
1.  Introduction
Computer-based environmental models (EMs) have been widely used to explore, simulate and predict the 
behaviors of the environmental systems and their complex reactions to changing conditions. Examples of 
environmental systems include hydrological, ecological, and climatic systems (Letcher & Jakeman, 2004). 
As researchers are seeking to improve their understanding of the real-world environmental systems, EMs 
are becoming progressively more complex. In order to represent the heterogeneity and the spatial variation 
of properties that control the environmental system processes, spatially distributed EMs, which represent 
various components of the earth system at large scale (Koch et al., 2018), have been proliferated and ex-
tensively applied in a wide variety of fields (Gan et al., 2019; Lin et al., 2018; Sun et al., 2018, 2021). These 
large, complex EMs usually involve many uncertain spatially varying parameters whose specification could 
significantly affect the model simulation capability (Lohmann et al., 2004; Xia et al., 2016). Those parame-
ters usually cannot be directly measured and the assigned default values based on land surface character-
istics (e.g., soil and vegetation types) are usually inappropriate (Gu et al., 2016; Huang et al., 2013; Rosero 
et al., 2010). To resolve this problem, many researchers resorted to model calibration to estimate model 
parameters.

Calibration of complex models has necessitated the use of automated, time-efficient optimization methods. 
There have been major advances in automatic calibration algorithms as a result of the development and 
breakthroughs in the field of optimization (Deb et al., 2002; Duan et al., 1992; Tolson & Shoemaker, 2007; 
Wang, 1991; Yapo et al., 1998). Automatic optimization methods have been widely used to calibrate hy-
drologic models. There also have been some attempts to use these methods to calibrate parameters of land 
surface models (LSMs) (Bastidas et al., 1999; Gupta et al., 1999; Xia et al., 2002), ecosystem models (Fox 
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et al., 2009; Ricciuto et al., 2008), and numerical weather prediction models (Liu et al., 2005; Severijns & 
Hazeleger, 2005). With the continuous development, current EMs are incorporating an increasing number 
of natural processes and representing spatial heterogeneities of these processes (Letcher & Jakeman, 2004), 
and thus could simulate many variables simultaneously. Therefore, multi-objective optimization is more 
favorable to ensure that all major variables of interest are well simulated, and the use of additional varia-
bles can allow calibration to become more robust with multiple observations constraining model parame-
ters (Bastidas et al., 2003). The multi-objective optimization problem is much more complex than the sin-
gle-objective optimization, thus further increasing the difficulty of model calibration (Gupta et al., 1998). 
Conventional automatic optimization algorithms, especially multi-objective methods, require a huge 
amount of model evaluations to identify the optimal parameter sets (Gupta et al., 1999; Li et al., 2012; Vrugt 
et al., 2003). Meanwhile, it could take considerable CPU time to run a distributed EM over a large spatial 
domain for a multi-year simulation. This high computational demand has become one of the greatest chal-
lenges in practical applications of complex distributed EM calibration. Therefore, more advanced methods 
are needed to obtain good parameter estimates within an acceptable time.

To reduce the computational cost of model calibration, surrogate modeling-based optimization methods 
have been proven as an efficient way. The surrogate models, which are usually statistical models, provide 
efficient approximation to the actual numerical model outputs/objective functions (Lu et al., 2018). Surro-
gate modeling has been widely used in engineering fields like aerospace science, civil engineering, robotics, 
chemistry et al. (Forrester & Keane, 2009; Gorissen, 2010; Viana et al., 2014). Razavi et al. (2012) gave a 
comprehensive review of research efforts on surrogate modeling and the applications in the field of hydrol-
ogy and water resources. In addition, the applications of surrogate modelling-based optimization methods 
to complex EMs are gaining more attentions (Duan et al., 2017; Fer et al., 2018; Gong et al., 2015; Huang 
et al., 2016; Lu et al., 2018; Müller et al., 2015; Ray et al., 2015; Wang et al., 2014). Among these studies, 
some tried to transform the multi-objective problem into a single-objective problem and used single-ob-
jective surrogate-based optimization methods (Duan et al., 2017; Gong et al., 2015; Lu et al., 2018). Since 
the essence of solving a multi-objective optimization problem is to find the Pareto optimal solutions, Gong 
et  al.  (2016) proposed the multi-objective adaptive surrogate modeling-based optimization (MO-ASMO) 
algorithm based on the nondominated sorting of multiple objectives to meet the special requirements of 
calibrating large, complex geophysical models. When applied to the Common Land Model (CoLM), the 
MO-ASMO method identified the Pareto optimal parameter sets with greater effectiveness and efficiency 
compared to the popular nondominated sorting genetic algorithm II (NSGA-II; Deb et al., 2002).

Most of the previous studies on parameter optimization of distributed EMs were limited to single sites 
where in-situ observations are available. It has been pointed out that parameters estimated at point scale 
are not easily transferable to new sites or to large-scale applications (Post et al., 2017). It means that the op-
timal parameter sets obtained for one site are possibly not the optimal values for other sites, although these 
sites are classified as the same type according to the plant functional type (PFT) and soil texture (McNeall 
et al., 2016; Rosolem et al., 2013). This explains why many distributed EMs using calibrated model parame-
ters from individual sites still produce large spatial bias. Therefore, calibration of spatially distributed EMs 
at limited sites is not enough (Li, Duan, et al., 2018). Either because of the high spatial and temporal reso-
lution or because of the massive scale (Sun et al., 2020), application of parameter optimization methods to 
spatially distributed EMs is not trivial due to the high computational demands. Surrogate modeling-based 
optimization methods can be adopted to save computational cost, but it is not enough for the optimization 
problems related to distributed EMs at large scales. This is because that the construction of an accurate 
surrogate model still requires many expensive model runs, especially in view of the fact that the spatially 
distributed EMs need to be run over the entire spatial domain with a huge number of grid cells over many 
years. Therefore, how to develop strategies for computationally efficient model calibration at continen-
tal-to-global scales is a vital issue needed to be addressed.

Currently, the relevant research is very limited. One strategy is to further reduce the number of model 
evaluations involved in the optimization algorithm. For example, some studies (Dagon et al., 2020; Lu & 
Ricciuto, 2019) used singular value decomposition to reduce the dimensionality of the model output, and 
then trained a neural network based surrogate model to emulate the model outputs. In this way, an accu-
rate and effective surrogate system of model outputs at large spatial scale can be built based on only a few 
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model runs. Another strategy is to reduce the computational time of a single model run based on a sparse 
grid idea. Troy et al. (2008) introduced a method to calibrate the Variable Infiltration Capacity (VIC; Liang 
et al., 1994) hydrologic model for a subset of the grid cells individually and then interpolated the parameters 
to the uncalibrated grid cells. However, the selection of grid cells to be calibrated was relatively arbitrary 
and how it affected the calibration results was not clear. Similarly, the idea of running the model on a subset 
of grid cells was also implemented by Huo et al. (2019) to perform the global sensitivity analysis (SA) of 
the Noah-MP (Niu et al., 2011) LSM. The results demonstrated that a relatively small grid sample size (5% 
of the total grid cells) was sufficient to identify the most important parameters of the spatially distributed 
Noah-MP model. Compared to SA, which is only needed to depict the general shape of the response surface 
of the original model, calibration is much more complex and needed to explore the specific details of the 
response surface. Therefore, how to sample grid cells from the large domain to facilitate the calibration 
process is worth studying.

