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A B S T R A C T   

Land surface models are important tools to represent and predict the spatiotemporal variability of evapotrans
piration, which is a key variable in terrestrial water, energy and carbon cycles. However, evapotranspiration 
estimates from land surface models may suffer from various uncertainties in land surface modeling. Therefore, 
assessing the performance of evapotranspiration simulation plays a vital role in understanding the deficiencies of 
land surface modeling. Most of the evaluation studies of modeled evapotranspiration relied on comparisons with 
flux site observations (point scale) and water budget-derived evapotranspiration (basin scale), which have 
certain drawbacks and limitations. Thus, the evaluation results may be misleading for understanding the per
formance of land surface models on representing the spatial variability of evapotranspiration. In this study, a 
thorough spatial evaluation of the new and reprocessed Global Land Data Assimilation System evapotranspira
tion products is performed across China based on three bias-insensitive spatial evaluation methods, including the 
empirical orthogonal function analysis, the connectivity analysis and the fractions skill score. These evapo
transpiration products were estimated from three land surface models, namely Noah, VIC and CLSM. The con
ventional evapotranspiration evaluation against eddy covariance measurements is also performed. The results 
show that all three products have consistent trends with the observed evapotranspiration series at both daily and 
monthly time scales. Noah and VIC have comparable performances in terms of different statistic metrics and 
outperform CLSM at both time scales. The spatial evaluation methods can provide additional valuable infor
mation to diagnose the model errors. VIC has the worst spatial performance during the warm months. Despite its 
inferior performance in late winter and early spring, Noah, overall, has the best spatial performance among the 
three. The gained insights of this study can help to improve the spatial performance of these models and further 
promote the system development.   

1. Introduction 

Terrestrial evapotranspiration (ET), which consists of evaporation 
from soil and canopy interception, vegetation transpiration and subli
mation of ice and snow, consumes two-thirds of total global land surface 
precipitation (Oki and Kanae, 2006). ET plays a critical role in the ex
change of water, energy and carbon among hydrosphere, atmosphere, 
pedosphere and biosphere (Fisher, 2014; Katul et al., 2012; Wang and 
Dickinson, 2012). It is also the key variable in linking the ecological and 
hydrological process (Fisher et al., 2017). Therefore, reliable and ac
curate ET estimates are vital for understanding the impact on local 
weather (Miralles et al., 2014), monitoring extreme event droughts 

(Anderson et al., 2013; Vicente-Serrano et al., 2018), diagnosing climate 
variability and change (Deb et al., 2019; Mao et al., 2015; Sheffield 
et al., 2012), improving water resource management (Anderson et al., 
2011, 2012) and so on. 

Currently, there have been various methods developed to estimate 
ET at point or field (from regional to global) scales. These methods can 
be grouped into five main categories: (1) the water balance method (Liu 
et al., 2016; Zeng et al., 2014), (2) upscaling of eddy covariance (EC) 
flux measurements at tower sites (Jung et al., 2011; Li et al., 2018; Xu 
et al., 2018), (3) machine learning-based ET estimation (Adnan et al., 
2020; Alizamir et al., 2020; Granata, 2019; Granata et al., 2020), (4) 
satellite remote sensing (RS)-based models (Martens et al., 2017; Mu 
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et al., 2007), (5) land surface model (LSM) or hydrologic model simu
lation (Rodell et al., 2004; Srivastava et al., 2020; Sun et al., 2017; Xia 
et al., 2012; Zhang et al., 2014). There is no consensus on which method 
is best, as each category has its own advantages and disadvantages. 
Actually, there are considerable overlaps among the categories. For 
example, machine learning methods could serve as one kind of upscaling 
methods (Jung et al., 2011), while the machine learning methods in the 
third category are usually served as data-driven models to estimate ET 
with input forcing data. Satellite RS-based ET estimates rely on empir
ical or physical equations, which use the related satellite observations to 
calculate ET. The Penman–Monteith (PM) equation (Monteith, 1965) is 
a widely used satellite RS-based physical model (Mu et al., 2007, 2011), 
and it is also embedded in many LSMs and hydrologic models to 
compute ET (Kumar et al., 2017). Moreover, these empirical or physical 
equations can be also used alone with climatic forcing data (Deb et al., 
2019; Zhang et al., 2019). 

