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Abstract:

Precipitation is a major driving factor for land surface water and energy balances. Uncertainty 

in global precipitation products over observation sparse regions such as the Tibetan Plateau 

(TP) is generally large. Sensitivity of surface water and energy variables to precipitation 

uncertainty can provide clues for confidence that can be assigned to simulated water and 

energy variables in such regions. In this study, the sensitivities of surface water and energy 

variables to global precipitation product uncertainty over four large river basins in the TP are 

quantified and inter-compared based on a newly developed sensitivity analysis approach. A 

water and energy budget-based distributed hydrological model including biosphere is utilized 

after calibration and validation against observed runoff and Land Surface Temperatures 

(LSTs) from Moderate Resolution Imaging Spectroradiometer (MODIS). Eight global 

precipitation products are used to represent the precipitation uncertainty. Results show that 

Canopy interception loss (CIE) and runoff are highly sensitive to the uncertainty in general, 

whereas LSTs are not sensitive. Therefore, confidence in simulated CIE and runoff can be 

considered relatively low when using global precipitation products in the four basins. These 

results imply that other simulated variables may have large uncertainty even when LSTs 

simulation performs well, and accurate simulations of CIE and runoff require high accuracy 

in precipitation. Because CIE has profound influence on local hydrological cycle, the results 

also imply that utilizing the most accurate precipitation product is critical for local scale 

hydrological cycle research. 

Key words: Precipitation Uncertainty; Runoff; Sensitivity; Tibetan Plateau; Water Balance; 

Distributed hydrological modeling 
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1 Introduction 

The Tibetan Plateau (TP) plays an important role in ensuring regional water security, food 

security and sustainable socioeconomic development in South, East and Southeast Asia. The 

majority of in situ precipitation stations are located in the southern and eastern TP (Gao and 

Liu, 2013; Yang et al., 2014). To compensate the data gap in the data sparse regions in the TP, 

satellite- and/or reanalysis-based global precipitation products are utilized as input of land 

surface/hydrological models to simulate water and energy variables (e.g., Xue et al. (2013)). 

Precipitation has large temporal and spatial variations which render reliable estimation 

difficult (Ji and Kang, 2015). In addition, because global satellite- and/or reanalysis-based 

precipitation products use different inversion algorithms and data sources with limited in situ 

gauge observation, global precipitation products have various pros and cons. For example, Qi 

et al. (2016a) showed that Tropical Rainfall Measuring Mission (TRMM) products - 

TRMM3B42 (Huffman et al., 2007) and Global Land Data Assimilation System (GLDAS) 

version 1 (Rodell et al., 2004) underestimate heavy rainfall intensities in summer periods on a 

daily scale in a coastal river basin; Chen et al. (2018) found that satellite products are 

generally more realistic than those from reanalysises. Because of the uncertainty of 

precipitation products, confidence in simulated land surface water and energy variables using 

them is unknown (Biemans et al., 2009; Wang et al., 2011; Zhou et al., 2013; Qi et al., 2016a; 

Qi et al., 2018b), which to some extent has undermined the practical applications of global 

precipitation products for water and energy variable simulations in data sparse region in the 

TP. 

Sensitivity analysis of water and energy variables to precipitation uncertainties can provide 

information on which variable is influenced the most and which one is least impacted. 
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Therefore, the sensitivity can provide information on confidence that we can place on 

simulated various water and energy variables when using global precipitation products in data 

sparse regions. Fekete et al. (2004) investigated the influence of precipitation uncertainty on 

runoff on a global scale; Guo et al. (2006) studied the sensitivity of soil moisture to 

meteorological forcing in Russian, United States, China and Mongolia; Kato et al. (2007) first 

employed an ensemble including different land surface models and precipitation products to 

simulate water and energy fluxes in the United States; Wei et al. (2008) investigated the 

sensitivity of soil moisture to precipitation and radiation; Wang and Zeng (2011) studied the 

sensitivity of soil moisture, evapotranspiration and simulated runoff to precipitation and air 

temperature uncertainties. However, these studies did not verify their simulation accuracy 

against observation, which could undermine the results because the simulations may have 

large uncertainties if simulation is not validated. 

