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ABSTRACT

Selecting  proper  parameterization  scheme  combinations  for  a  particular  application  is  of  great  interest  to  the
Weather Research and Forecasting (WRF) model users. This study aims to develop an objective method for identify-
ing a set of scheme combinations to form a multi-physics ensemble suitable for short-range precipitation forecasting
in  the  Greater  Beijing  area.  The  ensemble  is  created  by  using  statistical  techniques  and some heuristics.  An initial
sample of 90 scheme combinations was first generated by using Latin hypercube sampling (LHS). Then, after seve-
ral rounds of screening, a final ensemble of 40 combinations were chosen. The ensemble forecasts generated for both
the training and verification cases using these combinations were evaluated based on several verification metrics, in-
cluding  threat  score  (TS),  Brier  score  (BS),  relative  operating  characteristics  (ROC),  and  ranked  probability  score
(RPS). The results show that TS of the final ensemble improved by 9%–33% over that of the initial ensemble. The re-
liability  was  improved  for  rain ≤ 10  mm day−1,  but  decreased  slightly  for  rain  >  10  mm day−1 due  to  insufficient
samples. The resolution remained about the same. The final ensemble forecasts were better than that generated from
randomly sampled scheme combinations. These results suggest that the proposed approach is an effective way to se-
lect a multi-physics ensemble for generating accurate and reliable forecasts.
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1.    Introduction

Much progress has been made in the last half century
in developing sophisticated, physically realistic numerical
weather  prediction  (NWP)  models.  Those  models  have
been widely used today for weather forecasting with lead
times up to two weeks into the future and have played a
critical  role  in  emergency  management  to  alleviate  the
impact of severe weather events (Skamarock et al., 2008;

Du  and  Qian,  2014).  Traditional  weather  forecasts,
known as deterministic forecasts, have been issued in the
form  of  a  single  space–time  series  for  variables  of  in-
terest. There are inherent limitations to predict the future
state  of  the atmosphere by single  deterministic  forecasts
due to the chaotic nature of the fluid dynamic equations
involved (Lorenz, 1965). The predictive skill of regional
NWP models is affected by three major sources of error:
(1) the errors in the initial conditions needed by a model
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to generate a forecast,  which are amplified by the chaos
effects  as  the  lead  time  increases;  (2)  the  errors  due  to
idealistic abstraction by parameterization schemes in rep-
resenting  highly  heterogeneous  and  nonlinear  physical
processes  within  a  model  grid  and  approximate  numeri-
cal solutions to the dynamic equations; and (3) the errors
from  the  boundary  conditions  due  to  inaccuracy  in  the
global  model  predictions  and  inaccurate  data  specifica-
tion  at  the  boundary  (Tribbia  and  Baumhefner,  1988;
Miao  et  al.,  2019).  To  counter  these  limitations,  en-
semble forecasting methods have emerged in the last  40
years as a promising way to account for the uncertainties
due to these errors. Ensemble forecasts are generated by
perturbing uncertain factors such as initial and boundary
conditions,  representations  of  model  physics,  or  both  of
them.

Leith  (1974) made the first  attempt  at  ensemble fore-
casting by using Monte Carlo simulations with different
initial  states  to  estimate  the  means  and  variances  of  fu-
ture atmospheric states. However, it was noted that there
is not enough dispersion for the ensembles constructed in
this way unless a huge number of ensemble members are
used  and  the  ensemble  probability  distribution  is  a  rep-
resentative sample of the distribution of the actual atmo-
spheric  states.  To  overcome  the  deficiency  of  the  crude
Monte  Carlo  approach,  strategies  for  increasing  ensem-
ble  dispersion  by  identifying  the  growing  modes  in  the
atmospheric states have been developed.  Two such stra-
tegies have gained prominence: the breeding of growing
modes  method  developed  at  the  NCEP and  the  singular
vector method developed at the ECMWF (Toth and Kal-
nay, 1993, 1997; Molteni et al., 1996). Ensemble data as-
similation methods,  such as  the ensemble Kalman filter,
have  also  been  used  to  generate  ensemble  forecasts  by
perturbing  the  initial  conditions  (Burgers  et  al.,  1998;
Houtekamer and Mitchell, 1998; Houtekamer and Zhang,
2016).  Numerous  researchers  found  that  perturbing  mo-
del physics can also improve the performance of the en-
sembles (Stensrud et al., 2000; Zheng et al., 2019; Gou et
al., 2020).

There  are  different  ways  to  perturb  model  physics.
One  way  is  to  construct  stochastic  parameterization
schemes by adding random perturbations to the physical
components in the parameterization schemes (Du and Li,
2014; Berner  et  al.,  2017). Buizza  et  al.  (1999) and
Palmer et al. (2005) used random fields as amplification
factors  to  physics  tendency  terms  such  as  temperature,
specific  humidity,  and  wind  components  to  generate
stochastically  perturbed  parameterization  tendencies
(SPPT). Another scheme, known as the stochastic kinetic
energy  backscatter  (SKEB),  attempts  to  account  for  the
uncertainties  arising  from scale  interactions  that  exist  in

real  atmosphere,  but  ignored  in  grid-scale  parameteriza-
tion schemes (Berner et al., 2009, 2017). There are other
schemes  available  that  follow  similar  principles  as  the
SPPT and SKEB schemes, such as stochastic convective
backscatter  scheme  (Shutts,  2015),  physically  based
stochastic  perturbations  (Kober  and  Craig,  2016),  and
improved stochastic kinetic energy backscatter version 2
(Sanchez et al., 2016).

Another way to perturb model physics is to randomly
sample  the  adjustable  model  parameters,  which  are  the
constants  and  exponents  contained  in  the  equations  of
parameterization schemes (Bowler  et  al.,  2008; McCabe
et  al.,  2016).  Even  though  some  model  parameters  are
well  constrained  by  observations,  many  parameters  are
empirical  in  nature  and  are  subject  to  large  uncertainty.
The key to perturbing model parameters is to identify the
most  sensitive  parameters  whose  variations  cause  large
perturbations  in  model  response  (Di  et  al.,  2015, 2018;
Quan et al., 2016). A number of meteorological forecast-
ing  centers  have  tried  ensemble  forecasting  with  per-
turbed  parameters  (Irvine  et  al.,  2013; Murphy  et  al.,
2014; Christensen et al., 2015).

A  third  way  to  perturb  model  physics  is  to  take  a
multi-model  approach  in  which  forecasts  from  different
models are combined to form a forecast ensemble. There
are  different  ways  to  combine  multi-model  forecasts
(Ebert, 2001). The simplest way, known as a “poor man’s
ensemble,”  is  to  combine  forecasts  from  all  models  to
form  an  ensemble  that  can  provide  a  larger  spread  of
forecast,  compared  to  the  ensemble  based  on  a  single
model.  More  sophisticated  multi-model  ensemble  ap-
proaches  include  the  super-ensemble  approach  deve-
loped  by Krishnamurti  et  al.  (1999) and  the  Bayesian
model averaging (BMA) method by Raftery et al. (2005),
which assign weights to different forecasts based on their
agreement  with  past  observations.  The  Observing  Sys-
tem Research and Predictability Experiment (THORPEX)
Interactive Grand Global Ensemble (TIGGE) launched in
2005  to  enhance  medium-range  forecast  of  high  impact
weather  extremes  by  operational  centers  has  stimulated
extensive research on making use of forecasts from truly
independent  models  to  generate  multi-model  ensembles
(Bougeault et al., 2010; Sun et al., 2020).

