2-bb07-b65dfcda9368/). It was 

developed specifically for China on the basis of different microwave remote sensing datasets 

[Che et al., 2008; Dai et al., 2012; Dai et al., 2015]. The global monthly MOD10CM data from 

MODIS are available after March 2000, and have a spatial resolution of 0.05 degree. 

MOD10CM data from 2001 to 2011 are used to evaluate modeled snow cover fraction. The 

spatially distributed rain-snow temperature threshold dataset developed by Jennings et al. 

[2018] is used in the model. The Global Land Evaporation Amsterdam Model (GLEAM) 

dataset is based on reanalysis and remote sensing based soil moisture data, and available after 

1980. GLEAM has a spatial resolution of 0.25 degree and has been used in many studies [Jung 

et al., 2010; Miralles et al., 2011; Martens et al., 2016; Martens et al., 2017; Li et al., 2019]. 

Therefore, GLEAM is used in his study to evaluate model performance in soil moisture 

simulation. All the data are regridded into 0.1 degree cells in this study. 
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3. Methodology 

3.1SWEB-DHM- Smodel,ScalibrationSandSvalidation 

The Water and Energy Budget-based Distributed biosphere Hydrological Model with improved 

Snow physics (WEB-DHM-S) is used in this study. It combined the Simple Biosphere scheme 

(SiB2) land surface model, the hydrological model based on geomorphology developed by 

Yang [1998], and a physically based snowmelt module [Wang et al., 2009a; Wang et al., 2009b; 

Wang et al., 2009c; Shrestha et al., 2010; Wang et al., 2017]. The snowmelt is calculated based 

on water and energy balances in snow layers. The snowmelt module uses a three-layer 

snowmelt simulation approach from the Simplified Simple Biosphere 3 (SSiB3) and the 

Biosphere-Atmosphere Transfer Scheme (BATS) albedo scheme [Shrestha et al., 2010; 

Shrestha et al., 2015; Qi et al., 2019a]. This model has been used in many studies, and shows 

good performance generally [Shrestha et al., 2010; Qi et al., 2015; Qi et al., 2016a; Wang et al., 

2017; Qi et al., 2018; Qi et al., 2019b]. WEB-DHM-S input data includes precipitation, air 

temperature, downward solar and longwave radiation, air pressure, wind speed and humidity 

(see Section 2.2).  

 

We used 16 river basins off the main rivers and cropland to calibrate WEB-DHM-S. These river 

basins are located in the upper streams or in water resources conservation areas (Fig. 1), 

therefore are less influenced by human activities than the regions close to the main rivers and 

cropland. The Dynamically Dimensioned Search algorithm was used in the calibration because 

of its high efficiency [Tolson and Shoemaker, 2008; Tolson et al., 2009; Qi et al., 2016b]. The 

calibration was carried out on a monthly scale due to the unavailability of daily scale observed 

runoff data. There are 16 years of data in the Suolun hydrological gauge (1982-1997), and 20 

years of data in the Yichun and Chenming hydrological gauges (1982-2001). To ensure there 

are several years of discharge data for model validation in each hydrological gauge, the 
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discharge data from 1982 to 1990 were used to calibrate WEB-DHM-S parameters, and the 

discharge data after 1991 are kept for model validation. Time periods of available discharge 

data for calibration and validation are shown in Table S1. 

 

Nash-Sutcliffe Efficiency (NSE) and Relative Bias (RB) are the most commonly used criteria 

for discharge simulation evaluations, and they are equally important for such purpose (e.g., 

Wang et al. [2016], Qi et al. [2019a]). The evaluation standard for hydrological information 

and hydrological forecasting in China also recommends using NSE and RB as criteria [People's 

Republic of China, 2008]. The value of NSE ranges between –∞ and 1, and |RB| ranges between 

0 and ∞. As both criteria are important, we used a combination of them in the objective function 

for model parameter calibration. In this study, the objective function is set as: 

    minimize 1mean NSE mean RB     (1) 

where ‘mean’ represents the average in the 16 river basins. The range of |NSE-1| is from 0 to 