Many studies also investigated sensitivity of simulation results to precipitation uncertainties 

using calibrated models. For example, Biemans et al. (2009), Vano et al. (2012) and Weiland 

et al. (2015) studied influence of precipitation uncertainty on runoff using calibrated 

hydrological models; Kavetski et al. (2006b) and Kavetski et al. (2006a) developed a 

mathematical approach and studied the influence of precipitation uncertainty on runoff 

simulation. Although the previous studies used calibrated models, the sensitivity analysis 

were carried out only for runoff, and therefore the sensitivity of different water and energy 

variables cannot be inter-compared. Thus, more comprehensive studies on water and energy 

variable sensitivity to global precipitation product uncertainties are needed based on well 

calibrated and validated hydrological/land surface models. 

The overall aim of this study is to investigate the sensitivity of land surface water and energy 
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variables to global precipitation product uncertainty in the TP. A water and energy 

budget-based distributed hydrological model including biosphere (WEB-DHM) (Wang et al., 

2009a; Wang et al., 2009b; Wang et al., 2009c; Qi et al., 2015) is implemented after 

calibration and validation based on hydrological gauge observation and Moderate Resolution 

Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) (the MOD11A2 

product) (Wan, 2008). Eight global scale fine resolution precipitation products are utilized to 

represent the precipitation uncertainty. This paper is unique in that, for the first time, 

divergent sensitivity of various water and energy variables to global precipitation product 

uncertainty is quantified and inter-compared in the TP. The results can provide important 

information on different confidence that can be placed on various simulated water and energy 

variables when using global precipitation products in the data sparse regions in the TP. 

2 Study basins, model, data and assessment criteria

2.1 River basins studied

Four large river basins (Fig. 1) in the TP were used to conduct this study. They cover a total 

area of 571,471 km2. The average elevations of the river basins are above 4100 meters. The 

mean annual temperatures in the four river basins are around zero degree celsius. Among the 

four river basins, the Yarlung Tsangpo River basin is the largest (256,864 km2), and the 

Upper Lancang River basin is the smallest (53,656 km2). The Upper Yangtze River basin has 

an area of 137,371 km2, and the Upper Yellow River basin has an area of 123,580 km2. The 

river basin details are shown in Table 1 including basin average Leaf Area Index (LAI), 

aridity index, climate and hydrological regimes. Because this study is a sequel to our previous 

study, more river basin details can be found in the study by Qi et al. (2018a). 

< Figure 1 here please >
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< Table 1 here please >

2.2 Model and datasets

WEB-DHM combines a simple biosphere scheme version 2 (SiB2) land surface model 

(Sellers et al., 1986; Sellers et al., 1996a; Sellers et al., 1996b) and a hydrological model 

developed by Yang (1998). WEB-DHM simulates the leaf photosynthetic activity by 

combining a leaf stomatal conductance model developed by Ball (1988) and a photosynthesis 

model developed by Collatz et al. (1991) and Collatz et al. (1992) (i.e., the Ball-Berry model). 

WEB-DHM estimates LST from canopy temperature ( ) and surface soil temperature cLST

( ) as below (Wang et al., 2009c)gLST

 (2) 
1 44 41sim c gLST V LST V LST      

 (3)maxV LAI LAI

where  represents green vegetation coverage;  represents the maximum LAI V maxLAI

defined by Sellers et al. (1996b). Many evaluations and applications using WEB-DHM have 

been conducted (Wang et al., 2010a; Wang et al., 2010b; Wang et al., 2012; Qi et al., 2015; 

Qi et al., 2016a; Qi et al., 2019), and results showed that WEB-DHM performs well 

generally. 

China Gauge-based Daily Precipitation Analysis data is utilized in the model calibration and 

validation, and the precipitation data has been used in many studies showing good 

performance in general (Zhao and Zhu, 2015; Shen and Xiong, 2016; Gao et al., 2017). 