Previous efforts in generating multi-physics ensemble
forecasts have been either based on perturbation of a spe-
cific model by adding stochastic components to paramet-
erization  schemes  or  based  on  a  combination  of  inde-
pendent  models.  Many  Weather  Research  and  Forecast-
ing (WRF) model users create multi-physics ensemble by
focusing on selecting the potential schemes of a particu-
lar process or by randomly selecting them. For example,
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Efstathiou et al. (2013) examined the performance of two
commonly  used  boundary  layer  schemes  (Yonsei  Uni-
versity  and  Mellor–Yamada–Janjic  boundary  layer
schemes)  on  rainfall  simulation  over  Chaldidiki  Penin-
sula  region,  and  their  results  show that  the  Yonsei  Uni-
versity  scheme  performed  better. Crétat  et  al.  (2012)
checked  the  performance  of  27  WRF  parameterization
schemes combination on summer rainfall based on three
cumulus,  planetary  boundary  layer  (PBL),  and  micro-
physics schemes,  and their  results  show the necessity of
conducting multi-physics ensemble testing. The arrival of
the  WRF  model  symbolizes  a  new  era  in  numerical
weather modeling as the WRF model can be regarded as
millions of different models contained in a single frame-
work. Trying to form a multi-physics ensemble using the
WRF  model  poses  a  special  challenge  because  it  is  im-
possible  to  try  out  all  the  possible  combinations  avail-
able in WRF, which exceeds two million based on WRF
version 3.7.1. (Hereafter known as WRF3.7.1) .

How  does  one  find  the  suitable  combinations  for  an
application  over  a  particular  area  out  of  millions  of  po-
tential  combinations?  Several  studies  have  attempted  to
address  this  issue  (Lee  et  al.,  2011; Weusthoff  et  al.,
2011; Lee, 2012). The heuristic approaches used in these
studies start with an initial ensemble that contains a high
number of ensemble members to ensure large uncertain-
ties  contained  in  the  ensemble.  Then,  redundant  en-
semble  members  (i.e.,  the  ensemble  members  that  have
high  correlations  with  other  ensemble  members)  are  re-
moved step by step while the uncertainties are retained as
much as possible (Lee et al., 2011; Lee, 2012). Classific-
ation  and  performance  criteria  are  commonly  used  in
these  approaches  to  identifying  which  parameterization
schemes are suitable for a particular area. Generally, the
following  steps  are  taken  to  identify  the  desired  en-
semble  members:  (1)  performance  criteria  are  estab-
lished  to  assess  the  performance  of  an  individual  en-
semble member; (2) ensemble members are classified in-
to  several  grade  categories  according  to  their  perform-
ance  indices;  (3)  the  ensemble  members  with  bad  per-
formance indices are removed, and the good ones are re-
tained. These steps/approaches can only handle a limited
number of potential combinations and are not designed to
handle  all  of  the  potential  combinations  available  in  the
WRF model.

Our  work  employs  a  systematic  approach  that  incor-
porates several  statistical  techniques in addition to some
heuristics  to  analyze  all  the  plausible  combinations  of
parameterization  schemes  available  in  the  WRF  model.
The  aim  is  to  identify  a  set  of  parameterization  scheme
combinations  that  can  be  used  to  form  a  multi-physics

ensemble  based  on  several  skill  metrics  for  short-range
precipitation forecasts. The paper is organized as follows.
Section  2  presents  a  brief  description  of  methodology.
Section  3  describes  model  set  up  and  verification  data-
sets.  Section  4  details  the  screening  results.  Section  5
evaluates  the  ensemble  forecasts  using  screening  results
and provides further discussions. Section 6 presents con-
clusions.

2.    Methodology

2.1    The parameterization scheme combination
selection procedure

Our overall  goal  is  to  select  a  set  of  parameterization
scheme  combinations  from  millions  of  potential  ones
available  from  WRF3.7.1  to  produce  a  short-range  (3-
day)  ensemble  precipitation  forecast  with  satisfactory
skill  over  the  summer  monsoon  season  in  the  Greater
Beijing  area.  According  to Du (2002),  a  good ensemble
forecast  should  possess  three  features:  (1)  equal-likeli-
hood for  all  ensemble  members;  (2)  the  ensemble  mean
having  a  good  agreement  with  the  observed  value  as
measured by chosen performance metrics; (3) a good en-
semble  spread  property  as  marked  by  a  proper  balance
between  reliability  and  resolution  (i.e.,  ensemble  distri-
bution being sharp subject to calibration). To find a set of
good ensemble members with those features, we have de-
signed the following procedure:

(1) Remove any unsuitable schemes for a specific ap-
plication from all  physical  processes  (i.e.,  microphysics,
longwave  and  shortwave  radiation,  PBL,  surface  layer,
land surface, and cumulus cloud) in WRF3.7.1 based on
the WRF3.7.1 User’s Guide (2016) and on expert know-
ledge for given applications.

(2) Select randomly a large initial set of parameteriza-
tion scheme combinations under allowable computation-
al resources, M = {Mi, i = 1, 2, …, N}, from all feasible
ones using a design of experiment (DOE) approach (to be
described later), where Mi denotes a particular parameter-
ization  scheme  combination  formed  by  choosing  one
scheme from each of the physical processes and N is the
initial sample size. Compute the performance metrics, F,
over  the  training  period  (which  consists  of  a  pre-spe-
cified number of multi-day cases, 3-day in this study) for
each  combination Mi in M,  where F =  {fi, i =  1,  2,  …,
N}, and fi is the performance metrics for Mi.

(3) For each physical process j = 1, … L, compute the
average  performance  metrics  for  scheme k in  process j,
μk,  j, k =  1,  …, Kj,  where Kj is  the  number  of  available
schemes in physical process j and L is the total number of
physical  processes.  Then,  compute  the  variance  of  the
performance metrics for process j:
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where  is  the  average  performance  met-
rics  of  all  parameterization  scheme  combinations  in
which  scheme k of  physical  process j appears, μi

k,  j cor-
responds  to  the  performance  metrics  of  an  individual
scheme combination in which scheme k of physical pro-
cess j appears, Lk,  j is  the  number  of  times  scheme k of
physical process j appears in the initial set of parameter-
ization  scheme  combinations,  and  is  the
mean performance metrics of all schemes.

σ2
m =max

{
σ2

j , j = 1, . . . ,L
}(4) Starting from the physical process with the highest

variance, ,  screen  the  physical
parameterization schemes in physical  process j by keep-
ing the schemes that are significantly better than the av-
erage  performance  of  all  parameterization  schemes  and
removing  the  ones  significantly  worse  than  the  average
performance  by using a  two-sided test.  For  the  schemes
with no significant difference with average performance,
remove  the  schemes  whose  case-to-case  variances  are
significantly smaller than the average of all schemes.

(5)  Start  a  new  round  of  screening  by  sampling  ran-
domly  a  new  set  of  combinations  from  the  remaining
schemes  from  the  last  round  using  DOE  approach,  and
then  repeat  Steps  (2)–(4)  until  the  final  remaining
schemes  are  statistically  not  different  from  the  mean  or
when the number of remaining combinations are within a
pre-specified number that meets the users’ requirements.

Step  (1)  from  the  above  procedure  ensures  that  only
the  suitable  schemes  from  the  WRF  model  are  con-
sidered. Step (2) employs a DOE approach to sample dif-
ferent  schemes  randomly  so  that  all  feasible  schemes
from each physical process would have an equal chance
of being chosen. The variance computed in Step (3) is an
indicator  of  sensitivity  of  performance  metrics  to  the
choice of  different  schemes in a  physical  process.  If  the
variance is high, it means that the choice of the schemes
has a high sensitivity and thus a big impact on perform-
ance  metrics.  In  Step  (4),  the  actual  screening  is  ex-
ecuted by keeping the good performing schemes as can-
didates  to  be  included  in  a  multi-physics  ensemble  and
removing  the  bad  ones  from  further  consideration.  For
the rest of the schemes, the ones which display small dis-
crepancies  in  performance  metrics  during  different
events  are  removed  to  enhance  the  diversity  of  the  en-
semble  members.  The  final  remaining  parameterization
scheme  combinations  after  the  above  screening  process
completes  would  form  the  basis  for  the  ensemble  fore-
cast experiments to be shown later.

