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ABSTRACT

Regional  climate  models  (RCMs)  participating  in  the  Coordinated  Regional  Downscaling  Experiment  (CORDEX)
have  been  widely  used  for  providing  detailed  climate  change  information  for  specific  regions  under  different  emissions
scenarios. This study assesses the effects of three common bias correction methods and two multi-model averaging methods
in calibrating historical (1980−2005) temperature simulations over East Asia.  Future (2006−49) temperature trends under
the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios are projected based on the optimal bias correction
and ensemble averaging method. Results show the following: (1) The driving global climate model and RCMs can capture
the spatial pattern of annual average temperature but with cold biases over most regions, especially in the Tibetan Plateau
region.  (2)  All  bias  correction  methods  can  significantly  reduce  the  simulation  biases.  The  quantile  mapping  method
outperforms other bias correction methods in all  RCMs, with a maximum relative decrease in root-mean-square error for
five RCMs reaching 59.8% (HadGEM3-RA), 63.2% (MM5), 51.3% (RegCM), 80.7% (YSU-RCM) and 62.0% (WRF). (3)
The Bayesian model averaging (BMA) method outperforms the simple multi-model averaging (SMA) method in narrowing
the uncertainty of bias-corrected results. For the spatial correlation coefficient, the improvement rate of the BMA method
ranges from 2% to 31% over the 10 subregions, when compared with individual RCMs. (4) For temperature projections, the
warming is significant, ranging from 1.2°C to 3.5°C across the whole domain under the RCP8.5 scenario. (5) The quantile
mapping method reduces the uncertainty over all subregions by between 66% and 94%.
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Article Highlights:

•  RCMs have obvious cold biases over the East Asia region, especially in cold seasons.
•  Bias correction and BMA methods significantly reduce biases in RCM simulations.
•  Temperatures increase between 1.2°C and 3.5°C under the RCP8.5 scenario in 2030−49.
•  The warming trend is more remarkable in the northern part of the East Asia region.

 

 
 

1.    Introduction

Climate  change  has  attracted  much  attention  as  its
effects on human society and ecological environments have
grown  over  past  decades  (Grimm  et  al.,  2013; Sun  et  al.,
2015, 2016, 2020; Huang et al., 2016). According to the Inter-
governmental Panel on Climate Change (IPCC) Fifth Assess-
ment  Report,  several  independent  datasets  show  that  the
global  average  surface  temperature  increased  by  0.65°C−
1.06°C from 1880 to 2012 (IPCC, 2013). A set of global cli-

mate model (GCM) simulations shows that, relative to cur-
rent  climate  (1986−2015),  by  the  end  of  the  21st  century
(2081−2100),  global  average  surface  temperature  further
increases by from 0.3°C to 4.8°C under different  scenarios
[from  Representative  Concentration  Pathway  (RCP)  2.6  to
RCP8.5]  (IPCC,  2014).  Accompanied  by  further  increases
in surface temperature, obvious impacts on natural and anthro-
pogenic systems around the world have been reported, such
as diminishing levels  of  snow and ice,  increasing sea level
and more occurrences of climate extremes (e.g., heat waves,
droughts and floods) (Mann and Gleick, 2015; Schlaepfer et
al.,  2017; Kang  and  Eltahir,  2018).  To  evaluate  climate
change impacts and mitigate risks of  climate changes,  reli-
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able  projections  of  future  climate  change  are  crucial  for
decision makers in government, nongovernmental organiza-
tions  and  the  general  public,  especially  for  regions  vulner-
able to the adverse effects of climate change. For example,
with  precipitation  and  temperature  being  the  main  driving
variables  for  hydrological  processes,  climate  change  will
affect the hydrological cycle (Luo et al., 2018). Since water
is  an  essential  resource,  hydrological  changes  will  influ-
ence flood control policies, hydropower production manage-
ment  and  agricultural  irrigation  adjustment.  To  investigate
the  changes  in  the  hydrological  cycle,  reliable  climate
change  information  from  regional  climate  models  (RCMs)
and  GCMs  is  required  to  drive  the  hydrological  models
(Teutschbein and Seibert, 2010; Mearns et al., 2015).

In past decades, GCMs have been widely used to investig-
ate the mechanisms of climate changes (Gulizia and Camil-
loni, 2015; Eyring et al., 2016; Soden et al., 2018). Several
studies show that GCMs can satisfactorily reproduce the spa-
tial pattern and variability of historical temperature (Miao et
al.,  2014; McSweeney et al.,  2015; Tang et al.,  2016; Ash-
faq et al., 2017; Ruan et al., 2019). However, GCMs are less
skillful  in  regional  climate  factor  simulations  due  to  their
coarse resolution (ranging from 100 to 200 km) (Bao et al.,
2015; Li et al., 2018a). The dynamical downscaling of out-
puts from GCMs by RCMs can reproduce regional climate
information  that  is  more  detailed  and  reliable.  Compared
with  GCMs,  RCMs  can  provide  higher-resolution,  more-
detailed local information such as topography, land-use cat-
egories and soil moisture data, which are important in simulat-
ing  regional  climate  information  (Fulakeza  et  al.,  2002;
Salzmann et al., 2007; Akhtar et al., 2009; Jones and Brun-
sell, 2009; Halder et al., 2016). Although RCMs can allevi-
ate the deficiencies in GCMs, the simulations of RCMs also
greatly depend on (1) the quality of initial conditions, (2) lat-
eral  and  boundary  conditions  provided  by  GCMs  used  to
drive  the  RCMs  and  (3)  simplified  physical  parameteriza-
tion  schemes  for  subgrid-scale  physical  processes  (Au-
Yeung  and  Chan,  2012; Rocheta  et  al.,  2017).  As  a  result,
various  techniques,  such  as  bias  correction  and  ensemble
post-processing  methods,  have  been  developed  to  remove
the systemic biases in RCM simulations and give better pro-
jections of future climate. The Coordinated Regional Down-
scaling Experiment (CORDEX) is a program sponsored by
the  World  Climate  Research  Programme  (Giorgi  et  al.,
2009). It was established to provide an international coordin-
ated downscaling framework for  advancing RCM develop-
ment,  evaluation  and  applications  (Gutowski  et  al.,  2016).
Within  CORDEX,  RCM  ensembles  have  been  created  for
multiple  regions  throughout  the  world  (through  dynamic
downscaling driven by CMIP5 GCMs). Since the influence
of  climate  change  varies  across  regions  and  time  scales,
regional  climate  studies  are  necessary  for  correctly  detect-
ing climate change signals. East Asia is one of the most vul-
nerable regions to climate change, since it is a large domain
that  comprises  diverse  terrestrial  features  and  complex  cli-
mate systems (Li et al., 2018b; Miao et al., 2019; Zheng et

al., 2019). The main climate system of East Asia is a mon-
soonal  system,  and  the  monsoons  are  always  accompanied
by  extreme  events  such  as  heat  waves,  typhoons,  droughts
and floods (Ding and Chan, 2005; Chang et al., 2012; Lee et
al.,  2017).  Observations  show  that  since  the  middle  of  the
20th century, the average surface temperatures and frequen-
cies of heat waves have increased for most regions of East
Asia (Hijioka et al., 2014; Zhou et al., 2016).