∞, matching the range of |RB|. Both |NSE-1| and |RB| reach their best values when they are 

zeros, therefore their magnitudes are comparable in terms of their best values. |NSE-1| and |RB| 

are used in the objection function with equal weights. The minimum value of the objective 

function is sought in evaluating the simulation performance. The advantage of using this 

objective function is that the model performance evaluation simultaneously considered the two 

criteria. Similar objective function has been successfully used in hydrological model 

calibration in previous studies (e.g., Qi et al. [2018], Qi et al. [2020]). The lower the objective 

function values, the better the parameter values. The calibration repeated 1000 times, and the 

parameter sets with the lowest objective function values are selected.  
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3.2S tandardizedS nowSdepthSIndexS(  dI) 

Analogous to non-parametric standardized precipitation index [Hao et al., 2014; Farahmand 

and AghaKouchak, 2015], the non-parametric Standardized Snow depth Index (SSdI) is based 

on standardized snow depth data to quantify snow variations. There are two steps to calculate 

SSdI. First, empirical probability of snow depth is calculated based on empirical Gringorten 

plotting position as follows 

  
0.44

0.12
i

i
p

n
x





 (2) 

where n is the sample size; i is the rank of snow depth data from the smallest; x represents snow 

depth; p represents corresponding empirical probability. Second, the SSdI is calculated using 

the following equation 

  1
SSdI pf


  (3) 

where f represents the standard normal distribution function. The snow shortage comparison in 

different magnitude is facilitated by using the normal distribution transformation. The 

correlation between SSdI and Standardized Soil moisture Index (SSI)/Standardized Runoff 

Index (SRI) is calculated based on the following equation 

  , ,,i n m i m nR corr SSdI S   (4) 

where corr represents the function of correlation coefficient, S represents SSI and SRI; m 

represents time lag between calculated SSdI and SSI/SRI time series; i represents accumulation 

time of calculated SSdI, SSI and SRI. SSI and SRI are based on the study by Hao et al. [2014] 

and Farahmand and AghaKouchak [2015]. SSI and SRI represent soil moisture and runoff 

variations. The correlation analysis can evaluate the influence of accumulated snowpack (i.e. 

snow depth) on later soil moisture and runoff.  

 



 

 
©2020 American Geophysical Union. All rights reserved. 

Our study is based on the data stretching over a range of 30 years. This time span is common 

in climatology studies. For example, Donat et al. [2016] studied precipitation changes using 

30-year moving time window; Padrón et al. [2020] and Konapala et al. [2020] used 30-year 

time periods to investigate water availability changes; Livneh et al. [2020] used 30-year time 

periods to study snow variations under climate change. Building on these studies, we believe 

that the 30-year time period covered in our study is sufficient for simulating snow contributions 

to runoff.  

 

3.3SCriteriaSforSassessment 

NSE and RB used in discharge simulation evaluation are as below:  
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where Qpi and Qti represent simulated and observed discharge at time i; tQ  represents average 

of observed discharge.  

 

Correlation Coefficient (R), Root Mean Square Error (RMSE), NSE and RB are commonly 

used in snow related evaluations [Chen et al., 2017; Henn et al., 2018; Han et al., 2019; Koch 

et al., 2019], and therefore they are used in the snow simulation evaluations in this study:   
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  (7) 

where Xsi and Xoi represent simulation data and observation at time i; n represents the number 

of data points.  
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4. Result and discussion  

4.1SModelSevaluation 

The calibrated model parameters are shown in Table S2. The average model performances in 

discharge simulation are shown Table S3, and performance for every selected sub-basins are 

shown in Table S4. The performances are acceptable in both calibration and validation periods, 

with |RB| being 8.0% and 11.0% respectively (Table S2). The overall |RB| value is 7.8%, and 

NSE value is 0.81. The overall NSE values are over 0.9 in some sub-basins, such Shalizhai, 

Lishugou and Wendegen (Table S4). The overall NSE value is 0.64 in Suolun gauge, which 

may be because the available data is from 1982 to 1997 and is less than other gauges. The 

comparisons between observed discharge and simulation are shown in Fig. 2. Observed and 

simulated hydrographs in the calibration and validation periods are shown in Fig. S1 and Fig. 

S2. In sum, the overall model performance is satisfactory in discharge simulation. These results 

indicate that the objective function (i.e. Eq. (1)) used in the model parameter calibration is 

appropriate.  