2.2    Statistical methods for screening parameterization
scheme combinations

In completing the above screening process, three stat-
istical methods are used to objectively choose the multi-
physics  ensemble  members.  Two  statistical  techniques
key to the screening methodology are used for screening:
DOE  approach  to  sampling  parameterization  schemes
randomly  and  the  statistical  significance  tests  to  distin-
guish the performance metrics of different schemes. The
DOE  method  used  in  this  study  is  the  Latin  hypercube
sampling  (LHS)  design,  which  is  a  uniform  sampling
method  (Loh,  1996; McKay  et  al.,  2000; Helton  and
Davis,  2003).  This  method  gives  all  possible  schemes
within  a  physical  process  the  same  chance  to  appear  in
the  ensemble.  The  statistical  significance  tests  used  in
this  study  are  the  one-sided  or  two-sided t-test.  These
tests  are  used  to  judge  which  schemes  are  significantly
better  or  worse  than  the  average  performance.  The  de-
tailed  descriptions  of  the  LHS  design  and t-tests  are
provided in the Appendixes A and B.

2.3    Performance criteria and verification metrics

In  selecting  good  performing  scheme  combinations
and in evaluating the ensemble forecasts from the result-
ing  perturbed-physics  ensemble  members,  several  per-
formance  metrics  are  used  to  assess  the  forecast  accur-
acy  and  reliability:  threat  score  (TS; Zhao  and  Carr,
1997), root mean square error (RMSE), Brier score (BS;
Brier,  1950),  relative  operating  characteristics  (ROC;
Stanski et al., 1989), and ranked probability score (RPS;
Murphy,  1969, 1971).  These  metrics  were  computed
based on different  24-h rainfall  intensities.  When evalu-
ating precipitation events of different intensities (V), per-
formance  metrics  are  usually  computed  separately  for
five storm categories: (1) no rain (V < 0.1 mm day−1); (2)
light rain (0.1 mm day−1 ≤ V ≤ 10 mm day−1); (3) moder-
ate  rain  (10  mm day−1 ≤ V ≤ 25  mm day−1);  (4)  heavy
rain (25 mm day−1 ≤ V ≤50 mm day−1));  and (5) severe
storm (V > 50 mm day−1).  In this  study,  due to the lim-
ited  storm  sample  size,  we  use  only  two  categories  of
rain  to  compute  the  performance  metrics: V ≤ 10  mm
day−1 and V >  10  mm  day−1,  and  they  are  weighted
equally to form a combined performance metric for each
forecast.  The  descriptions  of  the  aforementioned  per-
formance metrics are presented in Appendix C.

3.    Model setup and verification datasets

3.1    Model setup

WRF3.7.1 was set up to run over a two-grid nested do-
main in this study (Fig. 1), with the outer domain includ-
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ing  most  of  northern  China  (i.e.,  d01  in Fig.  1)  and  the
inner domain being the Greater Beijing area (i.e., d02 in
Fig.  1).  The  outer  domain  is  composed  of  78  ×  45  grid
cells with a spatial resolution of 27 km, and the inner do-
main is composed of 85 × 49 grid cells with a spatial res-
olution of 9 km. The vertical profile for both domains is
represented by 38 sigma vertical levels from the land sur-
face  to  50-hPa  level  in  the  atmosphere.  The  integration
time  step  is  60  s.  The  NCEP  Final  (FNL)  operational
global  analysis  data  from  its  Global  Data  Assimilation
System (GDAS), available at the 1° × 1° horizontal resol-
ution and 6-h intervals,  were used to generate the initial
and  lateral  boundary  conditions.  In  the  study,  the  PBL
and  surface  layer  schemes  are  used  in  tandem  because
the two schemes must be used in combination according
to the WRF3.7.1 User’s Guide (2016).

3.2    Verification datasets

The verification data used to evaluate the model fore-
casting performance is the China Meteorological Precip-
itation  Analysis  (CMPA)-hourly  dataset  (Shen  et  al.,
2014)  from  the  China  Meteorological  Administration
(CMA), which was generated by merging hourly precip-
itation  data  from  over  30,000  stations  of  the  automatic
weather station network with the Climate Prediction Cen-
ter Morphing Technique gauge–satellite data (CMORPH;
Joyce et al., 2004). The CMPA-hourly dataset has a spa-
tial  resolution of 0.1° × 0.1°.  When computing the fore-
casting performance metrics such as TS, RMSE, BS, and
ROC, the model outputs over the d02 domain were inter-
polated spatially to match the observation grids by using
bilinear interpolation method.

3.3    Selection of the training and verification events

In  northern  China,  rain  is  usually  concentrated  from
June to August  and is  mostly caused by convective sys-
tems  (Jiang  et  al.,  2014).  To  improve  short-range  sum-
mer  precipitation  forecasts,  30  typical  three-day  rainfall
cases  (see Table  1)  were  chosen  over  the  June–August
period from 2014 to 2017 in the Greater Beijing area for
our  multi-physics  ensemble  selection  study.  Among  the
30 cases,  15 of them were randomly chosen for training
purpose and the remaining 15 were used for verification
purposes.  The  model  integral  time  spans  78  h,  starting
from 1800 UTC the day before, with the first 6-h integra-
tion for spinning up.

4.    The parameterization scheme combina-
tion screening process and results

4.1    Pre-screening and construction of the initial set of
parameterization schemes

Before we construct the initial set of parameterization
scheme  combinations,  some  unsuitable  schemes  for  the
Greater Beijing area were removed from the pool of po-
tential  schemes.  For  example,  the  Kessler  microphysics
scheme  is  a  warm-rain  (i.e.  no  ice)  scheme  used  com-
monly  in  idealized  cloud  modeling  studies,  and  the
Held–Suarez  temperature  relaxation  shortwave  radiation
scheme  is  also  for  idealized  testing  only,  and  the  two
have thus been removed from consideration. Table 2 lists
all available parameterization schemes after those unsuit-
able  schemes  were  removed.  Some  parameterization
schemes in certain physical processes are developed with
specific coupled physics codes and must be used in tan-

 
Fig.  1.   The horizontal  two-level  nested grid  domain with  d01 being the  outer  grid  domain and d02 the  inner  grid  domain encompassing the
Greater Beijing area.
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dem. For example, some surface layer and PBL schemes
must  be  chosen  together  (denoted  as  PBL  +  surface  or
pbl + sfclay in Table 2). There were 15 schemes remain-
ing for the microphysics (mp),  15 schemes for PBL and
surface layer tandem (pbl + sfclay), 9 schemes for the cu-

mulus convection (cu), 5 schemes for the shortwave radi-
ation  (ra_sw),  6  schemes  for  the  longwave  radiation
(ra_lw), and 4 schemes for the land surface (sf_surface).

We  used  the  LHS  design  to  uniformly  sample  para-
meterization scheme combinations from Table 2.  Ninety
parameterization  scheme  combinations  were  sampled
(this number can be enlarged if  computational resources
permit).  For  example,  each  scheme  in  microphysics  ap-
pears 6 times, 18 times for longwave radiation, 15 times
for shortwave radiation, 6 for PBL + surface, and 10 for
cumulus  convection  schemes.  For  land  surface,  two
schemes appear 22 times and the other two 23 times.