Hourly precipitation data are downscaled from the daily data using a stochastic method 

(Wang et al., 2011). Other model forcing data used are from the China Meteorological 

Forcing Dataset (CMFD) (He and Yang, 2011; Xue et al., 2013; Zhou et al., 2015; Yang et al., 
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2017). CMFD has a 3-hour temporal resolution. In the CMFD dataset, temperature, pressure, 

humidity and wind speed are instantaneous variables, and downward shortwave and 

longwave radiation are 3-hour mean values. Linear interpolation approaches are used to 

generate hourly data for temperature, pressure, humidity and wind speed. Downward 

shortwave and longwave radiation are assumed the same within each 3-hour time step. The 

8-day MODIS land surface temperatures used (i.e. the MOD11A2 product) were observed at 

the day around 11:00 and at night around 22:00 (local time). Details about the model 

calibration and validation methods can be found in the study by Qi et al. (2018a). The global 

precipitation products used are listed in Table 2. The precipitation products used here are the 

same to our previous study (Qi et al., 2018a), and please refer to the previous study for more 

detailed description about the global precipitation products. 

< Table 2 here please >

2.3 Assessment criteria

The sensitivity is quantified based on the Precipitation Uncertainty Influence (PUI) index 

using Eq. (4)

(4)       
12

1
PUI max min 12 mean absi i obs

i
I I D


    

where  and  represent the maximum and minimum values of simulated  max iI  min iI

ensemble intervals in ith month;  represents observation or simulated values utilizing obsD

observation. PUI index represents the average width of ensemble intervals normalized using 

. The higher the PUI, the wider the ensemble intervals on average (more sensitive). It obsD

can be seen that the PUI sensitivity index is different from previous methods, such as the 

one-factor-at-a-time sensitivity analysis method and Sobol′’s sensitivity analysis approach, 
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which are designed to quantify sensitivity of model outputs to various influential factors and 

do not consider ensemble interval width (Sobol, 2001; Tang et al., 2007a; Tang et al., 2007b; 

Fu et al., 2012; Zhang et al., 2013a). Nevertheless, the PUI sensitivity index considers 

ensemble interval width, which is appropriate because an ensemble of precipitation product 

data is utilized. 

Coefficient of determination (R2), mean bias error (MBE) and root mean square error (RMSE) 

are used in uncertainty assessment:

 (5)MBE

n n

si oi
i 1 i 1
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where Xoi and Xsi represent observation or simulation using observation and simulation forced 

by global precipitation products at time i. For runoff, Nash-Sutcliffe Efficiency (NSE) and 

relative bias (RB) are utilized (Qi et al., 2016b; Qi et al., 2016c; Qi et al., 2018c). NSE and 

RB are calculated as follows:

 (7)
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where Qpi and Qti represent simulated and observed runoff;  represents average runoff tQ

observation. 
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3 Results and discussion

3.1 Model validation 

WEB-DHM has been calibrated and validated using observed runoff from 2000 to 2010 in 

the four river basins in our previous study (please refer to Fig. 2, Fig. 3, Table 3 and Table 4 

of Qi et al. (2018a)). WEB-DHM shows good performance in replicating runoff observations 

with NSE being above 0.88 and absolute values of RB being lower than 9%. MODIS LSTs 

and WEB-DHM simulation are compared in Fig. 2. WEB-DHM simulated LSTs replicate 

MODIS observation well at both nightime and daytime. In the four river basins, the R2 values 

all are higher than 0.83; RMSE values are lower than 4.36; absolute values of MBE are lower 

than 0.41. The uncertainty may be due to the input data of the model simulation. The linear 

green vegetation coverage (Eq. (2)) may also contribute the uncertainty of LST simulation. 

Overall, the performance of WEB-DHM is acceptable in reproducing the observed runoff and 

LSTs in the four river basins. The runoff and LSTs represent water and energy states, 

respectively. They are readily available from hydrological gauges and remote sensing 

products with good credibility, and therefore have been commonly used to validate model 

performance in simulating land surface water and energy processes (e.g., Wang et al. (2009c), 

Wang et al. (2011), Zhou et al. (2015), Wang et al. (2016)). This study follows the same 

approach to verify the model simulation. 