In this study, we introduce a novel calibration method called multi-objective adaptive surrogate mode-
ling-based optimization using grid sampling (MO-ASMOGS), to significantly reduce the computational 
burden in multi-objective parameter optimization of spatially distributed EMs. This method extends the ad-
vantage of the MO-ASMO method with a novel spatial grid sampling strategy. The essential idea of MO-AS-
MOGS is to construct and to adaptively update the response surface surrogate of the original model more 
efficiently by combining both parameter sampling and spatial grid sampling (and adaptive resampling). In 
other words, this novel calibration method only requires model evaluations on a small portion of the total 
grid cells to make sophisticated calibration of spatially distributed EMs computationally feasible. Different 
from MO-ASMO and other traditional surrogate modelling-based optimization methods which only rely 
on parameter sampling for modeling the response surface of the original simulation model, the MO-AS-
MOGS method introduces a novel spatial grid sampling strategy to better implement the new idea, which 
greatly facilitates the application of complex multi-objective calibration over large spatial domains and 
therefore makes the novel contribution of this study. Our proposed spatial grid sampling strategy involves 
two core concepts: evolutionary elitism and adaptive sampling (or multi-stage sampling). Implementation 
of the first concept allows for the more important (i.e., the more sensitive) grid cells to be selected with 
higher priorities. Implementation of the second concept allows the user to monitor the performance of the 
sampling-based optimization in an “online” adaptive manner. With the design of the spatial grid sampling 
strategy, the optimization performed on only a small portion of the total grid cells over a large region can 
improve all objective functions relative to those obtained with the default parameterization scheme and 
produce optimization results that are just as good as MO-ASMO that needs running the model on all of 
the grid cells. We apply this calibration method to the Noah-MP model to improve the model simulation 
capability of gross primary production (GPP) and latent heat flux (LH) for two PFTs across the continental 
United States (CONUS).

The rest part of the paper is organized as follows. Section 2 describes the detailed methodology. Section 3 
briefly describes the Noah-MP model, the study region, various data and the experiment setup. Section 4 
presents the detailed results, followed by discussion and conclusions in Section 5 and Section 6.

2.  Methodology
2.1.  The MO-ASMOGS Method

In this section, we present the multi-objective calibration method MO-ASMOGS, which combines the ad-
vantage of a surrogate modeling-based multi-objective optimization approach (MO-ASMO) with a novel 
spatial grid sampling scheme to calibrate spatially distributed EMs that use individual grid cells as primary 
calculation units. The essential idea of MO-ASMOGS is combining parameter sampling and spatial grid 
sampling to construct and adaptively update the surrogate model of the objective functions. Therefore, it 
only needs running the model on a representative subset of grid cells selected out of the total number of grid 
cells within the spatial domain, rather than on the entire grid cells. SA is commonly used as a prerequisite 
for parameter estimation to identify sensitive parameters. Similarly, our method first picks out the “most 
influential” grid cells, as the model outputs on some grid cells are not sensitive to the parameters to be op-
timized. Therefore, we run the model only on certain grid cells to construct surrogate models and conduct 
optimization. The overall goal of the MO-ASMOGS method is that the optimization carried out on the 
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representative grid cells can improve all the objective functions relative to those obtained with the default 
parameterization scheme and produce comparable results to those obtained by performing optimization on 
all grid cells.

Figure 1a shows the flow chart of the MO-ASMOGS method, which consists of two phases: a spatial grid 
sampling phase (shown in blue) and a surrogate modeling-based optimization phase (shown in black). The 
former controls how the calibration will be conducted in the optimization phase by determining the pa-
rameters to be optimized, assigning reasonable ranges for model parameters, investigating the importance 
ranking of each parameter on each grid cell, selecting representative grid cells based on a novel spatial grid 
sampling strategy (Figure  1b). The second phase is to carry out surrogate modeling-based optimization 
using MO-ASMO. The input (parameter value)-output (objective function value) data needed to construct 
the surrogate model are obtained by running the original dynamic model with sampled parameter sets on 
the representative grid cells and computing the corresponding objective function values. The MO-ASMOGS 
method supports both one shot and adaptive (or multi-stage) modes. The one-shot mode means that the 
representative grid cells are only sampled once for later surrogate modeling-based optimization. If the user 
is not satisfied with the optimization results, more representative grid cells are added to increase the accu-
racy of the surrogate model. In the adaptive mode, additional grid cells are progressively added to update 
the surrogate model. The key steps of MO-ASMOGS are described as follows:

1.  Problem definition: Specify model outputs of interest and determine the model parameters to be investi-
gated. People can rely on their model expertise or refer to previous studies to determine the parameters.

2.  Initial sampling: An initial sample set of spatial grid cells is generated using the proposed spatial grid 
sampling strategy. The Good Lattice Points (GLP) method with ranked Gram-Schmidt (RGS) decorrela-
tion (Gong et al., 2016), is used to generate an initial set of parameter sample points.

3.  Model evaluation: The EM is run with the initial set of parameter samples on the sampled grid cells.
4.  Build the surrogate model: The Gaussian Processes Regression (GPR) is used to build surrogate models 

that emulate the response surface of the original EM to the change in parameter values. In this study, 
the surrogate model is an approximation of the objective functions, which are calculated from the raw 
model outputs on the sampled grid cells.

5.  Multi-objective optimization: The multi-objective optimization algorithm NSGA-II is run on the surro-
gate models built in the previous step to obtain nondominated solutions.

6.  Adaptive parameter sampling: These solutions are sorted in descending order of the crowding distance, 
and a portion of these sorted solutions with the largest crowding distances (represent the diversity of the 
nondominated solutions) are selected for evaluation using the EM model. Run the EM on the representa-
tive grid cells with the selected parameter sets. Append these new input-output data pairs to the original 
data pool. Steps 4–6 are repeated until the iteration limit is reached.

7.  Adaptive grid sampling: If not satisfied with the optimization results from Step 6, add new grid cells 
based on the spatial grid sampling strategy and go back to step 3. Repeat steps 3–7 until the termination 
condition is met.

Note that the initial parameter sample points are only generated once. Every time the new grid cells are 
added, the original EM is only needed to be run on the new grid cells with the initial parameter samples to 
generate the training data.

Since typical EMs have default assignment of parameter values (reference point), we use the MO-ASMO 
with weight crowding distance (WMO-ASMO) to perform the surrogate modeling-based model optimiza-
tion. An important feature of WMO-ASMO is the use of the weighted crowding distance when sorting the 
nondominated solutions. Therefore, this method can make the optimization focus on the region that can 
improve all of the objectives compared to what can be achieved with the default parameter set, which is 
suitable for the calibration of complex EMs. Please refer to Gong et al. (2016) for more details.

The MO-ASMOGS method is another extension to our developed ASMO methodology family. Although 
the MO-ASMO is one of the main components of the proposed MO-ASMOGS method, the new method 
has significant differences in the following aspects: (a) MO-ASMOGS is specifically designed for distributed 
EMs (e.g., LSMs) which are run on spatial grid cells and have gridded outputs. (b) Considering the spatial 
heterogeneity of the parameter sensitivity, some grid cells are more influential in reducing model errors 
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Figure 1.  (a) Flowchart of the MO-ASMOGS method with the spatial grid sampling strategy shown in blue and the 
MO-ASMO method shown in black; (b) a schematic of the key steps in the spatial grid sampling strategy.
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than others. Thus, the surrogate model in MO-ASMOGS is constructed and updated based not only on pa-
rameter sampling as in MO-ASMO, but also on spatial grid sampling. (c) The designed spatial grid sampling 
strategy is flexible to cater for the need of adding additional spatial grid samples to increase the accuracy of 
the surrogate model. Therefore, the core novelty of the MO-ASMOGS method is building and improving the 
response surface surrogate of the distributed EM more efficiently based on both parameter and spatial grid 
sampling (and adaptive resampling) through introducing a new spatial grid sampling strategy. This strategy 
is described in detail in Section 2.2.