4.2    The screening process and results

After  the  initial  set  of  90  scheme  combinations  was
created,  each  of  those  schemes  was  used  to  generate  3-
day  forecasts  for  the  15  training  cases.  The  NCEP FNL
data were used to set the initial and lateral boundary con-
ditions for these forecasts.  After  the forecasts  were gen-
erated, the performance metric, TS, for all training cases
was computed according to Eq. (C1). We then computed
the  variance σj

2 of  the  performance  metrics  for  each

 

Table 1.   Starting dates for the 3-day forecasts during June–August of
2014–2017  in  the  Greater  Beijing  area,  with  15  cases  as  training  set
and the other 15 cases as verification set. The integration time spans 78
h including the first 6 h for spinning up
Training set Verification set
2014-06-30 2014-07-14
2014-07-18 2014-08-08
2014-07-28 2015-07-11
2014-08-02 2015-08-29
2014-08-11 2016-07-11
2014-08-20 2016-07-19
2014-08-26 2016-07-23
2014-08-29 2016-07-29
2015-07-14 2016-08-06
2015-07-16 2016-08-11
2015-07-20 2016-08-17
2015-07-26 2017-07-03
2015-07-31 2017-07-05
2015-08-04 2017-07-20
2015-08-06 2017-07-24

Table 2.   The schemes retained after pre-screening. In left columns of each category of schemes, the numbers in brackets represent the corres-
ponding scheme options in the following screening process. Note that planetary boundary layer (PBL) and surface layer schemes are considered
together (denoted as pbl + sfclay) in the screening process. Refer to WRF3.7.1 User’s Guide (2016) for complete information

mp  pbl + sfclay  cu  ra_lw  ra_sw  sf_surface
Scheme Reference  Scheme Reference  Scheme Reference  Scheme Reference  Scheme Reference  Scheme Reference
Lin (2) Lin et al.

(1983,
JCAM)

YSU +
MM5
(1)

Hong et al.
(2006,
MWR)

KF (1) Kain (2004,
JAM)

RRTM
(1)

Mlawer et
al. (1997,
JGR)

Dudhia
(1)

Dudhia
(1989,
JAS)

5-layer
(1)

Jin et al.
(2010,
AW)

WSM3 (3) Hong et al.
(2004,
MWR)

MYJ +
Monin–
Obukhov
(2)

Janjic (1994,
MWR)

BMJ (2) Janjic (1994,
MWR;
2000, JAS)

CAM (3) Collins
et al.
(2004,
NCAR
Tech
Note)

Goddard
(old)
(2)

Chou and
Suarez
(1994,
NASA
Tech
Memo)

Noah (2) Mitchell
et al.
(2005,
NCAR
Tech
Note)

WSM5 (4) Hong et al.
(2004,
MWR)

QNSE +
QNSE (3)

Sukoriansky
et al.
(2005,
BLM)

GF (3) Grell et al.
(2013,
ACP)

RRTMG
(4)

Iacono et al.
(2008,
JGR)

CAM (3) Collins
et al.
(2004,
NCAR
Tech
Note)

RUC (3) Smirnova
et al.
(2000,
JGR)

Ferrier (95) Rogers et al.
(2001, web
doc)

MYNN2 +
MM5
(4)

Nakanishi
and Ni-
ino (2006,
BLM)

SAS (4) Pan and Wu
(1995,
NMC Of-
fice Note
409)

New God-
dard
(5)

Chou and
Suarez
(1999,
NASA
Tech
Memo)

RRTMG
(4)

Iacono
et al.
(2008,
JGR)

Pleim–Xiu
(7)

Pleim and
Xiu
(1995,
2001,
JAM)

WSM6 (6) Hong and
Lim (2006,
JKMS)

MYNN2 +
Monin–
Obukhov
(5)

Nakanishi
and Ni-
ino (2006,
BLM)

Grell 3 (5) Grell and De-
venyi
(2002,
GRL)

FLG (7) Gu et al.
(2011,
JGR), Fu
and Liou
(1992,
JAS)

Goddard
(new)
(5)

Chou and
Suarez
(1999,
NASA
Tech
Memo)

Goddard (7)  Tao et al.
(1989,
MWR)

MYNN2 +
MYNN
(6)

Nakanishi
and Ni-
ino (2006,
BLM)

Tiedkte (6) Tiedtke
(1989,
MWR)

FLG (7) Gu et al.
(2011,
JGR), Fu
and Liou
(1992,
JAS)
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physical  process  to  find  the  sensitivity  of  performance
metrics  to  the  selection of  different  schemes in  physical
process j.  Note that the greater the variance is,  the more
sensitive the performance metrics to the selection of dif-
ferent schemes. Figure 2 gives the results of sensitivity of
each physical process. Starting with the physical process
with  the  largest σj

2,  which  is  microphysics  in  this  case,
and  then  moving  to  physical  process  with  next  highest
σj

2,  longwave  radiation,  and  so  on,  we  performed  the
two-sided t-test  for  each  physical  process  according  to
the procedure described in Section 2.1.

Figure 3 presents the details of the two-sided t-test res-
ults  for  the  TS  of  different  schemes.  From Fig.  3a,  we
notice that TS of Goddard scheme (number 7) in micro-

physics is significantly better than the average for micro-
physics schemes, and CAM 5.1 scheme (number 11) has
a  TS  that  is  significantly  worse  than  the  average,  while
the  TSs for  the  rest  of  the  schemes are  not  significantly
different from the average. To further check the results of
TS,  the  observation  and  error  distributions  (simulation
minus observation) of the simulated rainfall  of the God-
dard  and  CAM5.1  schemes  averaged  for  the  training
period (June–August of 2014–2017) over the domain d02
(see Fig. 1) are shown in Fig. 4. From Fig. 4, we notice
that both schemes tend to overestimate the observed rain-
fall.  But  for  the 48-h simulation,  both schemes underes-
timate  the  rainfall  for  the  west  part  of  the  domain.  The
RMSE results  show that  the  Goddard scheme shows re-

Continued
mp  pbl + sfclay  cu  ra_lw  ra_sw  sf_surface

Scheme Reference  Scheme Reference  Scheme Reference  Scheme Reference  Scheme Reference  Scheme Reference
Thompson

(8)
Thompson

et al.
(2008,
MWR)

MYNN3 +
MYNN (7)

Nakanishi
and Ni-
ino
(2006,
BLM)

New SAS
(14)

Han and Pan
(2011,
Wea Fore-
casting)

Milbrandt
2-mom
(9)

Milbrandt and
Yau (2005,
JAS)

ACM2 + MM5
(8)

Pleim
(2007,
JAMC)

  GD (93) Grell and
Devenyi
(2002,
GRL)

Morrison
2-mom
(10)

Morrison
et al.
(2009,
MWR)

BouLac +
MM5
(9)

Bougeault
and
Lacar-
rere
(1989,
MWR)

 New
Tiedkte
(16)

Zhang
et al.
(2011,
MWR)

CAM5.1
(11)

Neale
et al.
(2012,
NCAR
Tech Note)

BouLac +
Monin–
Obukhov
(10)

Bougeault
and
Lacar-
rere
(1989,
MWR)

SBU_
YLin
(13)

Lin and Colle
(2011,
MWR)

UW + MM5
(11)

Bretherton
and Park
(2009,
JC)

WDM5
(14)

Lim and
Hong
(2010,
MWR)

UW +
Monin−Obu
khov (12)

Bretherton
and Park
(2009,
JC)