 

Figs. 3(a) and (b) show average snow depth and snow cover fraction comparison between 

model simulation and remote sensing data on a multi-year mean monthly scale. The model 

simulation and remote sensing data agree well. NSE, RB, R and RMSE are 0.69, 2.0%, 0.85 

and 2.28 in terms of snow depth, and are 0.85, -1.0%, 0.96 and 0.13 in terms of snow cover 

fraction. Figs. 3(c) and (d) show the comparison of surface zone soil moisture between the 

WEB-DHM-S model simulation and the GLEAM dataset. The model simulates the seasonal 

variations of soil moisture well. The R values are up to 0.87 and 0.86 for average surface zone 

soil moisture in Northeast China and on the cropland in the region, respectively. The model 

also simulates cropland surface soil moisture well. The average surface soil moisture in 

cropland is 0.39 m3/m3 and 0.34 m3/m3 for the model simulation and GLEAM, respectively. In 
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April and May, the average surface soil moisture in cropland is 0.35 m3/m3 and 0.31 m3/m3 for 

model simulation and GLEAM, respectively. The model simulates the surface zone soil 

moisture at 5 cm depth, and the surface zone soil moisture from GLEAM is at 10 cm depth. 

The differences in the soil depth may contribute the differences in the soil moisture content. 

Overall, the model can simulate the soil moisture well.  

 

In this study, the saturated water content dataset is from the Future Water’s Global Maps of 

Soil Hydraulic Property product (http://www.futurewater.eu/). This product shows the 

saturated water content ranges from 0.3 to 0.9. The uncertainty of the saturated water content 

parameter value used in this study may result from this product. However, the model parameter 

value used is between the minimum and maximum values, and therefore the parameter value 

used in this study is appropriate. Chen et al. [2017] developed a two-stage approach to calibrate 

a hydrological model against snow cover fraction, snow water equivalent, total water storage 

and streamflow in the Upper Brahmaputra River basin in the Tibetan Plateau. Similarly, several 

recent studies are also suggested using multiple datasets in model calibration and validation 

[Henn et al., 2018; Ko et al., 2019; Dembélé et al., 2020; Long et al., 2020]. In our study, we 

used streamflow in the model calibration combined with an observation based rain-snow 

temperature threshold data product. Validations using observed streamflow, snow depth, snow 

cover fraction and satellite based soil moisture show that the performance of the model is 

satisfactory. This result implies that the model used and the combination of the model and the 

observation datasets for discharge, soil moisture and snow simulations are appropriate. In 

addition, this result also indicates that the model used is robust: one constraint leads to 

satisfactory simulation results for several variables, which, to some degree, may be because 

streamflow is one of the most sensitive variables to uncertainty in a model simulation chain 

[Qi et al., 2020].  
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4.2SImportanceSofSsnowStoSrunoffSandSdischargeS  

Fig. 4 shows the spatial distribution of river discharge. The average discharge in Jul-Aug-Sep 

is larger than averages in other periods, and the river discharge in the Songhuajiang River is 

generally larger than that in the Liao River. Fig. 5 shows the spatial distribution of snow 

discharge. The average snow discharges in Apr-May-Jun and Oct-Nov-Dec are higher than 

other periods. In the summer period (Jul-Aug-Sep), most of the precipitation is from rainfall 

due to high air temperature, and therefore snow discharge during this period is lower than other 

periods.  

 

Figs. 6(a) and (b) show the temporal changes of snowmelt runoff and its contribution to total 

runoff. Snowmelt runoff is higher in April and October than other months, i.e., two snowmelt 

runoff peaks, which is similar to a study in the Upper Yangtze River in the Tibetan Plateau [Han 

et al., 2019]. The snowmelt runoff contribution to total runoff is higher in April and November. 

Although the snowmelt runoff is higher in October than November, the total runoff in 

November is much smaller than October, which may lead to the higher snowmelt runoff 

contribution than October. On average, snowmelt runoff contributes 11.3% to the annual total 

runoff, which is about 21.8 billion m3 water resources. This volume of water is equivalent to 

about 55.5% of the total storage capacity of the Three Gorges reservoir, the largest reservoir in 

the world. In April and May (the major crop planting months), snowmelt runoff contributes at 

least 33.1% to the runoff. In April, the contribution reaches the highest values up to 65.5%.  