2.2.  Spatial Grid Sampling Strategy

Due to the land surface heterogeneity, the sensitivity of a parameter can vary with the grid cells. In other 
words, some regions are more sensitive and have greater potential for reducing model errors. Thus, we do 
not necessarily calibrate all grid cells to obtain an optimal set of parameters, and only need to run the dy-
namic model on some selected representative grid cells to obtain the input-output pairs for performing the 
surrogate modeling-based optimization. The overall goals of the optimization performed on the representa-
tive grid cells are (a) to improve the model performance in simulating all output variables of interest across 
the study region and (b) to produce comparable calibration results to those obtained by calibrating all grid 
cells. Because the objective function values, which are obtained by evaluating model outputs on the selected 
grid cells, directly affect the constructed response surface, the representative grid cells for running the dy-
namic model should be carefully selected to focus on the most “informative” regions. To meet the goals, the 
spatial grid sampling strategy have four criteria: (a) To reduce the computational cost as much as possible, 
the initial sample size of the representative grid cells cannot be too large. (b) To make sure the surrogate 
model constructed on the limited grid cells can better approximate the response surface of the original mod-
el, enough information should be collected from the “informative” region where the model outputs change 
drastically with parameter values. Thus, evolutionary elitism is needed to ensure that more informative 
grid cells can be selected with higher priority. (c) If there are many grid cells that have similar information 
but are scattered across the study region, the representative grid cells are uniformly sampled from them to 
maintain spatial diversity. (d) If the user is not satisfied with the optimization results and wants to enlarge 
the sample size and resume the optimization process with the updated/new sample, additional grid cells 
can be added progressively to update the surrogate model and proceed with the optimization. Consequently, 
we have designed the following procedures to implement the four criteria, and the schematic description of 
the last three steps in the spatial grid sampling strategy is shown in Figure 1b.

1.  On each grid cell, calculate the sensitivity indices for each parameter through a prescribed SA method. 
The parameters are then divided into m groups based on the calculated sensitivity indices. Parameters 
categorized into the first group with ranking of 1 are labeled as “strongly influential,” and the parame-
ters in the last group with ranking of m are considered as “weakly influential.” The number of groups is 
prespecified by the user, however, large number of groups is not recommended as this may translate into 
some of them being disproportionally emphasized or de-emphasized (Sun et al., 2020). The grouping of 
parameters can be done in a subjective and case-specific manner. There are many grouping strategies 
which can be used, and we adopt a new grouping strategy proposed by Sheikholeslami et al. (2019). Its 
biggest advantage is that it can group parameters into a certain number of groups with any size based on 
information gained from SA. Importantly, if the number of groups is not prespecified, the algorithm will 
efficiently determine an optimal number of groups.
 The SA and grouping procedure can be applied to all the tunable parameters to screen out the most sen-
sitive parameter to be optimized, just like the way in Huo et al. (2019). However, if the most influential 
parameters have already been identified by other means, this procedure will only be applied to these 
parameters, which could also save computational resources.

2.  Add up the group rankings of all focused parameters on each grid cell. Let gE S  denotes the sum of group 
rankings on a grid cell. Sort all the grid cells in ascending order of gE S  . Grid cells with the same gE S  are 
further sorted in ascending order of aridity index and are grouped into the same set. Now, grid cells 
belonging to set 1E F  have the smallest gE S  , meaning that the model outputs on these grid cells are most sen-
sitive to the parameter values. In another word, the grid cells belonging to set 1E F  are the most influential 
ones in the optimization process and must be emphasized more than other grid cells in the sampling 
process. The sum of parameter group rankings is an indicator of sensitivity of objective function values 
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to the grid cells. If gE S  is small, it means that the corresponding grid cell has high sensitivity and thus a 
large impact on objective function values. Based on this, we prioritize the grid cells and sample them for 
further implementation of model calibration.

3.  Set an initial spatial grid sampling level, corresponding to a proportion of the total number of grid cells 
within the entire region. At the initial sampling level (such as 5% of the total number of grid points) with 
N grid cells, spatial grid samples are selected in order of gE S  . If the size of 1E F  is smaller than N, all members 
of the set are chosen. Then grid cells from the set 2E F  are chosen next, followed by grid cells from the set 

3E F  , and so on. This procedure is continued until no more sets can be accommodated. Say that the set lE F is 
the last set containing grid cells with the same gE S  , and beyond this set no other set can be accommodated. 
In general, the number of grid cells in all sets from 1E F  to lE F would be larger than N. To fill all sample slots 
of the sampling level, only a subset of grid cells from lE F can be selected to make the sample size reach N. 
The remainder grid cells are uniformly sampled from lE F to maintain spatial diversity. Note that for the 
one-shot mode of using MO-ASMOGS, the spatial grid sampling terminates at this step.

4.  To implement the fourth criterion, a new set of grid cell samples with size M is generated and added to 
the existing samples. M is set to a proportion of the total number of grid cells (e.g., 5%). The additional 
sampling starts with lE F , and proceed with 1lE F  , 2lE F  , …, as in the last step. When it finally comes to eE F  to 
reach the sample size M, the remainder subset of the added sample set is generated using the progressive 
Latin hypercube sampling (PLHS, Sheikholeslami & Razavi, 2017) method. The PLHS method generates 
a series of small subsets so that the sample size can grow progressively during the analysis while the 
progressive union of subsets remains the proprieties of Latin hypercube. More detailed information 
can be referred to Sheikholeslami and Razavi (2017). In our spatial grid sampling strategy, the grid cells 
from the same set E F can be divided into a series of subsets using PLHS for the adaptive or multi-stage 
sampling. This step can be repeated several times until the stopping criteria are met (iteration limit, total 
original model evaluation limit, total number of representative grid cells limit, etc.). The additional sam-
pling can be done by simply selecting new grid cells from the left ones following (3). However, the spatial 
diversity of the grid cell samples can be ensured to the maximum extent through the PLHS approach 
when there are many grid cells with the same gE S  .

In summary, two core concepts are involved in the new spatial grid sampling strategy: evolutionary elitism 
and adaptive (multi-stage) sampling. Implementation of the first idea allows more important or sensitive 
grid cells to be selected with higher priorities. By doing this, a relatively accurate surrogate model and fur-
ther good optimization effectiveness can be obtained based on a small sample of grid cells. Implementation 
of the second idea allows the user to monitor the performance of the sampling-based optimization in an 
“online” adaptive manner. The surrogate model can be adjusted and improved by adding grid cells progres-
sively, while maintaining the spatial diversity. Therefore, the MO-ASMOGS so designed can significantly 
reduce the computation burden of the calibration process and ensure satisfactory optimization results.

2.3.  Objective Function Formulation

The objective function used in this study is formulated in the following way. For each of the target output 
of the Noah-MP (LH and GPP), we calculate the Root Mean Squared Error (RMSE) between the monthly 
simulated and observed values in the study period on each selected representative grid cell. We define the 
RMSE of the monthly GPP and LH on the E j th grid point as follows:

 






2, ,

1RMSE

N i j i j
v v

j i
v

S O

N
 (1)

where ,i j
vE S  and ,i j

vE O  are the simulated and observed monthly E v (GPP or LH) in the  th month on the E j th grid. 
N is the number of total months.