WDM6
(16)

Lim and
Hong
(2010,
MWR)

TEMF + TEMF
(13)

Angevine
et al.
(2010,
MWR)

HUJI fast
(30)

Khain
et al.
(2010,
JAS)

GBM + MM5
(14)

Grenier and
Brether-
ton
(2001,
MWR)

Thompson
aerosol-
aware
(28)

Thompson
and
Eidham-
mer (2014,
JAS)

Shin−Hong +
MM5 (15)

Shin and
Hong
(2015,
MWR)

Total 15 15 9 5 6 4
Abbreviations of the journal titles used above. ACP: Atmos. Chem. Phys.; AW: Adv. Meteor.; BLM: Bound.-Layer Meteor.; JAM: J. Appl. Meteor.; JAMC: J. Appl.
Meteor. Climatol.; JAS: J. Atmos. Sci.; JC: J. Climate; JCAM: J. Clim. Appl. Meteor.; JGR: J. Geophy. Res.; JKMS: J. Korean Meteor. Soc.; GRL: Geophy. Res.
Lett.; MWR: Mon. Wea. Rev.
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markably  smaller  simulation  error  compared  to  the
CAM5.1  scheme,  especially  for  72-h  simulation.  There-
fore, according to Step (4) in Section 2.1, we retain God-
dard scheme and remove CAM 5.1 scheme from further
consideration.

For  the  schemes  with  TSs  that  are  not  significantly
different  from  the  average  TS,  we  then  performed  one-
sided t-test  to  remove  the  schemes  that  have  signific-
antly  smaller  variances  over  different  cases. Figure  5
gives the one-sided t-test results of variances over the 15
training cases at the 97.5% confident level. From Fig. 5a,
we  notice  that  the  WSM6  (number  6)  and  SBU_YLin
schemes  (number  13)  have  significantly  smaller  vari-
ances  than  the  average  variance  over  the  15  cases  and
they  were  removed  from  further  consideration.  For  mi-
crophysics,  we  retained  Lin,  WSM3,  WSM5,  Ferrier,
Goddard,  Thompson,  Milbrandt  2-mom,  Morrison  2-
mom,  WDM5,  WDM6,  and  Thompson  aerosol-aware
schemes  and  removed  WSM6,  CAM  5.1,  SBU_YLin,
and  HUJI  SBM  “fast”  schemes  in Table  2 (Note  that
scheme HUJI  SBM “fast”  in  microphysics  is  not  shown
in the figure because the WRF model failed to complete
the  simulation  due  to  segmentation  fault,  the  same  for
scheme  QNSE  +  QNSE  (number  3)  in  PBL  +  surface
layer  combination).  The  screening  process  used  for  mi-
crophysics was repeated for the physical process with the
next highest variance, the longwave radiation, whose res-
ults  are  shown  in Figs  3d, 5d.  The  screening  for  long-
wave radiation resulted in the Goddard scheme (number
5) as the only scheme with a TS significantly better than
the average TS. The TSs of the other schemes are shown

to be not significantly different from the average TS. Fig-
ure  5d shows  that  none  of  the  variances  for  different
schemes  over  the  15  cases  are  significantly  different
from  each  other  and  no  schemes  were  removed  con-
sequently.  Thus,  we  retained  all  schemes  for  longwave
radiation.  We  repeated  the  screening  process  for  the  re-
maining  physical  processes  in  the  order  of  decreasing
variance.  At  the  end  of  the  screening  process,  we  re-
tained 11 microphysics schemes, 5 longwave schemes, 4
shortwave  schemes,  4  land  surface  schemes,  10  PBL  +
surface  scheme  tandems,  and  7  cumulus  convection
schemes,  respectively. Table  3 lists  all  the  remaining
schemes for each physical process at the end of the first
round screening.

We  started  the  second  round  of  screening  by  uni-
formly sampling 70 scheme combinations from all of the
schemes listed in Table 3. The same screening process as
in  the  first  round  was  carried  out  to  retain  and  remove
schemes according to the procedure described in Section
2.1. At the end of the second round of screening, we re-
tained  eight  microphysics  schemes,  four  longwave
schemes,  four  shortwave  schemes,  four  land  surface
schemes, seven PBL + surface tandems, and six cumulus
convection  scheme,  respectively. Table  3 shows  the  re-
maining schemes for each physical process at the end of
the  second  round  of  screening  (the  scheme  names
marked  with  “*”  in Table  3 represent  the  schemes  that
were  removed  after  the  second  round).  For  the  sake  of
brevity, we do not show the detailed results of the second
round  of  screening  in  the  main  text,  but  they  are  in-
cluded in the supplemental material (see Figs. S1–S3).

The  third  round of  screening  was  carried  out  like  the
second round. We sampled 48 combinations from the re-
maining schemes at  the end of the second round. At the
end  of  the  third  round  of  screening,  three  microphysics
schemes, three PBL + surface schemes, and one cumulus
convection  scheme  (schemes  in  italics  in Table  3)  were
removed, while five microphysics schemes, four each of
longwave  radiation,  shortwave  radiation,  land  surface,
PBL  +  surface  scheme  tandems,  and  five  cumulus  con-
vection schemes were retained (see Table  3,  schemes in
boldface  were  retained).  Figures  S4–S6  record  the  res-
ults from the third round of screening.

Based  on  the  screening  results  from  the  third  round,
we randomly sampled 40 scheme combinations from the
remaining  schemes  (marked  in  boldface  in Table  3)  us-
ing  LHS  method  and  generated  40-member  ensemble
forecasts for the 15 training cases (each scheme combin-
ation  is  an  ensemble  member).  We  then  computed  the
variances  of  the  TSs  of  the  different  schemes.  We  pro-

 
Fig. 2.   The between scheme variances (sensitivity) of different phys-
ical processes in the first round of screening.
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ceeded  to  perform  the  two-sided t-tests  for  the  TSs  to
identify  the  significantly  better  or  worse  schemes  (see
Fig.  6).  Based  on  the  results  from  the  fourth  round  of
screening, we found that the TSs of all schemes were not
significantly  different  from  the  average  TS,  and  there-
fore  no  scheme  was  removed.  The  screening  process  is
thus  completed,  and  there  is  no  need  for  further  screen-
ing at  this point.  This also means that  any scheme com-
binations  formed  by  selecting  from  the  remaining
schemes in Table 3 (in boldface) are deemed as not stat-
istically different from other schemes.

5.    Verification of the multi-physics ensemble
forecasts

The 40-member ensemble forecasts of the 15 training

cases  from  the  final  round  of  screening  represent  en-
semble forecasts from a multi-physics ensemble because
they are formed by using different scheme combinations.
We also used the same scheme combinations to generate
ensemble forecasts for the 15 verification cases that have
not been used in the training. In this section, we evaluate
the  ensemble  forecasts  in  terms  of  the  ensemble  mean
and  ensemble  spread  against  observations  using  a  num-
ber of different verification metrics. The verification res-
ults  of  the  ensemble  mean  and  ensemble  spread  are
presented  below.  We  also  compare  the  final  ensemble
forecasts  against  the  ensemble  forecasts  generated  from
scheme combinations  randomly  drawn (using  bootstrap-
ping method) from the initial  90 combinations to ensure
that the results are robust statistically.

 
Fig. 3.   Threat scores (TSs) of different schemes for (a) mp, (b) pbl + sfclay, (c) cu, (d) ra_lw, (e) ra_sw, and (f) sf_surface with a two-sided t-
test in the first round of screening. The scheme number (x-axis) of corresponding schemes is indicated in Table 2 (numbers in brackets). The so-
lid line represents the average TS over different schemes, and the dashed lines represent the upper and lower bounds of 95% confidence interval
for the average TS. Symbols “◦” and “•” denote schemes corresponding to the TS significantly better or worse than the average TS, respectively;
while “▽” denotes the TS not significantly different from the average TS.