 

Figs. 6(c), (d), (e) and (f) show the spatial distribution of snowmelt discharge contributions to 

total river discharge. The snow discharge contribution changes dramatically in both temporal 

and spatial scales. The average in Jan-Feb-Mar is generally high (25.2%) with the exception in 

some regions in southwest part, which may be because the region is very dry with very low 
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snow/precipitation in Jan-Feb-Mar. Compared to other time periods, the average snow 

discharge contribution in Jul-Aug-Sep is lower (0.8%), which may be due to the existence of 

precipitation as rainfall in this period.  

 

Fig. 7 shows mean precipitation, mean snowfall, mean air temperature, minimum and 

maximum air temperature in different months in Northeast China. It can be seen that there are 

two snowfall peaks (April and October). They are resulted from the combined effects of 

precipitation and air temperature. In April and October, there are plenty of precipitation when 

temperature is not high, whereas either air temperature is very high or precipitation is low in 

other months resulting in less snowfall than April and October. The two snowmelt runoff peaks 

in April and October are because of the two snowfall peaks and relatively high air temperate in 

these two months. In December, January and February, it can be seen that the maximum air 

temperature are about/above zero degree although the mean air temperature is much lower than 

zero degree, which results in snowmelt in some regions in Northeast China. In addition, the 

total runoff is little in December, January and February because of little precipitation. The 

combined effects of precipitation, snowfall and air temperature in December, January and 

February result in the relatively large snowmelt runoff contribution to the total runoff.  

 

4.3SImportanceSofSsnowStoSsoilSmoistureS  

To evaluate the importance of snow to soil moisture, we compared the soil moisture of ‘No 

snow scenario’ and ‘Normal simulation’. Here, the ‘No snow scenario’ assumes that the 

snowfall is replaced by rainfall. Figs. 8(a), (b), (c) and (d) show the spatial distribution of 

surface soil moisture and changes when snow exists, i.e., under the ‘Normal simulation’. The 

‘Change’ is calculated as soil moistureNo snow scenario minus soil moistureNormal simulation. It can be 

seen that the Songliao Plain has lower soil moisture than the surrounding high mountain areas. 



 

 
©2020 American Geophysical Union. All rights reserved. 

This is likely because the high mountain areas are covered by trees and/or dense shrubs, which 

can prevent evaporation of surface soil moisture. In the ‘No snow scenario’, the surface soil 

gets dryer generally, especially in the plain regions, which is also shown in the ‘Change’. 

Therefore, the plain regions (the main cropland areas) suffer more than other regions when 

snow does not exist.  

 

Figs. 8(e) and (f) show the average surface zone soil moisture changes in Northeast China and 

on the cropland area. The surface zone soil gets dryer generally when no snow exists. In March, 

April and May, the soil moisture decreases by 20.1%, 23.5% and 22.4%, which equal to -0.08 

m3/m3, -0.09 m3/m3 and -0.07 m3/m3, respectively. Because soil moisture is an important source 

of water for agriculture, the decreases may lead to drought and increase in irrigation 

requirement. This result suggests that snow can ameliorate water shortage problems in the 

region.  

 

4.4S tandardizedS nowSdepthSIndexS(  dI) 

There are time lags between snow depth and soil water and/or streamflow volumes. Table 1 

shows the correlation coefficient between SSdI, SRI and SSI. The correlation coefficient is 

calculated based on Eq. (3). Comparison among SRI, SSI and SSdI under different 

accumulation time are shown in Fig. S4. Results from 1-month to 7-month are shown in Table 

1. The correlation coefficient values become very small under the 7-month situation, and 

therefore we did not investigate the situations after 7-month. The correlation is evaluated at a 

0.05 a significance level.  

 

It is noticed that R is decreasing with increasing time lags, and 1 month time lag has the largest 

R values generally. For example, for the 1-month accumulation time, R between SSdI and SSI 
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decreases from 0.35 to 0.12 before the correlation becomes non-significant, and R between 

SSdI and SRI decreases from 0.30 to 0.14. In addition, it can be seen that R between SSdI and 

SSI is the highest (0.37) when accumulation time is 2-month and time lag is 1 month. This 

indicates that snow in January and February has large influence on soil moisture in February 

and March. For SRI, the R value is the highest (0.39) when accumulation time are 2-month and 

3-month and time lag is 1 month. It indicates that snow in January and February has large 

influence on runoff in February and March, and that snow in January, February and March has 

large influence on runoff in February, March and April. The 4-month SSdI and SRI have an R 

of 0.37, higher than other accumulation time situations except for the 2-month and 3-month 

cases, which indicates that snow in January, February, March and April have large influence on 

runoff in February, March, April and May. In the 4-month accumulation time, 1-3 month lags 

have significant correlation, and the correlation becomes non-significant for SRI when time lag 

is 4-month. Overall, the results indicate that one month lag has the largest influence, the 

influence is decreasing with increasing time lag, and the correlation is significant with a time 

lag of 1-3 months.  