Then we construct the cumulative distribution function (CDF) curve of these RMSE values (Figure S1) and 
calculate the area between the curve and the left vertical axis as the objective function (E S ). We can say that 
better overall model performance in the spatial domain is associated with smaller value of SE  . Let LHE S  and 

GPPE S  denote the objective function values with respect to LH and GPP, respectively. Therefore, the aim of 
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the multiobjective optimization in this study is to simultaneously minimize both of the objective function 
values.

To further compare model errors when using calibrated parameters with model errors when using the de-
fault parameters, we define the relative RMSE change as:


 

RMSE RMSEΔ 100%
RMSE

c d

d
 (2)

where RMSEcE  and RMSEdE  are the RMSEs when the model is run with calibrated and default parameters, 
respectively. Negative value of Δ means that model error is reduced after calibration.

3.  Case Study Configurations
3.1.  Model and Study Area

The spatially distributed EM used for this study is the Noah-MP model. Noah-MP is a new generation LSM 
which models the states of terrestrial energy, water, carbon, and associated flux exchanges between the 
land surface and the atmosphere. It is an augmented version of Noah LSM (Chen & Dudhia, 2001; Chen 
et al., 1996; Ek et al., 2003) through the incorporation of the conceptual realism in biophysical and hy-
drological processes, and multiple parameterization options for key land-atmosphere interaction processes 
(Niu et al., 2011), such as the vegetation phenology, canopy stomatal resistance, surface exchange coeffi-
cient for heat, soil moisture factor for stomatal resistance, runoff and groundwater, frozen soil permeability, 
radiation transfer, and snowpack (Li, Chen, et al., 2018). Details about the model physical parameteriza-
tions of each physical process can be referred to Niu et al. (2011). Here, we use the same model version and 
the same physical options as in Huo et al. (2019), as suggested by Yang et al. (2011) and Ma et al. (2017).

Improvements in hydrological process representation and carbon cycle process representation are the main 
directions of LSM development. GPP and LH are arguably the most fundamental and key variables of all 
carbon cycle and hydrological quantities (Prentice et al., 2015). So, they are widely selected as the target var-
iables for evaluating the model performance. Huo et al. (2019) conducted a parameter SA of the Noah-MP 
model for modeling GPP and LH using the newly developed grouping-based SA approach (Sheikholeslami 
et al., 2019). It identified the “strongly influential” parameters (Table 1) for the GPP and LH associated 
with two PFTs, grassland and deciduous broadleaf forest (DBF) across the CONUS (Figure 2). Since the 
Noah-MP is run with spatial resolution of 0.125°, there are 8,362 and 5,257 grid cells on which the dominant 
vegetation type is grassland and DBF, respectively. As a follow-up study of Huo et al. (2019), we want to 
optimize the most sensitive parameters to improve the simulated GPP and LH for each PFT based on the 
newly developed MO-ASMOGS method. In this study, we use both the adaptive mode and the one-shot 
mode of MO-ASMOGS to calibrate the model. In the adaptive mode, we begin with the initial spatial grid 
cell sampling level corresponding to 5% of all grid cells, then add additional grid cells to double the sample 
size. This process is repeated two times to get spatial grid sampling levels corresponding to 10% and 20%. In 
the one-shot mode, we directly select the representative grid cells at the grid sampling level of 40%. In this 
way, the computational time of these two modes for calibrating the model is nearly the same. To serve as a 
benchmark, we also conduct calibrations based on the MO-ASMO method by running the model on 100% 
of the grid cells. The detailed information of these parameters including names, physical meanings, default 
values, and value ranges are shown in Table 2. Note that the parameters smcmax and bexp actually refer 
to the spatially constant multipliers to be applied to the default parameter values which can be found in 
the Noah-MP look-up table based on soil texture classifications. Applying the spatially constant parameter 

Plant function type GPP LH

Grassland (G) smcmax, vcmx25, rmf25 smcmax, bexp

Deciduous broadleaf forest (D) vcmx25, rmf25 bexp

Note. GPP, gross primary production; LH, latent heat flux.

Table 1 
Most Influential Parameters of the Noah-MP Model for the Two Plant Function Types (PFTs) (Huo et al., 2019)
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multipliers to a priori parameter fields is a common form of spatial regularization for calibrating spatially 
distributed hydrological and land surface models (Mizukami et al., 2017). The vegetation parameters are 
PFT-specific, and are constant within the same PFT region.

3.2.  Data and Setup

The associated datasets used as inputs of the Noah-MP model and the evaluation data for simulated GPP 
and LH are the same as in Huo et al. (2019) and Ma et al. (2017). The inputs of the Noah-MP model in-
clude meteorological forcing data and static geography data. The forcing data consisting of precipitation, 
air temperature, wind speed, surface pressure, specific humidity, downward solar radiation, and downward 
longwave radiation, are collected from Phase 2 of the North American Land Data Assimilation System 
(NLDAS-2) forcing datasets with spatial and temporal resolution of 0.125° and hourly. The static input data 
include the geographical location, soil category, vegetation category, green vegetation fraction of each grid. 
Here, we use the United States Geological Survey (USGS) 30-s global vegetation type and the State Soil Ge-
ographic Database (STATSGO) soil texture datasets to derive the vegetation and soil indices. Both the 30-s 
datasets are aggregated to 0.125° with the dominant soil and vegetation types to match the spatial resolution 
of the NLDAS-2 forcing. In addition, the National Environmental Satellite, Data, and Information Service 
(NESDIS) 0.144° monthly 5-year climatological green vegetation fraction data are used and remapped onto 
the model grids.

To evaluate the model simulated GPP and LH, we use the monthly GPP and LH data from the FLUXNET 
model tree ensemble (MTE) products produced by Max Planck Institute for Biogeochemistry as “obser-
vations.” These monthly, 0.5° E   0.5° gridded datasets are available over the global continents for the peri-
od 1982–2011 (Jung et al., 2010, 2011), and have been widely adopted to evaluate LSMs-simulated (Anav 
et al., 2015; Gan et al., 2019; Ma et al., 2017; Xia et al., 2016) land-atmosphere water, carbon, and energy ex-
changes. The FLUXNET MTE products over the continental United States can be considered of high quality 
because most of the FLUXNET sites over the “data-rich” CONUS were incorporated (Jung et al., 2010). In 
this study, we use the nearest-neighbor interpolation to resample these evaluation data sets to 0.125° grids.

Considering the computational costs and the availability of the evaluation data, we select six representative 
years from 1982–2011 to run the Noah-MP model at a time step of 1 hr. The six selected years are the same 
as in Huo et al. (2019), which include two successive wet years (1982 and 1983), two successive dry years 
(1987 and 1988), and two successive medium years (2002 and 2003) according to annual precipitation and 
annual humidity index. The data of the first year in each 2-year period is used for “spin-up” and that of the 

Figure 2.  The spatial distribution of grassland and deciduous broadleaf forest (DBF) across the continental United 
States (CONUS).
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rest is used for surrogate modeling and optimization. We aggregate the hourly outputs to monthly to match 
the temporal scale of the evaluation data.

In both the MO-ASMOGS and the MO-ASMO methods, the number of generations and population size are 
set to 100 for the embedded NSGA-II. We found that the nondominated solutions could be located in the 
nondominated region of the reference point more efficiently when the initial parameter sample size was 200 
times of the number of parameters. Thus, the initial sample sizes are 800 and 600 for the optimization in 
the grassland and DBF systems, respectively. The total iteration number is set to 5, and the resampling per-
centage is set to 20%. Thus, the maximum numbers of Noah-MP evaluations are 900 and 700 for grassland 
and DBF, respectively. For the multi-objective optimizations conducted on the representative grid cells, the 
obtained approximate Pareto optimal parameter sets are then used to run the Noah-MP model on all grid 
cells for the specified PFT, thereby enabling further comprehensive verification.