Among the above-mentioned methods, LSMs simulated ET has been 
receiving increasing attention due to its unique merits (Sun et al., 2017). 
LSMs can produce long-term gridded ET datasets with relatively higher 
spatial–temporal resolution at regional to global scales. In addition to 
ET, LSMs can be used to provide a consistent set of products of all fluxes 
and state variables under physical constraints (Zhang et al., 2014). LSMs 
also have the flexibility to use various in-situ observations and satellite 
RS data. Some intercomparison studies have demonstrated that the 
offline land surface modeling when forced with high-quality observa
tions, can provide better ET estimates with smaller uncertainties 
compared to RS-based ET products and other kinds of ET products (Long 
et al., 2014; Wang et al., 2015; Xu et al., 2019). It should be noted that 
significant progress has been made in the development of regional and 
global land data assimilation systems (LDASs) based on LSMs. The 
LDASs aim at producing quality-controlled, long-term, spatially and 
temporally consistent fields of land surface states and fluxes by ingesting 
the best available observations (Rodell et al., 2004). 

Despite the continuing efforts to improve the accuracy of LSM sim
ulations, the errors of LSM-based ET estimates still cannot be neglected. 
Therefore, comprehensive evaluations are essential for better under
standing the uncertainties, expanding their applications and motivating 
the model development. There have been numerous studies (Bai et al., 
2018; Khan et al., 2018; Long et al., 2014; Mueller et al., 2011; Peters- 
Lidard et al., 2011; Xia et al., 2015; Xu et al., 2019; Zhang et al., 
2020) evaluating LSM-based ET estimates, especially the ET products 
from the North American LDAS (NLDAS; Mitchell et al., 2004; Xia et al., 
2012) and the Global LDAS (GLDAS; Rodell et al., 2004) projects. These 
evaluations are typically conducted at point scale using ET from EC 
measurements and at basin scale using the water balance method 
derived ET. However, EC systems are susceptible to the energy imbal
ance problem, which could cause errors in the measurements (Wilson 
et al., 2002; Xu et al., 2017). In addition, the EC sites are usually scarce, 
and the observed data is generally only available for a short time period 
with quite a few missing records. Due to the distinct spatial heteroge
neity of ET, the applicability of ET site observations is very limited for 
large-scale evaluations. The water balance method is regarded as a 
reliable method to provide accurate long-term ET estimates at basin 
scale, however, it cannot represent the spatial variability of ET within 
the basin and its applicability is limited for small basins and relatively 
short time scales (e.g., daily). In addition, uncertainty in water balance 
method derived ET can even be higher than LSM-based ET (Long et al., 
2014; Wang et al., 2015). 

In addition to the limitations of the conventional ET evaluation 
methods mentioned above, the distributed, process-based LSMs hardly 
increase our process understanding if only evaluated at point scale or 
basin scale. Moreover, the evaluation results may be misleading for 
understanding the spatial predictability of LSM estimated ET. In fact, the 
scientific community has been advocating the spatial pattern evaluation 
of distributed models using spatial observation data for almost two de
cades (Beven and Feyen, 2002; Grayson et al., 2002; Refsgaard, 2001; 

Wealands et al., 2005). Recently, some innovative bias-insensitive 
spatial performance metrics have been applied to facilitate meaningful 
comparisons of spatial patterns of ET (Mendiguren et al., 2017; Koch 
et al., 2017) and other land surface variables (Fang et al., 2015; Koch 
et al., 2015, 2016), which could help to better assess and understand the 
spatial variability of land surface processes. 

China stretches across a vast area covering a variety of climate re
gions and ecosystems and is facing many water issues. The LSMs in 
GLDAS can produce long-term, global ET products with relatively high 
resolution (up to 0.25◦ and 3 h) in near-real time. Along with ET, the 
global land surface fields provided by GLDAS could serve as important 
reference to support weather and climate prediction, water resources 
management, and water cycle studies in China. Recently, the new and 
reprocessed GLDAS Version 2 (GLDAS-2) data products have been 
released. Even though the old version GLDAS ET products have been 
evaluated over China in some previous studies (Bai et al., 2018; Ma 
et al., 2019; Wang et al., 2016), the conventional evaluation methods 
conducted at point scale or basin scale cannot reflect the large spatial 
heterogeneity of ET over China, thus reducing the generalizability of the 
conclusions. In another word, the traditional evaluation paradigm can 
no longer keep up with the continues progress of using advanced LSMs 
to develop large-scale ET estimates. To our best knowledge, there has 
been no study on spatial evaluation of LSM modeled ET over China yet. 
Therefore, the core novelty of this study is that, for the first time, a 
comprehensive spatial evaluation of the newly released GLDAS-2 ET 
products is performed over China. The spatial evaluation is based on 
three innovative bias-insensitive spatial performance metrics including 
the empirical orthogonal function (EOF) analysis, the connectivity 
analysis (Renard and Allard, 2013) and the fractions skill score (FSS; 
Roberts and Lean, 2008). In addition, this study also uses the EC mea
surements at 8 flux sites to evaluate the ET products. The main aims of 
this study are 1) to assess the performance of the LSMs in the upgraded 
GLDAS for estimating ET and provide reference for further development 
of model parameterization schemes and calibration methods; 2) to 
investigate the unique advantages of the spatial performance metrics 
which can enrich the ET evaluation approaches of the land surface and 
hydrological modeling communities. 