< Figure 2 here please >

3.2 Simulated water and energy variables

Fig. 3 shows the ensemble of long term mean monthly simulation results in the Yarlong 

Tsangpo River basin. The results include sensible heat flux, latent heat flux, 

evapotranspiration (ET), Canopy interception loss (CIE), surface soil evaporation, ground 
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interception store evaporation (GIE), surface zone wetness, land surface temperature (LST), 

upward shortwave radiation, upward longwave radiation, net radiation, ground heat flux and 

runoff. 

< Figure 3 here please >

The ensemble of sensible heat flux (Fig. 3a) brackets observation-based results in most of the 

months except in May. Similarly, the ensemble of ground interception store evaporation (Fig. 

3g) also does not bracket observation-based results in several months. However, the upper 

bounds of the ensembles of sensible heat flux and ground interception store evaporation are 

very close to observation-based simulation results. Different from sensible heat flux and 

ground interception store evaporation, the generated ensembles of other variables envelop the 

simulated results forced by observed precipitation. Regarding the spread of the ensembles, 

LST, upward shortwave radiation, upward longwave radiation, net radiation and ground heat 

flux show very narrow ensemble intervals, and are very similar to the observation 

/observation-based results. For other variables, the simulation ensembles show large intervals. 

This indicates that LST, upward shortwave radiation, upward longwave radiation, net 

radiation and ground heat flux are less sensitivity to precipitation uncertainties than other 

variables. The difference also implies that the simulations of the other variables may not be 

accurate even when LST, upward shortwave radiation, upward longwave radiation, net 

radiation and ground heat flux simulations are close to observation. Most of the results show 

the runoff is overestimated, which is because most of the precipitation products have higher 

precipitation estimation than observation (as shown in the Fig. 11 of Qi et al. (2018a)). 
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Fig. 4 shows comparison between ensemble averages and observation/observation-based 

simulation results in the Yarlong Tsangpo River basin. The ensemble averages reflect the 

seasonal variations of all variables well with R2 values being over 0.97 overall. Large 

differences between ensemble averages and observation/observation-based simulation also 

exist. For example, the ensemble averages of ground interception store evaporation (Fig. 4g) 

are higher than observation-based simulation from January to March, and greatly lower from 

May to September; the ensemble averages of runoff are greatly higher than observation from 

June to September. The higher values of the ensemble average of runoff may be because the 

ensemble average of ET is close to simulation forced by observation (Fig. 4c), and ensemble 

average of precipitation is higher than observation (RB is up to 35%). 

< Figure 4 here please >

Figs. 5, 6 and 7 show long term mean monthly simulation results in the Upper Lancang, 

Upper Yangtze and Upper Yellow River basins. The patterns are similar to the Yarlong 

Tsangpo River basin (Fig. 3): the various precipitation products result in different simulation 

results and the ensemble spreads of LST, upward shortwave radiation, upward longwave 

radiation, net radiation and ground heat flux are generally smaller than other variables. Figs. 

8, 9 and 10 show comparison between ensemble averages and observation/observation-based 

simulation results. Similar to Fig. 4, the ensemble averages replicate the seasonal variations 

of all variables well, and the differences between ensemble averages and 

observation/observation-based simulation results vary with the variables. 

< Figure 5 here please >

< Figure 6 here please >
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< Figure 7 here please >

< Figure 8 here please >

< Figure 9 here please >

< Figure 10 here please >

3.3 Quantification of sensitivity 

Fig. 11 shows the PUI index values of water and energy variables. The higher the PUI index 

values, the greater the influence of precipitation uncertainty. In the Yarlung Tsangpo River, 

PUI of runoff is the highest, and PUI of CIE is the second highest. Meanwhile, PUI value of 

LST is the lowest. Similarly, runoff is the most sensitive variable and LST is the least 

sensitive variable in the Upper Yellow and Upper Lancang Rivers. Nevertheless, in the Upper 

Yangtze River, GIE is the most sensitive variable, and LST is the least sensitive variable. The 

difference between the Upper Yangtze River and other three river basins may be because the 

Upper Yangtze River is dryer than others and also have relatively lower average LAI (as 

shown in Table 1). Overall, runoff is more sensitive than most of the other variables. In the 

river basins studied, the correlation between precipitation and runoff is high (Zhang et al., 

2013b; Chen et al., 2017; Liu et al., 2018; Han et al., 2019). Therefore, the uncertainty in the 

precipitation has a large influence on runoff. 