In this study, we run the Noah-MP model in parallel with 24 processors (Intel Xeon 2.5 GHz CPU) and 
128 GB memory. The computational time of one model run over the entire grassland region and the DBF 
region is 960s and 720s, respectively. Therefore, it will take about 10.2 days and 6.1 days to perform the cali-
bration of all grid cells for the grassland and DBF regions, respectively. If running the model on only 10% 
of the total grid cells, the computational time can be reduced to 260s and 220s for the grassland and DBF 
regions respectively. Furthermore, the total computational time of the calibration using the MO-ASMOGS 
method is about 5.4 and 3.2 days for the grassland and DBF regions respectively.

4.  Results
Through looking into the multi-objective optimization procedure (figures not shown), we found that the 20 
approximate Pareto optimal points obtained in each iteration did not evolve consistently toward the right 
direction as the loop progresses. For example, the optimal pointes of loop 4 were worse than those of loop 2 
points. Nonetheless, the overall evolution procedure was still steered toward the right direction to the non-
dominated region of the default point. After the iteration limit is reached, the final nondominated solutions 
can be determined. For those optimizations conducted using the MO-ASMOGS method with representative 
spatial grid cells, the Noah-MP model is then run in an ensemble mode with the obtained optimal parame-
ter sets on the entire grid cells covered by the focused PFT. Finally, the simulated results and RMSE values 
corresponding to these optimal parameter sets are averaged on each grid cell.

Figure 3 shows the RMSE CDF curves of model simulations corresponding to the default parameterization 
scheme, the MO-ASMO case with all grid cells and the MO-ASMOGS cases of different grid sampling lev-
els for the grassland and DBF, respectively. The top panel of the figure represents the results of LH, while 
the bottom panel represents the results of GPP. For the MO-ASMOGS cases, their RMSE CDF curves are 
obtained by running the Noah-MP model on all grid cells of each PFT covered region with the parameters 
optimized on representative grid cells. It can be seen that for both PFTs and both variables, the curves of 
the all-grid cases and the representative-grid cases lie above the curves of the default case, except the left 
tails of the 5% curves for grassland. The results indicate that the simulated monthly GPP and LH over the 
regions of interest are simultaneously improved by optimization, and the improvement is more significant 
in the DBF region. This is not surprising for the all-grid cases as the area to the left CDF curve is directly 
used as the objective function value to be minimized. Interestingly, optimization using the adaptive mode 
of MO-ASMOGS at the initial grid sampling level can lead to slightly better model performance than that 
obtained with the default parameter set.

Moreover, the CDF curves for the 10%, 20%, and 40% cases are almost identical to those of the all-grid cases 
for both variables and both PFT regions. In the grassland region, the CDF curves of the 5% cases lie under 
those of the all-grid cases. Even though the optimization results based on the initial sample of grid cells 
(5%) are not satisfactory, one additional sampling process (10%) can significantly improve the optimization 
results, which are comparable to those obtained using the parameters optimized by the MO-ASMO method 
in a traditional way (on all grid cells). In the DBF region, the CDF curve of the 5% case is slightly lower than 
that of the all-grid case for LH, while the reverse happens for GPP. These indicate that the optimization 
results based on the initial sample of grid cells are already good enough. Next, we will thoroughly compare 
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the simulated LH and GPP by use of the default parameter set and parameters optimized in different cali-
bration cases.

Figures 4 and 5 show the spatial distribution of the RMSE of simulated GPP and LH in both grassland and 
DBF regions across the CONUS. The subpanels show the RMSE on each grid cell using the default param-
eters and optimized parameters obtained by calibrating the Noah-MP model on all grid cells, and on repre-
sentative grid cells selected at four grid sampling levels (5%, 10%, 20%, and 40%). The simulated GPP using 
the default parameters shows large errors in the DBF region while the large errors of simulated LH mainly 
concentrate in the grassland region. For both variables, there are noticeable reductions in RMSE values of 
all-grid cases and cases of different grid sampling levels. In Figure 4, there is some obvious deterioration in 
RMSE of the 5% case in the central America covered by the grassland, while the errors of GPP of the 10%, 
20%, 40% cases are greatly reduced in most parts of the study region. In Figure 5, it is also the case that the 
simulated LH using the optimized parameter values are significantly improved compared to the default case 
across much of the region, despite a similar deterioration of the 5% case in the Nebraska and Kansas states 
compared to other grid sampling level cases.

To further quantitatively investigate the changes in model performance using the optimized parameters 
compared to that using the default parameters, Figures 6 and 7 present the distributions of the relative 
RMSE change ΔE  (Equation  2) for GPP and LH, respectively. The subpanels present the relative RMSE 
changes when using the optimized parameters obtained by calibrating the Noah-MP model on all grid cells, 
and on representative grid cells selected at four grid sampling levels. Figure 6 shows that using the opti-
mized parameter values significantly reduces the RMSE of simulated GPP for nearly the entire DBF region. 
However, the RMSE values increase by over 60% in the north part of the grassland region for the all-grid, 
10%, 20%, and 40% cases. The large relative changes of RMSE are partly due to the small RMSE values of 
the default case. Relative changes in small values can appear to be more significant than they are. This is 
because a small absolute change in the value can result in a large percentage change. As for the 5% case of 

Figure 3.  The cumulative distribution function (CDF) curves of root mean squared error (RMSE) values of simulated latent heat flux (LH) (top panel) and 
gross primary production (GPP) (bottom panel) over the grassland region (solid lines) and the deciduous broadleaf forest (DBF) region (dashed lines) using the 
default parameters (blue), the parameters optimized by the MO-ASMO method with all grid cells (green) and the parameters optimized by the MO-ASMOGS 
method with representative grid cells selected at different grid sampling levels (red).
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grassland, the deterioration in model performance is observed on more grid cells but with milder degree 
compared to other optimization cases. For LH shown in Figure 7, the spatial patterns of relative RMSE 
changes for the all-grid, 10%, 20%, and 40% cases are very similar, with reduced RMSE on most grid cells but 
increased RMSE in the northeastern DBF region and the northern grassland region. In comparison, for the 
5% case, there are more grid cells with increased model errors in the grassland region, and the deterioration 
in model performance is less sever in the northeastern DBF region.

Figures 8 and 9 show the histograms of the relative RMSE change ΔE  estimated over the entire region for 
GPP and LH, respectively. In addition, Table 3 shows the percentages of grid cells on which the RMSE is 
reduced after calibration in both PFT covered regions. It is clear that the distributions of ΔE  and the number 

Parameters Meaning Unit Range Default values (G/D)

smcmax porosity, saturated soil moisture -- [0.83, 2.0] 1

bexp Clapp and Hornberger “b” parameter -- [0.1, 2.5] 1

vcmx25 maximum rate of carboxylation at 25°C umol CO2/(m2.s) [0, 200] 40.0/60.0

rmf25 leaf maintenance respiration at 25°C umol CO2/(m2.s) [0, 20] 1.8/3.0

Table 2 
The Detailed Information of the Parameters to be Calibrated

Figure 4.  The spatial distribution of root mean squared error (RMSE) values of simulated gross primary production (GPP) using the default parameters, the 
parameters optimized by the MO-ASMO method with all grid cells and the parameters optimized by the MO-ASMOGS method with representative grid cells 
selected at different grid sampling levels.
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of RMSE-reduced grid cells for the all-grid, 10%, 20% and 40% cases are very similar. Overall, using the 
optimized parameters of these calibration cases reduces the monthly model errors of GPP on about 75% 
of the total points, while the number is about 70% for LH. In comparison, the effect of the optimization 
process for the 5% case is much worse in the grassland region. The simulated GPP results on more than half 
of the total grid cells become worse after calibration, indicating that using the MO-ASMOGS method at the 
initial grid sampling level is not enough to improve the overall model performance. The improvement of 
model performance is much more significant for the simulations in the DBF region, especially for the GPP 
simulation. This, from a side, indicates that the assigned default values of vcmx25 and rmf25 for the DBF 
are inappropriate.