Focusing  on  the  CORDEX  East  Asia  domain  (COR-
DEX-EA),  five  RCMs  have  been  employed  to  provide
ensemble simulations of regional climate information. Sev-
eral studies have examined the performance of RCMs in simu-
lating temperature and the projections of future temperature
over CORDEX-EA. Kim et al. (2016) analyzed the spatial pat-
tern of projected temperature data from RCMs participating
in studies of the CORDEX-EA domain. The results showed
that  there  will  be  a  warming  of  1°C−3°C  over  the  whole
domain by the year 2050 and the temperature will increase
more at high latitude. Park et al. (2016) focused on the per-
formance of RCMs participating in CORDEX-EA research
in  simulating  summer  temperature  means  and  extremes.
They  found  that,  compared  to  the  Asian  Precipitation-
Highly-Resolved  Observational  Data  Integration  Towards
Evaluation dataset, the RCMs show systematic biases in sea-
sonal  means  and  the  simulations  of  temperature  means  are
more accurate  than those of  the extremes. Gu et  al.  (2018)
showed that the RCMs have improved model performances
as  compared  to  the  raw  GCM  outputs,  and  the  projected
trends  of  the  RCM  temperatures  are  increasing  from  the
ensemble mean by around 1°C yr−1 over the entire domain.
Further, there have also been studies focused on the bias cor-
rection  and ensemble  calibration  of  RCM simulations  over
CORDEX-EA. Ngai et al. (2017) showed that RCM bias is
comparable to the bias of the driving GCMs, and the bias cor-
rection methods can substantially reduce the bias in simulat-
ing  historical  temperature. Kim  and  Suh  (2013) used  a
Bayesian  model  averaging  (BMA)  method  to  calibrate  the
probabilistic  predictions  of  temperature.  They  found  that
BMA  outperforms  the  equal-weighted  method  and  other
ensemble calibration methods in calibrating seasonal means
and  distributions  of  the  simulations.  In  addition,  the  BMA
forecasts outperform the single-RCM forecasts.

Bias correction methods and ensemble calibration meth-
ods  have  been  used  in  the  aforementioned  studies  to
improve  the  simulation  of  historical  temperature  and
improve the reliability of temperature projections. However,
little attention has been paid to the performance of different
bias correction methods in improving the accuracy of RCM
simulations,  and  comparison  of  their  ability  in  narrowing
future projections over  the CORDEX-EA region is  insuffi-
cient as well.

In  this  study,  we  evaluated  the  effects  of  three  com-
mon bias correction methods on improving historical temper-
ature simulations, and then used the most effective bias correc-
tion  method  together  with  an  ensemble  method  to  narrow
the uncertainties in temperature projections. The changes in
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future climate were analyzed based on the most reliable pro-
jection of temperatures.  The paper is  organized as follows:
Section  2  describes  the  observational  data,  the  climate
model data, and the bias correction and ensemble averaging
methods.  Section  3  presents  the  design  of  the  bias  correc-
tion experiment, including the selection of calibration and val-
idation cases and the evaluation of bias correction methods,
as  well  as  the  results  of  ensemble  calibration.  Finally,  the
future  temperature  changes  under  the  RCP4.5  and  RCP8.5
scenarios are also discussed, based on the projection period
(2030−49) and reference period (1980−99). A summary and
conclusions are provided in section 4.

2.    Data and methods

2.1.    Observations and model setup

The reference data of monthly temperature over COR-
DEX-EA  were  taken  from  the  Climatic  Research  Unit
Time-Series (CRU TS) 4.03 dataset  developed by the Uni-
versity  of  East  Anglia  (available  at http://data.ceda.ac.uk/
badc/cru/data/cru_ts/cru_ts_4.03/data/tmp),  with  a  resolu-
tion of 0.5° (Harris et al., 2014) and a time frame of 1901-
2018.  To conduct  bias  correction,  only the data  from 1980
to 2005 were used in the study, to coincide with the historic
period of CORDEX-EA.

Five  RCMs  were  used  in  the  CORDEX-EA  experi-
ment: the Hadley Centre Global Environmental Model, ver-
sion  3,  with  Regional  Atmosphere  configurations
(HadGEM3-RA);  the  Fifth-generation  Pennsylvania  State-
National  Center  for  Atmospheric  Research  Mesoscale
Model  (MM5);  the  Weather  Research  and  Forecasting
(WRF)  model;  the  Regional  Climate  Model,  version  4
(RegCM4);  and  the  Yonsei  University  Regional  Climate
Model (YSU-RCM). The selected RCMs include three non-
hydrostatic  models  (HadGEM3-RA,  MM5  and  WRF)  and
two  hydrostatic  models  (RegCM4  and  YSU-RCM)  (von
Storch  et  al.,  2000; Cha  et  al.,  2008; Giorgi  et  al.,  2012;
Baek  et  al.,  2013; Wang  et  al.,  2013). Table  1 lists  the
detailed configurations of the five RCMs, including dynam-
ics processes, physical parameterization schemes, and spec-

tral nudging (Gu et al., 2018). The CORDEX-EA domain cov-
ers East Asia, India, South Asia, and the northern part of Aus-
tralia  (Fig.  1),  and  the  spatial  resolution  is  50  km  (except
HadGEM3-RA,  whose  resolution  is  0.44°).  The  historical
experiment  (1980-2005)  and  the  future  projections  under
the RCP4.5 and RCP8.5 scenarios (2006−49) are driven by
the outputs of HadGEM2-AO (Hadley Centre Global Environ-
mental  Model,  version 2,  with  Atmosphere  and Ocean and
sea  ice  configurations),  whose  horizontal  resolution  is
1.875° × 1.25°. Several studies have confirmed the good per-
formance of HadGEM2-AO for simulating East Asia’s clima-
tology (Martin et al., 2011; Baek et al., 2013; Sperber et al.,
2013).