< Figure 11 here please >

The results in Fig. 11 indicate that CIE is the second most sensitive variable to precipitation 

uncertainty in the Yarlung Tsangpo and the Upper Lancang Rivers, and CIE is the third most 

sensitive variable in the Upper Yellow and the Upper Yangtze Rivers. Nevertheless, the PUI 

index values of CT and CIE are very similar in the Upper Yellow River. The average LAI in 
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the Upper Yellow River is the highest among the four river basins, which may result in that 

the ranking of CT is higher than other three river basins. In the Upper Yangtze River basin, 

the average LAI is low comparatively. Meanwhile, the Upper Yangtze River basin is the 

driest among the four river basins. Therefore, GIE is more sensitive than CIE in the Upper 

Yangtze River basin. Overall, CIE is sensitive to precipitation uncertainty in the four river 

basins. As pointed out by Wang-Erlandsson et al. (2014) and van der Ent et al. (2014), CIE 

has profound influence on local hydrological cycle. Thus, utilizing the most accurate 

precipitation data is critical for studying local hydrological cycle in the TP. 

The results in Fig. 11 provide information on the confidence that we can place on various 

simulated water and energy variables when utilizing global precipitation product data. Based 

on the results, when precipitation product data have uncertainty, the confidence should be 

decreasing from runoff/GIE to LST: least confidence should be given to the simulations of 

runoff/GIE and highest confidence to LST simulation. In addition to the information on the 

confidence, the results in Fig. 11 also have many implications. For example, a few studies 

suggested utilizing LSTs to calibrate the parameters of land surface/hydrological models 

(Corbari and Mancini, 2014; Silvestro et al., 2015; Koch et al., 2016). However, the results in 

Fig. 11 indicate that other simulated water and energy variables may have large uncertainties 

even when simulated LSTs perform well. When reliable hydrological gauge runoff data are 

not available, using Surface Zone Wetness (SW) (which could be obtained from 

satellite-based remote sensing data) to calibrate models may generate better results than using 

LSTs because SW is more sensitive than LSTs to precipitation uncertainty. In addition, the 

results in Fig. 11 also imply that the requirement on the accuracy of precipitation data may 

not be strict in LST simulation in data sparse regions because LSTs are least sensitive to 

precipitation uncertainty. 
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3.4 Discussion

The PUI index values are calculated on the basis of eleven years (from 2000 to 2010) of data 

on the annual scale in this study, and therefore the results in Fig. 11 are appropriate for long 

term mean annual scale studies which are common in large scale research and land surface 

and atmosphere interaction research (e.g., Wei et al. (2008); Wang-Erlandsson et al. (2014); 

Schellekens et al. (2017)). It should be noted that precipitation influence may change when 

study regions, precipitation data used, or/and hydrological/land surface models used vary. 

However, the developed sensitivity assessment criterion (i.e. Eq. (4)) is not case specific, and 

should be applicable to other studies. The results here do add important insights into the 

currently limited pool of knowledge regarding the distinguishing sensitivities of water and 

energy variables to uncertainties in precipitation data in the TP. As shown in Table 1, the 

average LAI of the four river basins range from 0.22 to 0.55, which brackets the average LAI 

value of the entire TP (0.29). In addition, the selected four river basins span several climate 

zones and different hydrological regimes (semiarid, dry sub-humid, humid, water-limited and 

energy-limited). Therefore, the results in this study should be applicable to other regions in 

the TP. 