JUNE 2020 Shen, C. W., Q. Y. Duan, W. Gong, et al. 609



5.1    Deterministic verification of the ensemble forecast
means

Figure 7 shows the inter-comparison results of the TSs
of  the  final  40  ensemble  forecasts  (denoted  as  final  en-
semble)  against  the  initial  90  ensemble  forecasts  (de-
noted as initial ensemble) for the 15 training cases and 15
verification cases  for  lead times at  24,  48,  and 72 h,  re-
spectively.  The  results  indicate  that  the  performance  of
the  final  ensemble  is  superior  to  that  of  the  initial  en-
semble in all but one training case for forecast lead time
at 72 h. In only one case (i.e., case 4 for lead time at 72
h), the TS of the final ensemble is inferior to that of the
initial ensemble. The average improvement in the TSs is
remarkable for the training cases, at 29%, 22%, and 17%
for  lead times of  24,  48,  and 72 h,  respectively,  and for
verification cases at 33%, 15%, and 9%, respectively.

Figure 8 is similar to Fig. 7, but for the RMSE of the
initial  and  final  ensemble  forecasts  for  the  training  and
verification  cases.  The  results  of  RMSE  are  similar  to
those of TS. For most cases, the final ensemble is superi-
or  to  the  initial  ensemble,  especially  for  the  verification
cases  that  have  more  rainfall  amount  than  that  of  the
training  cases  (e.g.,  case  14  for  lead  time  at  24  h).  The
average  improvement  in  RMSE for  the  training  cases  is

1%, 0.4%, and 2% for lead times of 24, 48, and 72 h, re-
spectively,  and  for  verification  cases  is  12%,  7%,  and
14%, respectively. For a better understanding of the pre-
cipitation  simulation  difference  between  the  two  en-
sembles,  distribution  patterns  of  simulation  errors  are
given in Fig.  9,  which shows that  for  both cases,  the fi-
nal ensemble has reduced simulation errors compared to
that of the initial  ensemble for all  lead times. Especially
for lead times of 24 and 72 h in the verification cases, the
errors in the initial ensemble have been reduced in the fi-
nal  ensemble  across  the  entire  spatial  domain.  The  spa-
tial areas corresponding to the maximum error for the ini-
tial  ensemble  have  been  reduced  in  the  final  ensemble.
Note that the final ensemble performed better in the veri-
fication cases  than in  the  training cases,  possibly  due to
the fact that there is more rainfall in the verification cases
as compared to the training cases.

5.2    Probabilistic verification of the ensemble forecast
spreads

For ensemble forecasts, probabilistic verification met-
ric  is  a  more  comprehensive  measure  of  ensemble  fore-
cast  performance.  Here,  we  use  a  number  of  probabilis-
tic  verification  metrics,  including  RPS,  BS,  and  ROC.
RPS  is  a  measure  of  how  well  forecasts  expressed  as

 
Fig.  4.   Spatial  distributions  of  (a–c)  observed  rainfall  (mm  day−1)  and  (d–i)  rainfall  simulation  error  (mm  day−1)  for  the  training  period
(June–August of 2014–2017) of (d–f) the Goddard scheme (number 7) and (g–i) the CAM 5.1 scheme (number 11) of microphysics at (d, g) 24-,
(e, h) 48-, and (f, i) 72-h forecast lead times. The mean RMSE value (mm day−1) of the Goddard and CAM 5.1 schemes is indicated on the top
right of the corresponding panel.
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probability  distributions  match  with  observations.  The
RPS values of the initial and final ensembles for all train-
ing and verification cases were compared and the results
are  shown  in Fig.  10.  We  note  a  remarkable  improve-
ment in RPS values of the final ensemble over that of the
initial  ensemble  for  all  lead  times.  This  improvement  is
striking  in  that  the  RPS  value  is  generally  negatively

biased for ensemble forecasts with small  ensemble sizes
(Buizza and Palmer,  1998).  In this case,  the RPS values
for  the  final  ensemble  with  an  ensemble  size  of  40  are
much smaller than that of the initial ensemble with an en-
semble  size  of  90.  Note  that Figs.  7–10 show  the  same
degree  of  improvement  for  both  the  training  cases  and
the  verification  cases,  indicating  that  the  final  ensemble

Table  3.   The  scheme  screening  results.  The  schemes  marked  by  boldface  are  the  remaining  schemes  after  three  rounds  of  screening.  The
schemes marked with “*” (in italics) are the schemes that are removed in the second (third) round of screening

Microphysics Longwave Shortwave Land surface PBL + surface Cumulus
Lin RRTM Goddard (old) 5-layer YSU + MM5 BMJ
WSM3* CAM CAM Noah MYJ + Monin–Obukhov GD
WSM5 RRTMG RRTMG RUC MYNN2.5 + MM5 SAS*
Ferrier (95) New Goddard New Goddard Pleim–Xiu MYNN2.5 + Monin–Obukhov Grell-3
Goddard FLG* MYNN3 + MYNN Tiedkte
Thompson* BouLac + MM5* GF
Mibrandt UW + MM5* New Tiedkte
Morrison UW + Monin–Obukhov
WDM5 GBM + MM5
WDM6 Shin–Hong + MM5*
Thompson aerosol-aware*

Number of schemes 11 5 4 4 10 7

 
Fig. 5.   As in Fig. 3, but for the variances of threat scores of different schemes over the training cases with a one-sided t-test.
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obtained through the screening procedure is effective and
the results are transferable to other cases.

Table 4 exhibits the inter-comparison results based on
the BSs and the BS decompositions (i.e.,  reliability, res-
olution,  and  uncertainty)  for  ensemble  forecasts  gener-
ated  by  the  initial  and  final  ensembles  at  different  lead
times for two categories of rainfall cases. Because prob-
abilistic  forecast  verification  usually  requires  a  large
sample size and the rainfall intensity > 10 mm day−1 only
accounts for 13% (23,282 grid points) of the total obser-
vation  grid  points  in  the  training  and  verification  cases,
we used only two categories of rain for probabilistic veri-
fication, with the threshold set at 10 mm day−1. If the 24-
h cumulative rain is greater than 10 mm, it is marked as
“heavy  rain;”  otherwise,  it  is  marked  as  “regular  rain.”
Compared to the initial ensemble, the BSs of the final en-
semble have smaller values for “regular rain.” The differ-
ence is mainly due to the fact that the final ensemble has
better reliability (i.e., the forecast probability of the final

ensemble  has  a  better  agreement  with  the  observed  fre-
quency). However, for “heavy rain” forecasts, the BSs of
the final ensemble are not as good as those of the initial
ensemble. This may be because “heavy rain” cases have
fewer  samples  to  obtain  reliable  statistics  and  are  more
difficult  to  predict  (Zhang  et  al.,  2006).  The  resolutions
of the two ensembles are similar  to each other,  with the
initial  ensemble  having  a  slight  advantage.  Therefore,
both  ensembles  have  similar  ability  to  separate  rain  in-
tensity from one category to another.  The uncertainty of
the  two  ensembles  based  on  the  BSs  are  not  analyzed
here  because  this  metric  is  independent  of  the  forecast
quality and needs climatological information to compute
(Ferro and Fricker,  2012).  Note  that  the  BSs for  “heavy
rain” forecasts are generally smaller than those for “regu-
lar  rain” forecasts.  We think this  may be related to how
the  statistical  method  is  formulated  and  does  not  neces-
sarily  mean  that  the  probabilistic  forecasts  of  “heavy
rain” cases have a better performance than that for “regu-

 
Fig. 6.   As in Fig. 3, but for threat scores of different schemes over the training cases with a two-sided t-test in the fouth round of screening.
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lar  rain”  cases.  In  calculating  the  BS,  the  grid  is  fixed,
but  the  range  of  the  two rain  categories  varies.  Because
the range of “regular rain” is larger than that of “heavier
rain,”  the  BS  value  is  larger  for  the  rain  with  a  larger
range  (Atger,  2004; Wang,  2005).  This  implies  that  the
BS  values  for  forecasts  of  different  rain  intensities  are
not fully comparable.