To  further  correct  the  biases  at  smaller  spatial  scales,
10  subregions  were  selected:  northwestern  China  (NW;
36°−43°N,  75°−103°E);  the  Tibetan  Plateau  (TP;  28°−
35°N,  75°−103°E);  northeastern  China  (NE;  30°−42°N,
104°−121°E), northern China (NC; 42°−55°N, 113°−132°E);
southern  China  (SC;  18°−30°N,  104°−122°E);  the  Korean
Peninsula  and  Japan  (KJ;  43°−51°N,  91°−112°E);  Mongo-
lia  (MG;  30°−42°N,  125°−141°E);  India  (5°−27°N,  69°−
91°E),  Indochina  (InC;  8°−28°N,  92°−110°E),  and  South-
east  Asia  (SEA;  10°S−6°N,  95°−151°E)  (Zou  and  Zhou,
2016; Zhou et al., 2016; Li et al., 2018a; Tang et al., 2018).
The  reference  period  (1980−99)  and  projected  period
(2030−49) are analyzed to explore future climate change.

2.2.    Bias correction methods

As mentioned above, due to the deficiencies in RCMs,
large biases can be found in simulations when compared to
the  observations.  Thus,  bias  correction  methods  based  on
the observations can be implemented to improve the perform-
ance  of  RCMs.  Considering  the  relatively  short  time
sequence  of  data,  here  three  common  stationary  temperat-
ure  bias  correction  methods  are  used  from the  R  packages
“hyfo” and “DownscaleR”; namely, variance scaling, addit-
ive scaling, and quantile mapping based on empirical distribu-
tion (Wilcke  et  al.,  2013).  To facilitate  bias  correction and
ensemble calibration, temperatures from RCMs were interpol-
ated to a common grid of 0.5° × 0.5° latitude/longitude, fol-
lowing CRU, using bilinear interpolation.

Table 1.   Configurations of the five RCMs in the CORDEX-EA region (after Gu et al., 2018).

Name HadGEM3-RA RegCM4 MM5 WRF YSU-RCM

Resolution 0.44° 50 km 50 km 50 km 50 km
Dynamics process Non-hydrostatic Hydrostatic Non-hydrostatic Non-hydrostatic Hydrostatic
Convective scheme Revised mass flux

scheme
MIT-Emanuel Kain−Fritsch II Kain−Fritsch II Simplified

Arakawa−Schubert
Land-surface

parameterization
MOSES2 CLM3 CLM3 NOAH NOAH

Planetary boundary
layer

MOSES2 nonlocal Holtslag YSU YSU YSU

Spectral nudging No Yes Yes Yes Yes
Research center Met Office Hadley

Centre
International Centre

for Theoretical
Physics

Seoul National
University

NCAR’s Mesoscale
and Microscale
Meteorology
Laboratory

Climate Limited-
area Modelling

Community
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2.2.1.    Additive scaling

The  additive  scaling  method  performs  bias  correction
based on the bias between the average simulation and aver-
age observation during the calibration period. It is expressed
as 

Tbc (t) = Tval (t)−T cal+T obs−cal , (1)

Tval Tbc

T cal T obs−cal

where  and  denote  the  validation  temperature
sequence before and after bias correction, respectively, and

 and  are the average of the simulation and obser-
vation temperatures in the calibration, respectively.

2.2.2.    Variance scaling

Building  on  the  additive  scaling  method,  the  variance
scaling method further corrects the variance of the temperat-
ure  (Terink  et  al.,  2010)  using  the  following  procedure.
First, we apply the additive scaling method, which corrects
the average of the temperature: 

T ∗1val (t) = Tval (t)−T cal+T obs−cal . (2.1)

Then, we convert the average temperature to 0, using 

T ∗2val (t) = T ∗1val (t)−T ∗1val . (2.2)

Next, we scale the variance of temperature according to the
ratio  of  the  temperature  variance  between  the  calibration
and validation periods: 

T ∗3val (t) = T ∗2val (t)

σm (Tobs−cal)

σm

(
T ∗2cal

)  . (2.3)

And finally, we add the temperature in step 3 to the temperat-
ure in step 1: 

T ∗val (t) = T ∗3val (t)+T ∗1val . (2.4)

2.2.3.    Quantile mapping

The  quantile  mapping  (QM)  method  derives  from  the
empirical  transformation  developed  by Panofsky  and  Brier
(1968).  It  has  been  widely  used  in  the  bias  correction  of
both  GCMs  and  RCMs  (Wilcke  et  al.,  2013; Miao  et  al.,
2016).  By contrast  with  the  methods mentioned above,  the
QM method  focuses  not  only  on  the  mean  of  the  distribu-
tion but also on correcting the quantiles of the distribution.
The QM method estimates the cumulative distribution func-
tion  (CDF)  from  the  simulation  data  in  the  calibration
period and then finds the corresponding percentile values of
the  model  projections.  The  corrected  projections  can  be
derived through inverse CDFs of the observations. The trans-
fer function is shown as follows: 

Tbc (t) = F−1
O (Fmc [Tval (t)]) , (3)

Fmc

F−1
O

where the subscripts  O and mc denote  the  observation and
model  calibration  periods,  respectively.  is  the  CDF
from  simulation  data  in  the  calibration  period,  and  is
the inverse CDF of observations.

2.3.    Simple multi-model averaging method

1/n

Simple  multiple-model  averaging  (SMA),  which  gives
each member in the ensemble equal weight, is the most com-
mon ensemble post-processing method. For an ensemble of
n members, the weight of each member is  (Arsenault et
al., 2015).