The results in Section 3.2 indicate some ensemble averages have good performance, which 

could also provide a reference for the confidence that could be put on simulated ensemble 

averages in data sparse regions. However, the confidence gained from the ensemble averages 

could be very similar for different variables because the ensemble averages of several 

variables have similar performance. Different from the confidence obtained from the 

ensemble averages, the sensitivity information in Fig. 11 distinguishes the difference in the 

confidence that could be assigned to each of the simulated variables. The WEB-DHM model 
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has been calibrated and validated against the hydrological gauge observation and MODIS 

LSTs, and the results show WEB-DHM performs well (recall the results in Section 3.1). Thus, 

the input data processing, model calibration and validation approaches and calibrated 

parameters are considered appropriate and acceptable. 

4 Conclusions 

This study investigates the divergent sensitivity of various water and energy variables to 

precipitation uncertainty in the TP. Four large river basins with diversified vegetation 

coverages, climates and hydrological regimes are used. Eight global precipitation products 

are utilized as the input to a well calibrated and validated distributed hydrological model 

simulating water and energy budgets. This study is unique in that it quantified the 

distinguishing sensitivity of water and energy variables to precipitation uncertainty in the TP 

based on the newly developed sensitivity analysis approach. The results provide improved 

understanding and appropriate interpretation of water and energy variable simulations in the 

TP, when different global precipitation products are used to force the model. This knowledge 

is especially useful in data sparse regions like the TP. The major contributions of this study 

are summarized as follows. 

First, runoff is more sensitive to precipitation uncertainties than most variables in general. 

Therefore, less confidence should be given to runoff simulation than others when using 

global precipitation products in ungauged regions. 

Second, LSTs are least sensitive to precipitation uncertainty among all variables considered. 

More confidence can be attached to the simulated LSTs, and other variables may have large 

uncertainty even when simulated LSTs are accurate. This result implies that calibrating the 
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parameters of land surface/hydrological models using LSTs could be problematic when 

precipitation has uncertainty. 

Third, Canopy interception loss has a relatively high sensitivity to precipitation uncertainty. 

Because Canopy interception loss has profound influence on local hydrological cycle, 

utilizing the most accurate precipitation data is critical for realistically representing local 

scale hydrological cycle in the four basins on the TP. 

The methodology introduced in this paper could be used in other regions. With more 

information on the sensitivity, more precise confidence information on simulated variables 

using global precipitation products could be gained in data sparse regions.
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Table 1 Average LAI, aridity index, climate and hydrological regimes based on data from 

2000 to 2010 in the river basins studied

River basin
Average 

LAI

Average aridity index (P/PET), climate 

and hydrological regimes

Yarlung Tsangpo 

River
0.22 1.09, Humid, Energy-limited

Upper Yellow River 0.55 0.63, Dry sub-humid, Water-limited

Upper Lancang River 0.43 0.42, Semi-arid, Water-limited

Upper Yangtze River 0.23 0.41, Semi-arid, Water-limited

Note. LAI = Leaf Area Index; P = Precipitation; PET = Potential Evaporation Transpiration; 

Humid zone = Aridity Index > 0.65; Sub-humid zone = 0.5 < Aridity Index < 0.65; Semiarid 

zone = 0.2 < Aridity Index < 0.5. Climate zones are defined based on the study by Park et al. 

(2018); PET is calculated using the Penman-Monteith method; MODIS MOD15A2 LAI 

product is used to calculate the average LAI. 
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Table 2 The global precipitation products used

Product
Spatial 

resolution

Temporal 

resolution Reference

TRMM3B42 V7 0.25o 3h Huffman et al. (2007)

CMORPH-BLD 1.0 0.25o Daily Joyce et al. (2004)

CHIRPS V2.0 0.25o Daily Funk et al. (2015a); Funk et al. (2015b)

MSWEP V2.01 0.25o 3h Beck et al. (2017)

WFDEI-CRU 0.5o 3h Weedon et al. (2014)

PERSIANN-CDR 0.25o Daily Ashouri et al. (2015)

GLDAS2.0 0.25o 3h Matthew and Hiroko Kato (2015)