The following section describes the GLDAS-2 ET products, the EC- 
based ET observations and ET data used as reference for spatial evalu
ation (section 2). Section 3 gives a detailed introduction of the evalua
tion methods. Section 4 presents comprehensive evaluations of the ET 
products from three LSMs in GLDAS. Section 5 presents detailed dis
cussion of potential causes of the model deficiencies diagnosed by the 
spatial evaluations, followed by conclusions in Section 6. 

2. Data 

2.1. GLDAS ET products 

GLDAS was developed jointly by the National Aeronautics and Space 
Administration (NASA) Goddard Space Flight Center (GSFC) and the 
National Oceanic and Atmospheric Administration (NOAA) National 
Centers for Environmental Prediction (NCEP). The goal of GLDAS is to 
generate optimal fields of land surface states and fluxes, by ingesting 
satellite- and ground-based observational data products, using advanced 
land surface modeling and data assimilation techniques (Rodell et al., 
2004). GLDAS drives multiple, offline LSMs, integrates a huge quantity 
of observation-based data, and executes globally at high resolutions 
(2.5◦ to 1 km), enabled by the Land Information System (LIS; Kumar 
et al., 2006). Currently, GLDAS includes four LSMs: Noah (Chen et al., 
1996; Koren et al., 1999), the Catchment LSM (CLSM; Koster et al., 
2000), the Community Land Model (CLM; Dai et al., 2003), and the 
Variable Infiltration Capacity (VIC; Liang et al., 1994) model. 

GLDAS-2 has three components: GLDAS-2.0, GLDAS-2.1, and 
GLDAS-2.2. GLDAS-2.0 is forced entirely with the Princeton meteoro
logical forcing input data and provides a temporally consistent series 
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from 1948 through 2014. GLDAS-2.1 is forced with a combination of 
model and observation data from 2000 to present. GLDAS-2.2 products 
use data assimilation, whereas the GLDAS-2.0 and GLDAS-2.1 products 
have no data assimilation. The latest GLDAS-2 has made major adjust
ments since November 2019. First, with the upgraded LSMs and updated 
forcing data sets, the GLDAS-2.1 main production stream serves as a 
replacement for the old GLDAS version 1 (GLDAS-1) products, which 
were decommissioned in June 2020. Second, the GLDAS-2.0 Noah 
products were reprocessed with updated Princeton Forcing V2.2 Data 
and an upgraded version of Noah model (V3.6) in November and 
December 2019. In September 2020, GLDAS-2.0 VIC and CLSM products 
were publicly released. Third, GLDAS-2.2, which explores the data 
assimilation capabilities in the LIS, is new to the data archive. The 
GLDAS-2.2 products from CLSM-F2.5 with the Gravity Recovery and 
Climate Experiment (GRACE) data assimilation were released in 
February 2020. 

The main objective of GLDAS-2.1 is to provide up-to-date global land 
surface model outputs, while preserving consistency of the long-term 
climatology (i.e., GLDAS-2.0) to the extent possible. Therefore, the 
GLDAS-2.1 ET products from Noah-3.6, CLSM-F2.5 and VIC-4.1.2 are 
evaluated in this study. All the GLDAS-2.1 products extend from 2000 to 
present with 3-hourly temporal resolution. The ET product from Noah 
has a spatial resolution of 0.25◦ × 0.25◦, while the other two have 
spatial resolutions of 1◦ × 1◦. 