2.4.    BMA method

The  BMA  method  was  introduced  by Raftery  et  al.
(2005) to  combine  different  model  forecasts  into  an

 

 

Fig.  1.  Simulation  domain  and  topology  of  CORDEX-EA  and  the  10  selected  subregions:
northwestern  China  (NW),  Tibetan  Plateau  (TP),  northeastern  China  (NE),  northern  China
(NC),  southern  China  (SC),  Korean  Peninsula  and  Japan  (KJ),  Mongolia  (MG),  India,
Indochina (InC), and Southeast Asia (SEA).
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ensemble  and  calibrate  the  under-dispersion  during  the
ensemble  forecasts  (Duan  and  Phillips,  2010; Miao  et  al.,
2013). BMA can be viewed as a post-processing method for
producing the forecast probability density function (PDF) of
output variables, which is a weighted average of the bias-cor-
rected  PDF  of  each  individual  ensemble  member.  The
weights reflect the relative performance of each member in
the ensemble during the training period. Following the nota-
tion  in Raftery  et  al.  (2005),  the  BMA-weighted  forecast
PDF of variable y is 

p (y| f1, . . . , fk,O) =
∑K

k=1
wkgk (y| fk,O) , (4)

wk fk
wk

gk (y| fk,O)
fk

fk,bc

σ2

where  is the weight of the kth forecast  over a training
period  and  all  must  sum to  1. K is  the  number  of  fore-
casts,  and O denotes  the  observations  during  the  training
period. Further,  is the conditional PDF of y given
the kth forecast  and observation O. We considered the tem-
perature forecast in our case to be a normal PDF with mean

 (bias-corrected  forecast  from  bias  correction  methods
described above) and standard deviation .  Therefore, the
conditional PDF is expressed as 

y| ( fk,O) ∼ N( fk,bc,σ
2) . (5)

fk,bc

The mean of the BMA-weighted forecast can be inter-
preted  as  a  weighted  sum  of  the  normal  distributions  with
equal  variance  but  centered  at  the  bias-corrected  forecast

: 

E
[
y| f1, . . . , fk

]
=
∑K

k=1
wk fk,bc . (6)

wk σ2The  BMA  weights  and  variance  are  estimated
through  the  maximum  likelihood  method  (Raftery  et  al.,
2005).  The  expectation  maximization  algorithm is  adopted
in  this  study  to  calculate  the  BMA  weights  and  variance.
For a detailed description of the BMA method, see Raftery
et al. (2005).

2.5.    Model evaluation in spatial simulation

In this study, we conducted the bias correction for each
subregion and for each month of the year. In addition, consid-
ering the time dependence of the model biases and the relat-
ively short time sequence of historical simulations (only 26
years,  from  1980  to  2006),  cross  validation  (Miao  et  al.,
2016) was used to calibrate and validate the performance of
the  RCMs.  For  calibration,  20  years  were  randomly  selec-
ted out of the 26 years and then three bias correction meth-
ods  were  applied  to  get  the  bias  correction  factors.  The
remaining 6 years were used for validation, and the bias cor-
rection factors were applied.  The sampling method used in
cross validation was simple random sampling without replace-
ment, which guarantees that each member has an equal oppor-
tunity to be selected. Validation was conducted by compar-
ing the corrected temperatures with CRU data. We repeated
the whole cross-validation process 30 times to overcome the
limitation of insufficient sample sizes and enhance the robust-

ness of the validation results.  The performance of different
bias  correction  methods  was  also  evaluated  based  on  the
cross-validation results.

RMSEcal,i,
i = 1, . . . ,3

RMSEraw

RMSEdec,i = 100(RMSEraw−
RMSEcal,i)/RMSEraw RMSEdec,i

MAEdec,i = 100(MAEraw−
MAEcal,i)/MAEraw

Based on the cross-validation results,  for each pixel in
each  subregion,  30  results  were  acquired  for  each  method
and each month. If at least 27 corrected results agreed well
with  the  CRU  data,  the  corresponding  method  was  con-
sidered  to  be  effective.  For  all  subregions  and  RCMs,  we
summed  up  the  number  of  all  effective  pixels  and  calcu-
lated  their  percentage  out  of  all  pixels  over  the  30  valida-
tions.  In  this  way,  we  analyzed  the  performance  of  each
method across all regions and RCMs. Further, the temporal
average  (averaging  over  12  months  and  6  years)  of  valid-
ated and observed temperature was used to calculate the relat-
ive decrease in root-mean-square error (RMSE) (

). The subscript i represents different bias correc-
tion  methods.  In  this  way,  the  relative  decrease  in  RMSE
was derived with reference to the RMSE between the raw sim-
ulation  and  observations  ( ).  The  relative  decrease
in  RMSE can  be  expressed  as 

 (unit:  %).  The  reflects  the
effectiveness of the bias correction methods. Similarly, the rel-
ative decrease in mean average error (MAE) for each pixel was
calculated  using  the  equation 

 (unit: %). The performance of the bias cor-
rection methods over the five RCMs and 10 subregions was
analyzed based on the results. If a particular bias correction
method was most effective (with most effective pixels in the
months  and  quantiles,  or  the  most  relative  decreases  in
RMSE or MAE) among all subregions and RCMs, it is con-
sidered to be the most suitable bias correction method and is
used in the future projection period.

While  the  most  effective  bias  correction  method  was
being  obtained,  the  historical  temperature  simulations
(1980-2005)  were  corrected  for  all  subregions.  Then,  the
ensemble averaging methods were applied to the bias-correc-
ted temperatures.  To validate the performance of  ensemble
averaging methods, monthly temperature distributions, inter-
annual  variability  and  Taylor  diagrams  were  used.  The
Taylor  diagram  is  especially  useful  in  evaluating  multiple
aspects  of  complex  models  (IPCC,  2001).  It  incorporates
three  evaluation  terms−spatial  correlation,  centered  RMSE
and  standard  deviations−and  graphically  measures  how
closely  the  simulation  patterns  match  the  observations
(Taylor, 2001).