Figure  11 displays  the  ROC  curves  for  the  two  cat-
egories of rain cases at different forecast lead times. The
ROC  curve  provides  information  on  the  hit  rates  and
false alarm rates expected from use of different probabil-
ity thresholds and is very useful to discriminate the per-
formance  of  two  sets  of  ensemble  forecasts.  As Fig.  11
shows,  both  sets  of  ensemble  forecasts  have  excellent
skills  for  all  cases,  as  the  ROC curves  are  all  above the
diagonal  line  with  ROC  area  (ROCA)  above  0.5,  a
threshold delineating whether ensemble forecasts having
skills  or  not.  The  forecasts  generated  by  the  initial  en-
semble  have  better  skills  than  those  by  the  final  en-
semble. The advantage of the initial ensemble over the fi-
nal ensemble is expected, as ROCA is also dependent on
ensemble size.  Forecasts  with  a  small  ensemble size  are
at a disadvantage compared to forecasts with a large en-

semble size.  This is  consistent  with the conclusion from
Pellerin et al. (2003) and Marsigli et al. (2005), where in
their  study,  the  bigger  ensemble  takes  advantage  when
compared  to  smaller  ensemble  (Mason  and  Graham,
1999).

5.3    Comparison of the final ensemble against randomly
sampled ensembles

We have  shown that  the  ensemble  forecasts  from the
final  set  of  ensemble  members  have  better  forecast  per-
formance over the forecasts generated from the initial en-
semble  according  to  a  number  of  verification  metrics.
One may argue that this advantage does not pass the stat-
istical significance test because the final set of ensemble
members represent only a particular set  of scheme com-
binations  that  is  better  than  the  initial  ensemble  by
chance.  To  validate  the  effectiveness  of  the  final  set  of
ensemble members, we compare the TS and RPS values
of  the  forecasts  from  the  final  ensemble  to  the  TS  and
RPS  distributions  of  the  randomly  sampled  40  scheme
combinations  using  bootstrapping  method,  which  gener-
ates  1000  sets  of  40-member  ensemble  from  the  initial
ensemble members. The comparison results are shown in

 
Fig. 7.   Comparison of the threat scores of the initial (green bar) and final (orange bar) ensemble forcasts and their average (Ave) values for the
training and verification cases (divided by the vertical dashed line) at (a) 24-, (b) 48-, and (c) 72-h forecast lead times.
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violin plots in Fig. 12. Violin plots, which have a kernel
density plot on each side, are similar to bar plots, and dis-
play  the  uncertainty  due  to  sampling  errors  (Hintze  and
Nelson,  1998).  The evaluation results  show that  there  is
little  chance  that  the  randomly  sampled  ensemble  fore-
casts  have  a  better  performance  than  the  final  ensemble
forecasts.  The average TSs of  the  final  ensemble  are  all
higher  than  the  TS  ranges  for  randomly  sampled  en-
sembles.  The  results  for  RPS  also  show clearly  that  the
final ensemble is more likely to generate better forecasts
than the randomly sampled ensembles, with the RPS val-
ues  of  the  final  ensemble  well  below  the  median  RPS
values and only a slight chance of smaller RPS values for
some  randomly  sampled  ensembles.  The  fact  that  aver-
age TS and RPS values of the final ensemble are superi-
or to those of the randomly sampled ensembles supports
the  argument  that  the  screening  process  is  effective  in
improving the performance of ensemble forecasts.

6.    Conclusions

In  this  study,  we  proposed  an  objective  statistical
method to select which parameterization schemes should
be included to  form a  multi-physics  ensemble  for  short-
range  (3-day)  summer  precipitation  forecast  over  the

Greater  Beijing  area.  The  screening  methodology  cen-
ters on using statistical variances and significance t-tests
to  determine  which  schemes  are  significantly  better  or
worse than the average performance and which schemes
should be retained to ensure a large ensemble dispersion.
After  several  rounds  of  screening,  we obtained the  final
ensemble with 40 ensemble members,  each representing
a  particular  scheme  combination  from  the  WRF  model.
Then, we used a series of verification metrics, including
TS,  RMSE,  BS,  ROC,  and  RPS,  to  evaluate  the  en-
semble forecasts.

The  evaluation  results  of  the  TS  and  RMSE  suggest
that the forecasts from the final ensemble are superior to
those  of  the  initial  ensemble  for  almost  all  cases  and
forecast lead times. The improvement of the average TS
is 33%, 15%, and 9% for lead times of 24, 48, and 72 h,
respectively. The average improvement in RMSE is sig-
nificant for the verification cases at 12%, 7%, and 14%,
respectively.  The  BS  evaluation  results  indicate  that  the
screening process has improved the BS and reliability for
“regular  rain.”  For  the  “heavy  rain”  cases,  performance
of the initial ensemble is better than that of the final en-
semble,  due  to  the  number  of  “heavy  rain”  cases  being
smaller  than  “regular  rain”  cases.  Hence,  the  results  for
“heavy rain” is  not as reliable as for “regular rain.” The

 
Fig. 8.   As in Fig. 7, but for the RMSE of the initial and final ensemble forecasts for the training and verification cases.
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ROC  evaluation  results  show  that  the  two  ensembles
have  similar  resolutions.  Finally,  we  compared  the  final
ensemble  against  1000  randomly  sampled  ensembles
drawn from the initial ensemble to ensure statistical sig-
nificance  of  the  results.  The  violin  plots  show  that  the
RPS and TS values of the final ensemble are statistically

better than those of the random sampled ensembles in all
cases.  These  results  illustrate  that  the  screening  proced-
ure  proposed  in  this  study  is  effective  in  generating  en-
semble  forecasts  with  good  performance  from the  WRF
model.

In  evaluating  the  ensemble  forecasts,  we  performed
the evaluation on both the training cases and the verifica-
tion  cases,  so  our  method  is  generalizable  to  cases  out-
side the training data. It has the potential for operational
ensemble  forecast  applications  (e.g.,  related  to  the  data
assimilation  method  or  the  stochastic  perturbations
schemes).  Although  our  study  only  focused  on  short-
range  summer  precipitation  forecasting  in  the  Greater
Beijing area,  the  general  procedure  can be  used for  me-
dium- to long-range forecasts,  for  other  areas,  and other
forecast variables.

Appendix A: LHS design

The LHS is a method for sampling model input space.
LHS  design  uses  a  stratified  sampling  scheme  to  im-

 
Fig. 9.   The error distributions of the (a–c, g–i) initial and (d–f, j–l) final ensemble forcasts for the average of (a–f) training and (g–l) verifica-
tion cases at (left panels) 24-, (middle panels) 48-, and (right panels) 72-h lead times.