 

The snow related indexes developed by Staudinger et al. [2014] and Zhang et al. [2019] are 

based on snowmelt water, and therefore are not indicative of snow stored water in solid form 

for future potential use. Compared to the previous indexes, SSdI represents snow depth 

variations indicating stored solid water resources which could melt in coming months for use. 

Dai et al. [2004] and Dai [2011] suggested that the Palmer Drought Severity Index (PDSI) and 

soil moisture in the coming months have significant correlations, and therefore PDSI is 

considered as a proxy to predict soil moisture induced drought in the coming months. Similarly, 

the significant correlation between SSdI and SSI/SRI with a time lag of 1-3 months also gives 

SSdI an ability to predict the soil moisture and stream discharge condition in spring. Hence, 
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SSdI can be highly important to support agriculture production and water management, 

particularly during the planting season. Although PDSI can be used to predict soil moisture 

deficit, it did not consider snow influence. Compared to PDSI, SSdI can consider snow 

influence, and therefore is superior to PDSI in snow covered regions. It is recorded that from 

December 2019 to early April 2020, Northeast China had received little snow. SSdI during this 

period suggested drought during the spring. Fortunately, in late April 2020, there have been 

several major snow events covering most areas of Northeast China. SSdI is able to quantify the 

effects of these snow events to ameliorate the drought situation in May in the region.  

 

5. Conclusions  

As an important area for agricultural production in China, including soybean, maize and rice, 

and the largest chernozem region in the world, water resource problems in Northeast China 

have drawn much attention. Because of cold and long winter period, snow plays an important 

role in water resources in this region. However, studies on snow in Northeast China are quite 

few, and investigations into snow in entire Northeast China are rare. This study addressed the 

importance of snow by evaluating the contribution of snowmelt to discharge/runoff and 

influence of snow on soil moisture in a 30-year time period (1982-2011) in the whole of 

Northeast China for the first time. The SSdI method is proposed to quantify snow depth 

variations. A water and energy budget-based distributed biosphere hydrological model with 

improved snow physics after calibration and validation is employed. The following conclusions 

are presented on the basis of this study.  

 

First, snow contributes a large proportion to runoff in the entire Northeast China region. On 

average, it contributes 11.3% to the total runoff on an annual basis. In April and May, snowmelt 

runoff contributes 65.5% and 33.1% to the runoff during the period.  
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Second, snow plays an important role in keeping soil moisture. In March, April and May, the 

soil moisture would decrease at least 20.1% when there is no snow. The Northeast China Plain 

(the main cropland area) suffers more than surrounding areas when snow does not exist.  

  

Third, SSdI developed in this study is indicative of SSI and SRI in spring. The correlation 

between SSdI and SSI/SRI is decreasing with increasing time lag, and it is significant with a 

time lag of 1-3 months. The time lag between SSdI and SSI/SRI enables a use of SSdI to predict 

the soil moisture and runoff conditions in spring, the planting season of Northeast China.  
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Fig. 1 The study region. The cropland distribution is from 

http://waterdata.iwmi.org/applications/irri_area/.  
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Fig. 2 Comparisons between observed and simulated discharge in the time periods studied. 
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Fig. 3 (a) and (b) show average snow depth and snow cover fraction (snow covered area/total 

area) comparison between model simulation and remote sensing data on a multi-year mean 

monthly scale. (c) and (d) show comparison of surface zone soil moisture between model 

simulation and GLEAM datasets. (a), (c) and (d) are based on results from 1982 to 2011. 