3.    Results

3.1.    Bias correction evaluation

Figure  2 illustrates  the  spatial  pattern  of  annual  aver-
age  (1980-2005)  temperatures  of  CRU  and  the  driving
GCM (HadGEM2-AO) as well as the annual average temper-
ature biases of the driving GCM and the five RCMs. In addi-
tion, the annual average temperatures of the five RCMs are
shown  in  Fig.  S1  in  the  electronic  supplementary  material
(ESM). We can see that both the GCM and the RCMs cap-
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tured the spatial pattern of the observations with a decreas-
ing south to north temperature gradient. However, both the
driving  GCM  and  the  RCMs  generally  underestimated  the
annual  average  temperature  in  most  regions,  especially  in
the TP region, where the greatest bias exceeded −8°C. The
cold biases in the simulation came mainly from December−
January−February  (DJF),  and  the  biases  in  June-July-
August  (JJA)  were  small  (Fig.  S2).  Several  studies  have
also reported similar annual average and seasonal temperat-
ure bias patterns (Ham et  al.,  2016; Guo et  al.,  2018; Li et
al.,  2018a; Hui  et  al.,  2019).  The  cold  biases  in  DJF  were
remarkable  in  most  RCMs,  with the largest  bias  exceeding
−8°C  in  most  RCMs.  The  only  exception  was  RegCM,
which  had  warm biases  exceeding  4°C  at  high  latitudes  in
CORDEX-EA,  which  is  consistent  with  previous  studies
(Gao and Giorgi, 2017). The RCMs’ performance also var-
ied in JJA temperature simulations. For example, the YSU-
RCM model  presented  a  large  cold  bias  in  NE and the  TP

(exceeding −8°C), while the bias was small in other RCMs.
In  addition,  compared  to  the  driving  GCM,  some

RCMs had improved their  skill  in simulating the temperat-
ure  in  several  regions.  For  example,  WRF  and  MM5
reduced  the  biases  over  the  NC,  SC  and  KJ  regions,  and
RegCM and YSU-RCM improved their performance in the
India  region.  However,  for  the  other  regions  (e.g.,  TP  and
NW), the improvement of the RCMs was less and the cold
biases  were  even  larger  than  those  of  the  driving  GCM.
Increased  resolution  does  not  always  lead  to  improvement
in simulations (Prömmel et  al.,  2010; Gu et  al.,  2018),  and
there are several reasons for this phenomenon. For instance,
due  to  their  simplified  physical  parameterization  schemes,
longwave radiation is underestimated in RCMs, which lim-
its  the  heating  of  the  low-level  atmosphere  (Hui  et  al.,
2019).  Also,  the overestimation of albedo in RCMs (in the
lower  boundary  conditions)  may  also  lead  to  cold  biases
(Meng et al., 2018).

 

 

Fig. 2. Spatial distribution of annual average temperatures according to (a) CRU and (b) the HadGEM2-AO
GCM.  (c−h)  Annual  temperature  biases  of  (c)  the  HadGEM2-AO  GCM  and  (d−h)  five  RCMs  during  the
years 1980−2005.
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Given  the  large  biases  in  simulating  annual  and  sea-
sonal  average  temperatures,  bias  correction  is  necessary  to
improve the RCMs’ performance. We calculated the percent-
age of effective pixels for each method over 30 rounds of val-
idation  (Fig.  3).  We found that  all  the  methods  can  effect-
ively improve RCM performance. The percentage of effect-
ive  pixels  at  the  25% quantile  was  higher  than  at  the  50%
and 75% quantiles. The QM method outperformed the other
two  methods  for  the  25%,  50%  and  75%  quantiles.  This
may be due to the fact that, although all bias correction meth-
ods corrected the biases in the RCMs, their  foci  are differ-

ent.  For  example,  the  additive  scaling  method  focuses  on
the mean difference between the calibration model and obser-
vation data (Teutschbein and Seibert, 2012; Ezéchiel et al.,
2016), while the variance scaling method focuses on adjust-
ment  of  variance  (Luo  et  al.,  2018).  The  two  methods  can
adjust the monthly mean values, but they neglect the cumulat-
ive  distribution  of  the  temperature,  and  thus  they  cannot
adjust the quantiles of the simulation. However, in contrast
with  these  two  methods,  the  QM  method  constructs  CDFs
of RCMs and adjusts the distributions according to the corres-
ponding  distribution  of  observation  data  (Bennett  et  al.,
2014; Singh et al., 2017; Ayugi et al., 2020). Therefore, the
QM method can adjust not only the mean value of temperat-
ure but also the quantile values.

We calculated the RMSE for both raw and bias-correc-
ted  temperature  data,  then  the  relative  decrease  in  the
RMSE for the 10 subregions and five RCMs was calculated
based on the 30 rounds of cross validation (Fig. 4). Results
showed  that  all  the  bias  correction  methods  effectively
reduced  biases  for  all  RCMs.  The  QM  method  was  most
effective  among  the  methods,  with  the  maximum  relative
decrease  in  the  RMSE  reaching  59.8%  (HadGEM3-RA),
63.2%  (MM5),  51.3%  (RegCM),  80.7%  (YSU-RCM)  and
62.0% (WRF). For subregions, although all the bias correc-
tion methods significantly reduced the biases over most subre-
gions,  results  varied.  For  example,  in  the  SEA  region,
MM5,  bias-corrected  by  the  additive  scaling  method,  was
worse  than  the  raw  simulation.  We  analyzed  the  results
(Fig. S3) and found that this may be due to the fact that the
additive  scaling  method  can  only  adjust  the  mean  differ-
ence between the model values and observations, while for
extreme values, the additive scaling method failed (Fang et
al.,  2015).  In  the  SEA region,  for  MM5,  the  additive  scal-
ing method narrowed the biases for high temperature but amp-
lified  the  bias  for  low  temperature  when  compared  to  the
raw simulations. However, the QM-corrected results almost
perfectly fitted the CRU distribution. Several previous stud-
ies have also shown that bias correction methods are region-
dependent, and the scaling method may have adverse effects
in  some  regions  (Berg  et  al.,  2012; Ayugi  et  al.,  2020).
Moreover, for almost all subregions (except the MG region
as  simulated  by  WRF and  MM5),  the  QM method  outper-
formed the other two methods.  We also found that,  for  the
TP and NW regions, where the bias was largest among the
subregions, the bias reduction was significant, with the max-
imum  relative  decrease  in  the  RMSE  reaching  61.5%  and
80.7%, respectively (both for YSU-RCM).