Furthermore, the spatial distributions of the RMSE differences between the MO-ASMO calibration case and 
each of the four MO-ASMOGS calibration cases are also presented in Figures S2 and S3. When compared to 
the all-grid case, the absolute changes in RMSE values are very small for the 10%, 20% and 40% cases. The 
model performance of the 20% case slightly outperforms that of the all-grid case in terms of GPP simulation, 
while the model performance of the 10% case slightly outperforms that of the all-grid case in terms of LH 
simulation. In contrast, there are clear disparities of model errors between the 5% case and the all-grid case.

Figure 10 shows the approximate Pareto optimal parameters obtained in each calibration case along with 
the default parameters, which provides further proof of the former results. All of the parameter values are 
normalized to (0, 1). It is evident that the optimal parameters obtained in the all-grid, 10%, 20% and 40% 
cases are close to each other, but are remarkably different from the default ones. In addition, all the optimal 

Figure 5.  Same as in Figure 4, but for latent heat flux (LH).
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parameters obtained in the 5% case are different from the others for the grassland, while the optimized 
vcmx25 and rmf25 are similar to the ones obtained in other calibration cases for the DBF. Using the two 
modes of MO-ASMOGS leads to nearly the same calibration results, indicating the robustness of our pro-
posed spatial grid sampling strategy. Therefore, the users can use the method in a flexible way to better meet 
their requirements.

Finally, we give some insight into the spatial distribution of the representative spatial grid cells selected 
by the MO-ASMOGS method (Figure S4). Because the parameters needed to be calibrated are all related 
to vegetation and soil, we also present the bar charts to show the numbers of representative grid cells clus-
tered in each soil type over each PFT region. It is shown that at the initial spatial grid sampling level (5%), 
the representative grid cells are distributed across each PFT region, indicating that even the most strongly 
influential grid cells exhibit spatial heterogeneity. Further investigation shows that the distribution of the 
number of representative grid cells in each soil type is very similar to that of the total number of grid cells 
in each soil type. This means that there are strongly influential grid cells in each soil type dominated region, 
and one soil type dominated region with more grid cells is more likely to contain strongly influential grid 
cells. The spatial heterogeneity of the importance of grid cells with the same soil type is mainly due to the 
subgrid variability of the soil attributes (e.g., soil texture, stone fragment distribution). In addition, the cli-
mate condition such as precipitation could also impact the sensitivity of a parameter on different grid cells 

Figure 6.  The spatial distribution of relative root mean squared error (RMSE) change ΔE  of simulated gross primary production (GPP) when using the 
parameters optimized by the MO-ASMO method with all grid cells and the parameters optimized by the MO-ASMOGS method with representative grid cells 
selected at different grid sampling levels.



Water Resources Research

SUN ET AL.

10.1029/2020WR028740

15 of 24

with the same soil type. Therefore, there is no such a clear spatial pattern of important grid cells that we 
can simply select representative grid cells from the specific regions. Using the spatial sampling strategy in 
the MO-ASMOGS method, the variability of the importance of each grid cell in the region covered with the 
same soil type and vegetation type is specifically considered. With the introduction of evolutionary elitism, 
the grid cells which are more sensitive to reduce the RMSE are selected with higher priority. For example, 
there are much more grid cells of silt loam than those of sand, however, the representative grid cells selected 
from sand covered region are more than those selected from silt loam covered region, indicating the sand 
region is slightly more sensitive than the silt loam region. With the additional sampling, the overall shapes 
of the frequency distribution remain the same, demonstrating that the spatial diversity of representative 
grid cells is maintained.

5.  Discussion
Different from other multi-objective surrogate modeling-based optimization methods, the MO-ASMOGS 
method is specifically designed for calibration of distributed EMs, especially when running the model on 
a large scale (e.g., continental or global scale). Generally, spatially distributed EMs use individual grid cells 
as primary calculation units and produce distributed outputs. Taking advantage of these features, we devel-
oped MO-ASMOGS, which combines the MO-ASMO method with a novel spatial grid sampling strategy. 
This method only requires model evaluations on a small portion of the total grid cells to improve all the 

Figure 7.  Same as in Figure 6, but for latent heat flux (LH).
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objective functions relative to those obtained with the default parameter values and to produce optimization 
results as good as those by calibrating all grid cells. To guarantee the calibration efficiency and effectiveness, 
the proposed spatial grid sampling strategy introduced evolutionary elitism and adaptive grid sampling to 
make sure the selected grid cells are highly informative by considering the contrasting parameter sensi-
tivities over the spatial domain. Since the method is specifically designed for distributed EMs, the model 
being distributed is the reason that our method works. Because each grid cell is modeled independently, we 
can easily do the adaptive sampling without influencing the simulation results of the sampled grid cells. It 
should be noted that our method may not work well when the simulations between grid cells have strong 
connections, or the targeted model output is aggregated from model simulations of all grid cells. For exam-
ple, we cannot calibrate a distributed hydrologic model against the observed streamflow at basin outlet by 
only running the model on a few grid cells within the basin. In addition, it may be unnecessary to use the 
MO-ASMOGS method when the model spatial resolution is so low that the total number of grid cells is not 
large. For example, the grid resolution of the Noah-MP model is 0.125° in this study, so there are 8,362 grid 
cells for grassland over the CONUS. If the grid resolution is 0.5°, there would be about 520 grid cells. Hence 
the computational cost is affordable, and it may not have enough room for implementing the adaptive grid 
sampling. Although there are some limitations for applying the proposed method, we believe it has great 
potential in calibration of large-scale distributed EMs, as many EM communities have great expectations on 
moving toward hyper-resolution models (Archfield et al., 2015; Wood et al., 2011).

In the MO-ASMOGS method, the novel spatial grid sampling strategy is the most important part and makes 
the method different from MO-ASMO and other multi-objective surrogate modeling-based optimization 
methods. With the ideas of introducing evolutionary elitism and adaptive sampling in the spatial grid sam-
pling strategy, the response surface surrogate of the distributed EM when applied to a large region can be 