Surface soil = 5 cm. MODIS = Moderate-resolution Imaging Spectro-radiometer; GLEAM = 

Global Land Evaporation Amsterdam Model; NSE = Nash-Sutcliffe Efficiency coefficient; RB 

= Relative Bias; R = Correlation Coefficient; RMSE = Root Mean Square Error.  
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Fig. 4 Spatial distribution of simulated river discharge based on results from 1982 to 2011.  
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Fig. 5 Spatial distribution of simulated snow discharge based on results from 1982 to 2011.  

  



 

 
©2020 American Geophysical Union. All rights reserved. 

 

Fig. 6 Temporal changes of snowmelt runoff and contribution to total runoff (a, b), and spatial 

distribution of snow discharge contributions to discharge (c, d, e, f). The results are based on 

data from 1982 to 2011.  
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Fig. 7 Mean precipitation, mean snowfall, mean air temperature, minimum and maximum air 

temperature in different months in Northeast China based on data from 1982-2011.  
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Fig. 8 Spatial distribution of surface soil moisture (a, b, c, d). In the ‘No snow scenario’, the 

snow is assumed to fall as rain. Change = soil moistureNo snow scenario - soil moistureNormal simulation. 

Change<0 means the surface soil gets dryer when no snow; Change>0 means the surface soil 

gets wetter when there is no snow. (e) and (f) show average surface zone soil moisture changes 

in Northeast China and on the cropland in the region. The results are based on data from 1982 

to 2011.  
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Table 1 Correlation Coefficient (R) values and significance level (in the brackets) between 

SSdI and SSI/SRI 

Accumulation 

time  

Time lag 

(month)  
1 2 3 4 5 6 7 8 

1-month  

(Jan) 

SSI 
0.35 

(0.00) 

0.31 

(0.00) 

0.26 

(0.00) 

0.23 

(0.00) 

0.19 

(0.00) 

0.12 

(0.02) 

0.12 

(0.03) 

0.06 

(0.25) 

SRI 
0.30 

(0.00) 

0.29 

(0.00) 

0.20 

(0.00) 

0.14 

(0.01) 

0.04 

(0.47) 
   

2-month  

(Jan-Feb) 

SSI 
0.37 

(0.00) 

0.32 

(0.00) 

0.25 

(0.00) 

0.21 

(0.00) 

0.16 

(0.00) 

0.10 

(0.06) 
 

 

SRI 
0.39 

(0.00) 

0.25 

(0.00) 

0.20 

(0.00) 

0.11 

(0.04) 

0.03 

(0.57) 
  

 

3-month  

(Jan-Mar) 

SSI 
0.35 

(0.00) 

0.31 

(0.00) 

0.25 

(0.00) 

0.19 

(0.00) 

0.14 

(0.01) 

0.09 

(0.10) 
 

 

SRI 
0.39 

(0.00) 

0.30 

(0.00) 

0.17 

(0.00) 

0.11 

(0.04) 

0.04 

(0.50) 
  

 

4-month  

(Jan-Apr) 

SSI 
0.31 

(0.00) 

0.28 

(0.00) 

0.24 

(0.00) 

0.19 

(0.00) 

0.13 

(0.01) 

0.08 

(0.15) 
 

 

SRI 
0.37 

(0.00) 

0.30 

(0.00) 

0.21 

(0.00) 

0.10 

(0.06) 
   

 

5-month  

(Jan-May) 

SSI 
0.28 

(0.00) 

0.25 

(0.00) 

0.20 

(0.00) 

0.16 

(0.00) 

0.11 

(0.05) 

0.05 

(0.32) 
 

 

SRI 
0.31 

(0.00) 

0.27 

(0.00) 

0.21 

(0.00) 

0.13 

(0.01) 

0.03 

(0.54) 
  

 

6-month  

(Jan-Jun) 

SSI 
0.23 

(0.00) 

0.21 

(0.00) 

0.18 

(0.00) 

0.14 

(0.01) 

0.10 

(0.07) 
  

 

SRI 
0.23 

(0.00) 

0.21 

(0.00) 

0.18 

(0.00) 

0.12 

(0.03) 

0.05 

(0.36) 
  

 

7-month  

(Jan-Jul) 

SSI 
0.18 

(0.00) 

0.18 

(0.00) 

0.15 

(0.00) 

0.12 

(0.02) 

0.09 

(0.09) 
  

 

SRI 
0.18 

(0.00) 

0.16 

(0.00) 

0.14 

(0.01) 

0.12 

(0.03) 

0.07 

(0.19) 
  

 

 

 