Figure  5 gives  the  spatial  distribution  of  the  relative
decrease in the MAE for the 10 subregions (the QM method
performed best, so only the results of QM are shown here).
The spatial distribution results are consistent with results in
Fig. 4. The bias correction was effective in most regions, espe-
cially  in  the  TP,  NW,  SC  and  NC  subregions,  where  the
MAE was reduced more than 50% compared to the MAE of
the raw model output. For the YSU-RCM model, which had
the largest biases in the simulation, the bias reductions were
remarkable:  the  relative  decrease  in  the  MAE  was  more

 

Fig. 3. Comparisons of different bias correction methods at the
25th, 50th and 75th quantiles.
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than 60% for most regions and more than 70% in most parts
of  China.  The  spatial  distribution  results  for  winter  (DJF)
and summer (JJA) (Fig. S4) also showed that the bias correc-
tion method effectively reduced the bias in seasonal simula-
tions,  especially  in  winter.  The  correction  for  summer
focused  mainly  on  the  southern  part  of  the  CORDEX
region, including India, InC and SC. In summary, all bias cor-
rection methods effectively reduced the biases in the simula-
tions, and the QM method was most effective for almost all
subregions  and  all  RCMs.  Therefore,  the  QM method  was
chosen as the most suitable method to correct the temperat-
ure simulations in the following text. Figure S5 provides the
annual average temperature error distribution of the bias-cor-
rected data using the QM method. The results show that, com-
pared  with  the  raw  RCM  simulations,  the  errors  were
removed remarkably well by the bias correction process, espe-
cially for the NE, NC, KJ, SC, INC, SEA and India regions,
where the errors were small. However, for the NW, TP and
MG regions, although bias correction did decrease the cold

biases, some cold biases remained. Furthermore, due to the
remarkable cold biases in the NW, TP and MG regions, the
bias  correction  tended  to  overcorrect  cold  biases  in  these
regions, especially for the TP and NW regions in the YSU-
RCM model.

3.2.    Multi-model averaging based on bias correction

In  addition  to  the  bias  correction  method,  BMA  and
SMA were also used to further narrow the uncertainty in the
corrected RCMs. Figure 6 gives the seasonal distribution of
CRU, raw simulated, bias-corrected, SMA-weighted [bias-cor-
rected  (BC)]  and  BMA-weighted  (BC)  temperatures.  Res-
ults show that, compared to the CRU data, the raw simula-
tion  had  significant  cold  biases  in  winter  (DJF)  and  biases
were small in summer (JJA) over the 10 subregions. This is
consistent  with  the  results  in  Fig.  S2  and  several  previous
studies, where the cold biases in winter were large and in sum-
mer  were  small  (Ham  et  al.,  2016; Hui  et  al.,  2019).
Moreover,  RCM performance  was  region-dependent;  more

 

 

Fig. 4. Relative decrease in RMSE (%) of three bias correction methods for the 10 subregions for the five RCMs: (a)
HadGEM3-RA, (b) RegCM, (c) MM5, (d) WRF, and (e) YSU-RCM.
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specifically,  the  RCMs  performed  well  for  the  regions  at
high latitudes (e.g., the NE, KJ and MG regions) and badly
for regions at low latitudes (e.g., the SEA, TP, NW and InC
regions).  Several  previous  studies  have  analyzed  the  pos-
sible causes of the biases in these regions and suggested that
careful configuration of the RCM parameterization schemes
could help. For example, according to Hui et al. (2019), the
radiation parameterization schemes in RCMs underestimate
the  monthly  longwave  upward  and  downward  fluxes
throughout the year, especially in cold months over subtrop-
ical regions, which leads to significant cold biases in subtrop-
ical regions. For the cold biases in the TP region, they may
be  attributable  to  the  overestimation  of  upward  shortwave
radiation  and  the  corresponding  overestimation  in  albedo
(Tangang  et  al.,  2015; Chen  et  al.,  2017; Hui  et  al.,  2019;
Yin  et  al.,  2020).  When  the  bias  corrections  of  SMA  and
BMA were  applied,  the  seasonal  cycles  of  the  raw models
were adjusted and fitted the CRU data well. The bias correc-
tions of SMA and BMA significantly improved the perform-
ance of the RCMs.

The model’s ability to capture the real interannual variab-
ility  is  another  important  performance  measure.  Here,  we
used the variance among 26 historical years as the indicator
of interannual variability. Figure 7 gives the results of interan-
nual variability of the SMA (BC), BMA (BC), SMA (raw)
and  CRU  temperature  values.  The  results  show  that  the
RCMs’ ability to capture the real interannual variability var-
ied among subregions. For the NW, TP, NE, MG and SEA
regions,  the  interannual  variability  of  bias-corrected  data
was  closer  to  the  real  interannual  variability.  But  for  other

regions, the bias correction narrowed the variability. The res-
ults may be due to the fact that the bias correction methods
mainly  focus  on  the  mean  and  trend  of  the  data,  with  less
focus  on  the  variance  (Ayugi  et  al.,  2020).  Although,  for
most subregions, the performances of SMA and SMA (BC)
were similar, but for the MG region, where the interannual
variability was greater, the variabilities of SMA (BC) were
closer to the variability of CRU. Thus, SMA (BC) was con-
sidered as a better method. In addition, the results based on
SMA  (BC)  were  better  than  those  based  on  BMA  (BC)
when compared to the variability of CRU. This is due to the
fact  that  the objective function of  BMA only considers the
minimum bias without adjusting for variance (Raftery et al.,
2005; Fragoso  et  al.,  2018).  In  future  studies,  we  will  pay
more attention to the variance and consider multi-objective
optimization.

The spatial variability statistics of the models in reprodu-
cing annual average temperature are shown using Taylor dia-
grams in Fig. 8. The Taylor diagrams show that the bias cor-
rection improved the  performance of  the  RCMs,  contribut-
ing to a higher spatial correlation and lower normalized stand-
ard deviation. Furthermore, the BMA and SMA ensemble res-
ults  both  reduced  the  uncertainties  in  simulation  with  a
closer distance to the observation. For some subregions, the
performances of BMA and SMA were similar (e.g., in NE,
NC, TP and SC). However, for other regions, such as NW,
MG  and  SEA,  the  BMA  method  performed  better.  This  is
reasonable because the BMA weights are estimated accord-
ing to the RCMs’ performance in the training period (Duan
et  al.,  2007).  A  previous  study  also  showed  that  the  BMA

 

 

Fig.  5.  Spatial  distribution  of  relative  decrease  in  MAE (%)  for  annual  temperatures  using  the  QM method.  Panels  (a−e)
show results from each of the five RCMs. See Fig. S4 in the ESM for spatial distribution of relative decrease in MAE (%) for
seasons.
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Fig.  6.  Observed (CRU),  raw simulated,  bias-corrected,  SMA [bias-corrected (BC)] and BMA [bias-corrected (BC)] monthly
temperatures of 10 subregions in the validation period.
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method outperformed the SMA method when applied to the
CORDEX-EA  data  (Kim  and  Suh,  2013).  For  the  correla-
tion coefficient,  the improvement rate of  the BMA method
was between 2% and 31% when compared with individual
RCMs. Although the SMA performed better with respect to
interannual  variability,  we  focus  mainly  on  the  mean  and
trend  in  the  projection.  Thus,  we  chose  the  BMA  method
for the projection to narrow the uncertainties. Although the
BMA-related improvement was not substantial, the amount
of  improvement  was  reasonable  considering  the  temperat-
ure had already been corrected by bias correction methods.