 
Fig. 10.   Comparison of the average ranked probability scores of the
initial  (green  bar)  and  final  (orange  bar)  ensemble  forcasts  for  the
training and verification cases (divided by the vertical dashed line) at
24-, 48-, and 72-h lead times.
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prove the coverage of input space (Loh, 1996; McKay et
al.,  2000).  Compared  with  the  Monte  Carlo  sampling
method,  the  LHS  samples  can  more  evenly  across  all
possible values. Assumed that n0 samples are needed and
n is  the dimension of the sample space, xi is  the i-th di-
mension in the space. Dividing dimension xi into n0 inter-
vals and each interval has the same probability. Then, the
sample space is divided into n0

n small hypercube, which
can  be  expressed  as  an  array U with n0 rows  and n
columns (n0 × n).  Each row of U-array corresponds to a
small  hypercube.  Randomly  selecting  one  sample  from
each  small  hypercube  will  get  final n0 samples  (Helton
and Davis, 2003). Figure A1 gives an illustration of LHS

design for a two-dimensional variable.

Appendix B: Description of the one-sided and
two-sided t-tests

The t-test,  also known as the Student’s  test,  is  one of
the  most  commonly used tests  to  determine whether  the
means  of  two  groups  of  samples  are  different  signific-
antly. In this study, we used both the one-sided and two-
sided t-tests. The Student’s t distribution is defined as:

t =
µi, j−µ j

σ j/K j
, (B1)

Table 4.   Comparison of the Brier score (BS) values for different lead times and rain intensities for the training and verification cases. Reliabil-
ity, resolution, and uncertainty are the decomposed values from the BS value. The numbers before and after “/” are the BS values for the initial
and final ensembles, respectively

Lead time  24 h  48 h  72 h
Rain category  ≤ 10 mm day−1 > 10 mm day−1  ≤ 10 mm day−1 > 10 mm day−1  ≤ 10 mm day−1 > 10 mm day−1

Training case BS 0.055/0.034 0.031/0.033 0.165/0.160 0.145/0.158 0.153/0.126 0.114/0.123
Reliability 0.027/0.005 0.003/0.004 0.027/0.021 0.006/0.019 0.047/0.019 0.008/0.016
Resolution 0.006/0.005 0.006/0.005 0.019/0.018 0.018/0.017 0.010/0.010 0.010/0.009
Uncertainty 0.034/0.034 0.034/0.034 0.156/0.156 0.156/0.156 0.116/0.116 0.116/0.116

Verification case BS 0.128/0.122 0.110/0.121 0.165/0.168 0.155/0.167 0.160/0.134 0.113/0.131
Reliability 0.022/0.010 0.003/0.009 0.018/0.010 0.005/0.009 0.050/0.023 0.002/0.019
Resolution 0.034/0.028 0.034/0.028 0.068/0.057 0.065/0.057 0.024/0.023 0.023/0.022
Uncertainty 0.141 0.141 0.215 0.215 0.134 0.134

 
Fig. 11.   Comparison of the relative operating characteristics (ROC) curve and ROC area (ROCA) between the initial (black line) and final (red
line) ensemble forcasts for the (a–f) training and (g–l) verification cases of two rain intensities at (a, d, g, j) 24-, (b, e, h, k) 48-, and (c, f, i, l) 72-h
lead times.
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µ j =
∑K j

i=1

µi, j

K j

σ j =

√√∑K j
i=1

(
µi, j−µ j

)2

K j

µi, j = µ j µi, j , µ j

µ j

µi, j < µ j

µi, j ⩾ µ j

µ j

where μi, j is the average performance metrics of all para-
meterization scheme combinations in which scheme i of

the physical process j appears,  is the mean
performance  metrics  of  all  schemes, Kj corresponds  to
the number of feasible schemes in physical process j, and

 is  the  standard  deviation.  For  a

two-sided test,  the null  hypothesis of our experiments is
 and  the  alternative  hypothesis  is .  To

evaluate  the  statistical  significance  of  the  two-sided t-
test, we need to calculate the confidence interval at a spe-
cific level, say 95%, and then determine whether the μi, j
is significantly greater or less than . For the one-sided
t-test,  the  null  hypothesis  of  our  experiments  is 
and the alternative hypothesis is . Here, we need
to  compute  the  confidence  limit  at  a  specific  level,  and
determine whether the μi,j is significantly less than .

Appendix C: Verification metrics

C1. TS
TS measures the fraction of forecasts corresponding to

the observations correctly. It is defined as,

TS = a/ (a+b+ c) , (C1)

where a,  b,  and c represent  the  hits,  false  alarms,  and

misses in the contingency table, respectively (Table C1).
The  TS  value  averaged  over  different  thresholds  is

used  to  evaluate  the  performance  of  precipitation  fore-
cast:

TSw =
∑m

i=1
wi(TS)i, (C2)

wi = gi/G
where m is  the  number  of  thresholds  used  for  categor-
ized  precipitation  events  and  weight , gi is  the
number of  grids  for  threshold i,  and G is  the total  num-
ber of grids for all thresholds (Zhao and Carr, 1997).
C2. BS

BS measures the mean squared probability error for a
binary  event  (Brier,  1950).  It  can  be  decomposed  into
three terms:

BS =
1
N

∑N
i=1 (Pi−Oi)2 =

1
N

∑K
k=1 nk

(
pk − Ōk

)2− 1
N

∑K
k=1 nk

(
Ōk − Ō

)2
+ Ō

(
1− Ō

)
.

(C3)

Ōk

The  three  terms  on  the  right-hand  side  of  the  above
equation denote reliability, resolution, and uncertainty of
the  forecasts,  respectively.  In  Eq.  (C3), Pi is  the  occur-
rence probability of rain exceeding a certain threshold for
a particular event: if the event occurs, Oi = 1; otherwise,
Oi = 0.  Moreover, K is  the number of forecast  probabil-
ity  categories; pk is  the  mean  forecast  probability  in kth
category;  is  the  mean  observation  frequency  in kth

 
Fig. 12.   Violin plots of (a, c) threat score (TS) and (b, d) ranked probability score (RPS) distributions from the ensembles randomly sampled
from the initial 90 scheme combinations and the average TS and RPS values from the final ensemble (dashed lines) for the (a, b) training and
(c, d) verification cases at 24-, 48-, 72-h lead times.
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Ōcategory;  and  is  the  mean  of  all  observation  frequen-
cies. The range for BS is 0–1. It is a negatively oriented
score, with the perfect score being 0.
C3. ROC

ROC displays  the  hit  rate  versus  the  false  alarm rate,
based  on  a  set  of  increasing  probability  thresholds  to
make  the  “yes/no”  decision  (Stanski  et  al.,  1989).  The
specific  measure  associated  with  ROC  is  the  area
(ROCA) under  the  curve,  which is  a  measure  of  resolu-
tion. The range of the area is 0–1, where 1 means a per-
fect  ensemble  system.  A  value  of  0.5  (diagonal  line)
means  a  useless  forecast  system  because  it  cannot  dis-
criminate  between  occurrence  and  non-occurrence  of  an
event.
C4. RPS

RPS  measures  the  sum  of  squared  differences  in  cu-
mulative probability space for a multi-category precipita-
tion probabilistic forecast, which is given by

RPS =
(∑J

m=1

⟨∑m

i=1
Pi−

∑m

i=1
Oi

⟩2
)
/ (J−1) , (C4)

where J is  the  number  of  forecast  categories; Pi is  the
predicted  probability  in  forecast  category i;  and Oi is  a
binary indicator (i.e., 0 = no, 1 = yes) for the observation
in  category i.  RPS  penalizes  forecasts  more  severely
when their probabilities are farther away from the actual
outcome (Murphy, 1969, 1971).
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Event forecast Event observed
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Yes a b a+b
No c d c+d
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Fig. A1.   Illustration of the LHS process for a two-dimensional vari-
able.
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