GLDAS2.1 0.25o 3h Matthew and Hiroko Kato (2016)
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Fig. 1 The river basins studied in the Tibetan Plateau. 
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Fig. 2 8-day land surface temperature (LST) comparison between MODIS observation and 

WEB-DHM simulation in the four large river basins in the Tibetan Plateau. RMSE = root 

mean square error; MBE = mean bias error. 
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Fig. 3 Ensemble of long term mean monthly simulation results in the Yarlong Tsangpo River 

basin using different global precipitation products. ET = Evapotranspiration; CIE = Canopy 

interception loss; GIE = Ground interception store evaporation; LST = Land surface 

temperature. For runoff and LST, the plotted data are observation. ‘Observation-based’ refers 

to simulation using observation. 
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Fig. 4 Comparison between ensemble averages and observation/observation-based simulation 

results in the Yarlong Tsangpo River basin. ET = Evapotranspiration; CIE = Canopy 

interception loss; GIE = Ground interception store evaporation; LST = Land surface 

temperature. For runoff and LST, the plotted data are observation. ‘Observation-based’ refers 

to simulation using observation.
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Fig. 5 Long term mean monthly simulation results in the Upper Lancang River basin using 

different global precipitation products. ET = Evapotranspiration; CIE = Canopy interception 

loss; GIE = Ground interception store evaporation; LST = Land surface temperature. For 

runoff and LST, the plotted data are observation. ‘Observation-based’ refers to simulation 

using observation.
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Fig. 6 Long term mean monthly simulation results in the Upper Yangtze River basin using 

different global precipitation products. ET = Evapotranspiration; CIE = Canopy interception 

loss; GIE = Ground interception store evaporation; LST = Land surface temperature. For 

runoff and LST, the plotted data are observation. ‘Observation-based’ refers to simulation 

using observation.
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Fig. 7 Long term mean monthly simulation results in the Upper Yellow River basin using 

different global precipitation products. ET = Evapotranspiration; CIE = Canopy interception 

loss; GIE = Ground interception store evaporation; LST = Land surface temperature. For 

runoff and LST, the plotted data are observation. ‘Observation-based’ refers to simulation 

using observation.
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Fig. 8 Comparison between ensemble averages and observation/observation-based simulation 

results in the Upper Lancang River basin. ET = Evapotranspiration; CIE = Canopy 

interception loss; GIE = Ground interception store evaporation; LST = Land surface 

temperature. For runoff and LST, the plotted data are observation. ‘Observation-based’ refers 

to simulation using observation.
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Fig. 9 Comparison between ensemble averages and observation/observation-based simulation 

results in the Upper Yangtze River basin. ET = Evapotranspiration; CIE = Canopy 

interception loss; GIE = Ground interception store evaporation; LST = Land surface 

temperature. For runoff and LST, the plotted data are observation. ‘Observation-based’ refers 

to simulation using observation.
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Fig. 10 Comparison between ensemble averages and observation/observation-based 

simulation results in the Upper Yellow River basin. ET = Evapotranspiration; CIE = Canopy 

interception loss; GIE = Ground interception store evaporation; LST = Land surface 

temperature. For runoff and LST, the plotted data are observation. ‘Observation-based’ refers 

to simulation using observation. 
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Fig. 11 Precipitation Uncertainty Influence (PUI) on water and energy variables. The higher 

the PUI values, the greater the influence. CIE = Canopy interception loss; GIE = Ground 

interception store evaporation; SE = Surface soil evaporation; LH = Latent heat flux; CT = 

Canopy transpiration; GH = Ground heat flux; SH = Sensible heat flux; SW = Surface zone 

wetness; NR = Net radiation; ULW = Upward longwave radiation; USW = Upward 

shortwave radiation; LST = Land surface temperature. 
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Highlights:

Develop an approach to quantify sensitivity of land surface simulation to rainfall

Intercompare sensitivity of surface water and energy variables in the Tibetan Plateau

Canopy interception loss and runoff are sensitive to rainfall uncertainty

Land surface temperature is not sensitive to rainfall uncertainty