3.3.    Temperature projections

Based  on  the  most  effective  bias  correction  method
(QM)  and  BMA  weights  derived  from  the  training  period
(1980−2005), the bias-corrected and BMA-weighted temperat-
ure  projections  for  the  10  subregions  under  the  two  scen-
arios (RCP4.5 and RCP8.5) were generated. Figure 9 shows
the average temperature projections for the BMA ensemble
under  the  RCP4.5  and  RCP8.5  scenarios  (results  of  five
RCMs and the driving GCM are shown in Figs. S6 and S7
under the RCP4.5 and RCP8.5 scenarios, respectively). Sim-
ilar  warming  trends  were  detected  over  the  10  subregions
for  the  2030−2049  period  under  both  scenarios  but  with  a
more  obvious  warming  trend  under  the  RCP8.5  scenario.
The  warming  trend  was  more  remarkable  in  the  northern
part  of  CORDEX-EA  than  in  the  southern  part,  especially
for  the  TP,  NW,  MG and  NE regions,  where  the  warming
was over 3°C in the 2030−49 period. Moreover, analysis of
seasonal  warming  results  indicated  that  the  warming  was
more remarkable in winter than in summer (not shown). Sim-
ilar  warming  patterns  have  also  been  detected  in  previous
studies  (Ham et  al.,  2016; Gu et  al.,  2018),  although  these
studies focused mainly on the China region. The BMA res-

ults  indicate  a  clear  increase  in  average  temperature  under
the RCP4.5 and RCP8.5 scenarios for all subregions (Table 2).
However, for a given subregion, the warming varied among
RCMs.  For  example,  the  annual  temperature  increase  over
NE ranged from 0.5°C to 3.5°C under the RCP4.5 scenario.
Figure  10 also  illustrates  the  obvious  warming  trend  over
the 10 subregions from 2006 to 2049 under both scenarios.
Note that  the warming trends in the TP,  NW, NE and MG
regions  [reaching  0.6°C  (10  yr)−1−0.7°C  (10  yr)−1]  were
more remarkable than in the other regions [0.3°C (10 yr)−1−
0.5°C (10 yr)−1] under the RCP8.5 scenario, which is consist-
ent with results in Fig. 9.

The  future  temperature  changes  varied  among  subre-
gions  and  months. Figure  11 illustrates  the  changes  of
monthly temperature in the 10 subregions under the RCP8.5
scenario (changes under RCP4.5 were similar but with smal-
ler amplitude; not shown). The BMA projection also indic-
ates that monthly temperature increased more notably in the
northerly  regions  of  CORDEX-EA,  especially  the  NE  and
MG regions, where the most rapid increases were in Novem-
ber (more than 4.5°C). Furthermore, we also found that the
increases  in  monthly  temperature  varied  by  latitude.  For
example, the MG and NE regions exhibited similar increas-
ing patterns; the same was true for the KJ, NC, NW and TP
regions, as well as for the SEA, India and InC regions. The
SC region was dissimilar to the other regions. According to
Hui  et  al.  (2019),  this  may  be  due  to  the  cloud  cover,  but
determining  detailed  reasons  for  how  the  pattern  of
increases  in  temperature  varies  with  latitude  needs  further
study.  Finally,  the  monthly  warming  pattern  in  the  subre-
gions  of  China  under  the  RCP4.5  scenario  ranged  from
0.8°C to 4.2°C.  These values  are  similar  to  but  larger  than
findings  in  a  previous  study  (0.3°C−2.2°C)  (Gu  et  al.,

 

 

Fig.  7.  Interannual  variability  for  SMA  [bias-corrected  (BC)],  BMA  [bias-
corrected (BC)], SMA (raw model), and CRU temperature values among the
26 years of the historical period.
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2018), which was based on the raw temperature and simple
multi-model ensemble averaging.

The  uncertainty  in  projections  needs  to  be  considered
when  using  them in  applications  (such  as  driving  hydrolo-
gical models). Here, we took the standard deviation among
five  RCMs  as  an  uncertainty  indicator  (Nordhaus,  2018).
Figure  12 gives  the  uncertainty  of  the  raw  model  outputs
and  the  bias-corrected  results  for  both  the  RCP4.5  and
RCP8.5 scenarios. The results show that the uncertainty had

no apparent relationship with time or solar radiation forcing
(RCP4.5 and RCP8.5). The results were different from uncer-
tainties  projected  by  GCMs in  Asia,  where  the  uncertainty
increases with time (Miao et al., 2016). This may be due to
the fact that the RCMs in CORDEX-EA use the same driv-
ing GCM, so there  is  only internal  variability  (Chen et  al.,
2019).  The  uncertainty  was  greatest  for  the  TP  and  NW
regions,  exceeding 2.5°C both for  the RCP4.5 and RCP8.5
scenarios throughout the projection period. For the SEA, KJ

 

 

Fig. 8. Taylor diagrams evaluating the model skill in simulating the annual temperature and bias correction effects over 10
subregions. CRU observation data used as reference. The x- and y-axes refer to the standard deviations (normalized) and the
azimuthal axis refers to the spatial pattern correlation between two fields.
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and India  subregions,  the  uncertainty was lowest−less  than
0.7°C for both scenarios. This indicates that there was more
uncertainty  in  the  high-latitude  subregions.  Several  previ-
ous studies have also shown that the uncertainty was greater
at  high  latitude  (Deser  et  al.,  2012; Miao  et  al.,  2016;
Woldemeskel  et  al.,  2016).  Because  the  QM  method  nar-
rowed  the  differences  among  RCMs,  the  uncertainty  was
reduced for most subregions and both scenarios (except for
the  NE region under  the  RCP4.5 scenario).  The reductions
were  more  remarkable  for  the  RCP8.5  scenario,  ranging
from 66% to  94% across  all  subregions.  The  lower  uncer-
tainty  in  the  RCP8.5  scenario  indicates  a  consistent  warm-

ing trend under the scenario for all subregions.