Figure 8.  The histograms of relative root mean squared error (RMSE) change ΔE  of simulated gross primary production (GPP) over the entire region for 
different calibration cases. Blue means the RMSE of simulated GPP using the default parameters is reduced after calibration, while red means the opposite.
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constructed and adjusted more efficiently based on both parameter and spatial grid sampling. Therefore, 
the MO-ASMOGS method can significantly reduce the computation burden of the calibration process and 
ensure satisfactory optimization effectiveness. Note that the PLHS sampling method is used in our spatial 
grid sampling strategy to better maintain the spatial diversity during the adaptive or multi-stage sampling 
process. Ensuring the sample diversity of grid cells is important as it provides better chances to uniformly 
explore the unevaluated region. However, the PLHS method is only used as an auxiliary measure. In other 
words, the MO-ASMOGS method is not a simple application of using MO-ASMO on some sampled grid 
cells based on the PLHS method. To save huge computational time of calibrating the distributed EMs over a 
large region with many grid cells, our idea is introducing the grid sampling to the response surface surrogate 

modeling process. However, the time saving should not be at the cost of 
deteriorating the optimization effectiveness. How to select grid cells is 
thus critical to construct a reliable surrogate model and obtain satisfac-
tory optimization results. To prove the effect of our spatial grid sampling 
strategy, we also conducted another experiment for comparison over the 
grassland region. In this experiment, we simply applied the MO-ASMO 
method on sampled grid cells with sample size of 5%, 10% and 20% using 
the PLHS method. This setup is similar to that of the adaptive mode of us-
ing the MO-ASMOGS but does not consider the importance of each grid 
cell and evolutionary elitism for selecting the grid cells. The CDF curves 
of RMSE values of simulated LH and GPP (Figure S5) show that although 
the model performance using the optimized parameters obtained by the 
new calibration is better than that using the default parameters, it can-
not compare with the model performance based on calibration of all 

Figure 9.  Same as in Figure 8, but for latent heat flux (LH).

Grid levels

GPP LH

Grassland DBF Grassland DBF

all 61% 99% 64% 80%

5% 45% 99% 53% 77%

10% 59% 99% 64% 78%

20% 62% 99% 62% 79%

40% 60% 99% 63% 78%

Table 3 
The Fraction of the Grids on Which the Root Mean Squared Error (RMSE) 
Values are Reduced After Optimization for Each Target Variable Within 
Each Plant Function Type (PFT) Region
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grid cells. Further assessment results (not shown) also demonstrate the optimization effectiveness in the 
supplementary experiment is inferior to that of the all-grid case. When using the MO-ASMOGS method, 
even though the optimization results based on the initial sample of grid cells (5%) are not satisfactory, one 
additional sampling process can significantly improve the optimization results. Therefore, this comparison 
demonstrates that a direct application of simply combining the MO-ASMO method and the PLHS-based 
spatial grid sampling does not meet our requirement, thus highlighting the important impact of implement-
ing the novel spatial grid sampling strategy on surrogate modeling and further optimization.

In this study, we tested the proposed method for two PFTs over the CONUS. In both experiments, we started 
at the initial sampling level of 5% of the total grid cells. For grassland, the optimization results obtained at 
the initial sampling level are not good. However, the optimization results of the 5% case for DBF are nearly 
as good as those by calibrating all grids. The optimization results obtained at the initial sampling level are 
already good enough and further adding more grid cells does not improve the results much, meaning that 
there may still be room to enhance the computational efficiency by further reducing the initial sample 
size. Therefore, we conducted another calibration experiment for DBF. In this experiment, we began with 
a smaller initial sample size of 0.5% of the total grid cells (26 grid cells) and used more iterations of adap-
tive sampling with added sample size of 0.5% of the total grid cells (26 grid cells) in each iteration. The 
optimization based on the initial grid samples can produce significantly better model performance than 
that obtained with the default parameter set, indicating the default values are unreasonable. However, the 
optimization results based on the initial sample of grid cells are not comparable to those obtained using 
the parameters optimized by the MO-ASMO method on all grid cells (not shown). This illustrates that us-
ing the small initial sample size cannot generate a good approximation of the response surface. Figure S6 
shows that the optimization results of the 1% case (after one iteration of adaptive grid sampling) are still 

Figure 10.  The default parameter values and the approximate Pareto optimal parameter values obtained by the MO-
ASMO method with all grid cells and by the MO-ASMOGS method with representative grid cells selected at different 
grid sampling levels for grassland (top) and deciduous broadleaf forest (DBF) (bottom).
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not stable, the simulated LH is inferior to that obtained with the parameters optimized using all grid cells 
(Figure S7) while the performance of simulated GPP is much better. After two iterations of adaptive grid 
sampling, the method converges and the optimization results by calibrating 1.5% of the total grid cells are 
nearly the same as those by calibrating all grid cells, or even slightly better. To demonstrate the robustness 
of the optimization results of this case with small initial sample size, we repeated the experiment five times. 
The mean and standard deviation of the objective function values over five replicates are shown in Table S1. 
The mean objective function values of the 1.5%, 2% cases are very close to those of the all-grid case, and the 
standard deviations of the two cases are also very small. These results indicate the above conclusion about 
the optimization results of MO-ASMOGS is robust. For the DBF calibration case, the calibrated parameters 
are fewer than those of the grassland case. In addition, the distribution of soil texture types across the DBF 
region is less heterogenous than that across the grassland region (Figure S4), suggesting that fewer grid cells 
are needed to represent the whole region situation for the DBF. Therefore, we can know that our proposed 
method would give a better result for less complex calibration problems. We can also know that how to 
properly define the grid sampling size mainly depends on the calibration problem. Many studies (e.g., Wang 
et al., 2014) have discussed how the initial sample size of parameter points affects the optimization results 
of surrogate modeling-based optimization algorithms, and mentioned that initial sample size can be neither 
too small nor too large. Our proposed MO-ASMOGS method uses both parameter sampling and spatial grid 
sampling to construct and adaptively update the response surface surrogate. Hence, too few initial grid sam-
ples could lead to very poor approximation of the real model response over a large region, then the surrogate 
model is easy to get stuck at local optima and the convergence speed would be slow. In addition, because 
the computational time is not proportional to the number of grid cells modeled, the computational time of 
the calibration with a small size of initial grid samples but many adaptive sampling iterations may be even 
larger than the calibration with a relatively larger size of initial grid samples.

The robustness of the calibration results can be proved by our spatial grid sampling strategy and the ex-
periment design of this study. Since the grid cells are sorted and selected based on the sum of parameter 
importance rankings on each grid, evolutionary elitism is ensured. At each grid sampling level, the most 
influential spatial grids could always be selected out. In another word, if each grid cell has a different gE S  
value, the top n% of the sorted grid cells would be chosen at the n% grid sampling level, and there would be 
no spatial grid sampling variability. In practice, when there are many grid cells with the same gE S  , the grid 
cells belonging to the same set are further sampled using the PLHS approach to ensure the spatial diversity. 
By using the spatial grid sampling strategy, the grid cells chosen at lower levels are always contained in the 
sample set chosen at higher grid sampling levels. In the adaptive mode, we began with an initial spatial grid 
sampling level corresponding to 5% of all grid cells, then added additional grid cells to double the sample 
size. This process was repeated two times to get spatial grid sampling levels of 10% and 20%. By doing this, 
we can test the robustness of calibration results obtained at the 10% spatial grid sampling level. For example, 
there are 8,362 grids in the grassland region, the 10% spatial grid sampling level contains all grid cells be-
longing to the first three sets ( 1 3E F F  ) and another 40% of grid cells belonging to the fourth set ( 4E F  ). The 20% 
spatial grid sampling level contains all grid cells belonging to the first four sets ( 1 4E F F  ). It is already known 
that the calibration results barely changed after 60% of grid cells belonging to 4E F  were added, indicating the 
calibration results are barely affected by the grid sampling variability.