4.    Summary and conclusions

In this study, five RCMs that participated in CORDEX-
EA, with lateral and boundary forcing from the HadGEM2-
AO  model,  were  used  to  derive  temperature  projections
over 10 subregions in CORDEX-EA under the RCP4.5 and
RCP8.5 scenarios. To remove the biases in RCMs and nar-
row uncertainty in the projections,  bias correction methods
and  ensemble  calibration  methods  were  used.  At  the  same
time,  we  analyzed  the  performance  of  bias  correction  and

Table 2.   Annual temperature changes (future minus baseline) in °C projected by five RCMs and the BMA method for 10 subregions
under the RCP4.5 and RCP8.5 scenarios.

Subregion Scenario HadGEM3-RA RegCM MM5 WRF YSU-RCM BMA

Northwestern China RCP 4.5 2.6 3.1 1.8 3.4 2.7 2.1
RCP 8.5 2.9 3.8 3.2 3.2 3.3 3.1

Tibetan Plateau RCP 4.5 2.5 2.4 2.2 2.0 1.8 2.2
RCP 8.5 2.9 2.9 2.9 3.0 2.2 2.7

Northern China RCP 4.5 1.7 1.9 2.5 1.2 1.9 1.9
RCP 8.5 2.0 2.4 2.6 2.5 2.4 2.3

Northeastern China RCP 4.5 2.7 2.8 3.5 0.5 2.2 2.4
RCP 8.5 3.2 3.5 3.6 3.2 3.2 3.2

Southern China RCP 4.5 1.5 1.5 2.1 1.0 1.6 1.4
RCP 8.5 1.7 1.8 2.0 1.9 1.9 1.8

Mongolia RCP 4.5 2.9 3.1 3.0 3.0 3.0 2.6
RCP 8.5 3.4 3.9 3.9 3.3 4.0 3.5

Korean Peninsula & Japan RCP 4.5 2.0 2.0 2.4 1.8 2.1 2.0
RCP 8.5 2.2 2.4 2.6 2.6 2.6 2.4

India RCP 4.5 1.6 1.4 1.1 1.3 1.3 1.4
RCP 8.5 1.8 1.6 1.7 1.3 1.4 1.5

Indochina RCP 4.5 1.4 1.2 1.6 1.1 1.3 1.3
RCP 8.5 1.6 1.5 1.8 1.6 1.5 1.6

Southeast Asia RCP 4.5 1.1 0.9 0.9 1.0 0.9 1.0
RCP 8.5 1.4 1.1 1.2 1.1 1.1 1.2

 

 

Fig. 9.  Spatial distribution of annual temperature changes [RCP 8.5 (4.5) minus baseline] projected by five
RCMs and  the  BMA method.  See  supplementary  material  for  results  of  five  RCMs and  the  driving  GCM
under RCP4.5 (Fig. S6) and RCP8.5 (Fig. S7).
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ensemble calibration methods over different subregions and
RCMs. The major findings of the study can be summarized
as follows:

(1) The RCMs all revealed reasonable representation of
annual average temperature when compared with the refer-
ence data (CRU TS 4.03). All RCMs presented cold biases
in most subregions, especially in regions with complex topo-
graphy  (e.g.,  the  TP  and  NW regions).  Moreover,  the  sea-

sonal  analysis  shows  that  the  cold  bias  mainly  came  from
DJF,  while  the  biases  were  relatively  small  in  JJA.  There-
fore, there are obvious biases in the RCM dynamic downscal-
ing results, and it is necessary to conduct bias correction.

(2)  The  validation  results  of  the  bias  correction  show
that all bias correction methods could reduce the simulation
biases, and the QM method was most effective in all subre-
gions and RCMs. Compared to the additive scaling and vari-

 

 

Fig.  10.  Results  from  five  RCMs  and  BMA  for  annual  temperature  change  under  two  scenarios,  RCP4.5  and  8.5.  The
straight lines, marked with uneven dashes, represent the trends of the temperature changes.
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ance  scaling  methods,  the  QM  method  corrected  not  only

the  mean  but  also  the  quantiles  of  the  distribution.  We

found that the QM method could reduce the simulation bias

by more than 50% when compared to the raw model output.

 

 

Fig.  11.  Projected  monthly  temperature  changes  (RCP  8.5  minus  baseline)  for  10  subregions.  The  monthly  temperature
changes for the RCP4.5 scenario are similar to RCP8.5 and not shown.
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For the TP and NW regions, the relative decreases in RMSE
reached 61.5% and 80.7%, respectively. The spatial distribu-
tion of relative decreases in MAE further confirmed the res-
ults for RMSE. Finally, the QM method was used to correct
the temperatures in projections of the future.

(3) The SMA and BMA methods could further narrow
the uncertainty in the bias-corrected ensemble. Although the
performances of the SMA and BMA methods were similar
in some subregions, the BMA method performed better over-
all.  Compared  to  the  individual  RCMs,  the  BMA  method
improved  the  correlation  coefficient  from 2% to  32% over
the 10 subregions. Note that the BMA method may produce
poorer results for interannual variability of the temperature,
since it focuses only on the bias and trend of the data.

(4) For temperature projections (2030−49), both single

RCMs  and  the  BMA  results  showed  consistent  warming
over all subregions under both scenarios (RCP4.5 and 8.5).
BMA results indicated that the warming ranged from 1.2°C
to 3.5°C over the 10 subregions under the RCP8.5 scenario
(and  from  1.0°C  to  2.6°C  for  RCP4.5).  The  warming  was
more pronounced in the northern part of the CORDEX-EA
domain. The monthly temperature changes seem to vary by
latitude, and the detailed reasons need further study.

(5)  Furthermore,  the  QM  method  reduced  uncertainty
in temperature projections for all subregions. The reduction
was  more  notable  for  the  RCP8.5  scenario  for  all  subre-
gions. The QM method decreased the uncertainty among the
10 subregions by 66%−94% for the RCP8.5 scenario.
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