This study has shown the superiority of the optimized parameter values over the default parameter values 
in improving the simulation of GPP and LH simultaneously. However, the improvement of model perfor-
mance is not perfect. As shown in the results, use of the approximate Pareto optimal parameter sets did 
not reduce the model errors on all grid cells within a PFT region consistently, instead it even increased the 
model errors on some grid points, especially for the grassland. One possible reason is that the potential het-
erogeneity of the parameters within a PFT was ignored (Prihodko et al., 2008). It has been found that values 
of optimized model parameters can vary among different sites covered by the same PFT (Raoult et al., 2016; 
Rosolem et al., 2013; Wang et al., 2007). For example, there could be various soil types within one PFT re-
gion, and a uniform assignment of the multiplier to all the soil types which was adopted in this study may 
be inappropriate. The spatially constant multiplier smcmax could also make the porosity of some soil types 
get unrealistic in the grassland region, although this would not affect the effectiveness of our proposed 
method. Therefore, our future work includes using the pedo-transfer function and optimizing the transfer 
function coefficients to alter the spatial patterns of soil parameterization (Demirel et al., 2018; Mizukami 



Water Resources Research

SUN ET AL.

10.1029/2020WR028740

20 of 24

et al., 2017; Samaniego et al., 2017). Another possible reason is the intrinsic model structural errors. Simi-
larly, McNeall et al. (2016) found that the structural error in the climate model (FAMOUS) was responsible 
for the inconsistence between the regions of parameter space where FAMOUS best simulated the forest 
fraction in the Amazon forests and other forests. It was pointed out that the structural error was possibly 
caused by a missing process in the vegetation model. We will look into the Noah-MP model to quantify the 
impact of model structural error.

In our case study, we optimized 4 and 3 strongly influential parameters of the Noah-MP model for sim-
ulating GPP and LH over two PFT regions across CONUS. The case study is a follow-up study of Huo 
et al.  (2019), in which we have performed the parameter sensitivity analysis of the Noah-MP model for 
simulating GPP and LH. In addition, due to the lack of gridded ground observations with high quality, we 
did not test the MO-ASMOGS method for other model outputs. The FLUXNET MTE products used in this 
study also limit the calibration to monthly scale. However, we believe that application of the MO-ASMOGS 
method is not limited by the model temporal resolution and model outputs selected as the calibration sub-
ject. Instead, the proposed method is flexible and is applicable to other types of distributed EMs particularly 
for large-scale applications. In the future, we will explore multiple avenues to improve our approach. First, 
we will apply the proposed calibration method to other large complex EMs with different model outputs. 
We will also try to use various satellite remote sensing data with higher spatiotemporal resolution to con-
strain model parameters based on our method. Second, as many data are becoming available and accessible, 
they can provide more prior information for model parameter estimation. For example, some studies (Beck 
et al., 2020; Rakovec et al., 2016) have used transfer functions to link model parameters to landscape and 
even climate characteristics. As described in Section 2.2, the land cover, soil texture and climatic character-
istics have been considered when designing the spatial grid sampling strategy, however, some information 
is only used implicitly. We will explore how to fully use the prior information of soil texture, land cover and 
climate maps to improve our method. Third, we will test the scalability of the spatial grid sampling strategy, 
surrogate modeling and multi-objective optimization methods on other complex models with more adjust-
able parameters. For example, when the number of parameters to be optimized is large, the representative 
grid cell screening based on the sum of parameter importance rankings with regard to each target variable 
may be less effective. The Pareto rank-based multiple-criteria implementation of the sensitivity analysis 
approach proposed by Rosolem et al. (2012) could be adopted as an alternative way to identify the most 
influential parameters and to further choose representative grids. Fourth, we also anticipate that the meth-
od we develop could be adapted for including other advanced methods like the formal Bayesian approach 
(Huang et al., 2016; Sun et al., 2017) and the dimensionality reduction techniques in machine learning (Xi, 
Li, Wang, 2020; Xi, Yuan, et al., 2020), which can facilitate the data-model integration for complex EMs.

6.  Conclusions
In this study, we proposed a novel multi-objective calibration method called MO-ASMOGS, which is aimed 
to significantly reduce the computational costs associated with calibration of spatially distributed EMs, 
especially for large-scale applications. The MO-ASMOGS method introduces a novel spatial grid sampling 
strategy and combines it with an advanced surrogate modeling-based multi-objective optimization ap-
proach MO-ASMO. With the newly introduced spatial grid sampling strategy, which makes the novel con-
tribution of this study, the MO-ASMOGS differs from its predecessor and other surrogate modeling-based 
multi-objective optimization methods in the following aspects. (a) MO-ASMOGS is specifically designed for 
distributed EMs (e.g., LSMs) while other methods theoretically can be applied to any multi-objective opti-
mization problems. (b) The surrogate model in MO-ASMOGS is constructed and updated based not only on 
parameter sampling as in MO-ASMO and other methods, but also on spatial grid sampling. (c) To reduce 
the computational time as much as possible, the initial sample set of spatial grid cells is not generated 
uniformly like the initial parameter sampling does in MO-ASMO and other methods. Instead, evolutionary 
elitism is adopted in our spatial grid sampling strategy to ensure that more important grid cells are selected 
with higher priorities. If the user is still not satisfied with the optimization results, this strategy is flexible 
to allow the user to add additional spatial grid samples progressively in an adaptive manner. Therefore, 
through both running the model on representative grid cells and reducing the number of model runs, a 
considerable amount of computational cost can be saved.
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We applied the new calibration method to the Noah-MP model, which is the follow-up study of Huo 
et al. (2019), to explore the possibility of being able to improve the model performance of simulating two 
key variables of water and carbon cycles. To test the MO-ASMOGS method, we used both the adaptive 
mode (5%, 10%, 20%) and the one-shot mode (40%) to optimize the most important parameters to GPP and 
LH for two PFTs (grassland and DBF) across the CONUS. The computational time of these two modes for 
calibrating the model is near the same. The calibration results at different spatial grid sampling levels were 
compared with those obtained by calibration of all grid cells. As demonstrated by the results, parameter 
optimization can significantly improve the simulated GPP and LH compared to those simulated using the 
default parameter set. Use of the optimized parameters reduced the model errors on about 75% of the total 
grid cells for the simulated GPP and 70% of the total grid cells for the simulated LH. This indicates the inap-
propriate assignment of the default parameter values. The 10%, 20%, and 40% cases produced similar opti-
mization results to those of the all-grid case. In addition, even the 5% case produced results were compara-
ble to those of the all-grid case for the DBF system. An additional experiment was conducted to illustrate the 
benefits of using the spatial sampling strategy. For the DBF case, we began with a smaller initial sample size 
at 0.5% of the total grid cells with increment of 0.5% of the total grid cells in adaptive sampling iterations. 
The results showed that MO-ASMOGS used as little as 1.5% of the total grids to achieve comparable results 
with MO-ASMO using 100% of the grids, demonstrating that the method would give a better result for 
less complex calibration problems. Our proposed calibration method showed similar effectiveness but was 
much more efficient than the traditional calibration strategy based on evaluating cell-to-cell performance 
of the distributed EMs on all grid cells. Therefore, the computational burden associated with the calibration 
of large complex distributed EMs can be significantly reduced. The proposed MO-ASMOGS method can be 
applied to various distributed EMs with different model outputs.

Data Availability Statement
The NLDAS-2 forcing data set is available from the website https://disc.gsfc.nasa.gov/datasets?keywords=N-
LDAS, and the static geography data are publicly available from the Noah-MP official website https://ral.
ucar.edu/solutions/products/noah-multiparameterization-land-surface-model-noah-mp-lsm. The monthly 
GPP and LH data from the FLUXNET model tree ensemble (MTE) products are available at https://www.
bgc-jena.mpg.de/geodb/projects/Home.php. All the data generated in this work for the figures and tables 
are available through Mendeley Data (DOI: 10.17632/r7xhzvtr7y.1).
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