2.2. Eddy covariance measurements of ET 

Nowadays, EC measurements of water vapor exchange and carbon 
dioxide are being made routinely on each continent. Since EC mea
surements can provide relatively accurate estimation of ET at a given 
site, the EC-based ET measurements of 8 flux measurement sites from 
ChinaFLUX are used for evaluation. ChinaFLUX is an observation and 
research network that applies EC and chamber methods to measure the 
exchanges of carbon dioxide, water vapor and energy between terres
trial ecosystem and atmosphere in China (Yu et al., 2006). ChinaFLUX 
has become an important part of the global network of flux measure
ment sites called FLUXNET (Baldocchi et al., 2001) and the main part of 
the regional network AsiaFlux. 

Currently, the ChinaFLUX network includes 79 sites consisting of 18 
cropland sites, 19 grassland sites, 23 forest sites, 15 wetland sites, 2 
desert sites, 1 urban site and 1 waterbody site, which encompass a large 
range of latitudes, altitudes, climates and ecosystem types. Among the 
79 sites, the flux measurements of the 8 sites used in this study are 

publicly available from http://www.chinaflux.org/. The spatial distri
bution of the 8 stations is shown in Fig. 1, while Table 1 lists their 
detailed information. The provided daily latent heat flux data at the 8 
sites are used to derive the actual ET in units of water depth following 
Mu et al. (2011). In this study, we perform the grid-site comparison, 
meaning that the ET values of the GLDAS grid and the flux site that 
locates in that grid are directly compared at the same time scale (daily 
and monthly). 

2.3. ET reference data across China 

To perform a qualified spatial pattern evaluation of modeled ET, a 
reliable ET reference dataset is a prerequisite. Recently, Ma et al. (2019) 
developed a long-term (1982–2017) monthly terrestrial ET product with 
spatial resolution of 0.1◦ across China. This dataset is derived from a 
recently proposed nonlinear complementary relationship (CR) formu
lation (Szilagyi et al., 2017). The CR method, as first introduced by 
Bouchet (1963), emphasizes the feedback mechanism between actual ET 
and potential ET under the same environmental conditions. The CR 
method has been regarded as an attractive tool for estimating actual ET 
at large scale due to its minimal data requirement of only meteorological 
input. Interested readers can refer to Ma et al. (2019) for detailed in
formation of this dataset, which is available from the National Tibetan 
Plateau Data Center (DOI: https://doi.org//10.11888/AtmosPhys. 
tpe.249493.file). 

Ma et al. (2019) conducted independent evaluation based on EC 
measurements and water balance method estimated ET, the results 
indicated that the CR-based ET product was very reliable. Further 
evaluations suggested that it showed improved accuracy over seven 
other mainstream ET products. Therefore, this CR-based ET product can 
serve as a suitable reference for our spatial evaluation. The GLDAS-2.1 
ET products are resampled from its original resolutions to 0.1◦

through bilinear interpolation to provide consistency with the CR-based 
ET product. 

3. Methodology 

3.1. Common statistic metrics 

Three statistic metrics are used to conduct the grid-site evaluations of 
GLDAS ET products against EC measured ET in this study. The metrics 
include relative error (RE), bias adjusted root-mean square error 
(aRMSE) and Kling-Gupta efficiency (KGE; Gupta et al., 2009). The 

Fig. 1. The locations of the eight flux measurement sites.  
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formulas are given by: 

RE =

∑n
i=1(Si − Oi)
∑n

i=1Oi
× 100% (1)  

aRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
[(Si − μs) − (Oi − μo)]

2

√

(2)  

KGE = 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+ (β - 1)2

+ (γ - 1)2
√

(3)  

β =
μs

μo  

γ =
σs

σo 

where n is the total number of events; Oi and Si are the ith pairs of EC- 
measured ET and GLDAS ET; μo and μs are their corresponding mean 
values. In the KGE equation, r represents the linear correlation coeffi
cient, β and γ measure the bias and relative variability in the simulated 
and observed values. σs and σo are the standard deviation of simulated 
and observed variables, respectively. 

Bias measures the average tendency of model simulations to over or 
under estimate the observations, and a value of 0 is perfect. The aRMSE 
is adopted to remove the systematic errors and show only the random 
errors. The KGE is designed to measure the Euclidian distance from the 
ideal point in the three-dimensional criteria space derived from the 
decomposition of Nash–Sutcliffe Efficiency (NSE). The optimal value of 
KGE is 1. 

3.2. Spatial evaluation methods 

The core content of this study is to perform true spatial evaluations of 
the GLDAS ET products based on three bias-insensitive spatial perfor
mance metrics, namely EOF analysis, FSS and connectivity analysis. 
These metrics or methods are not novel and were originally developed 
for other purposes. Not until recently were they introduced to facilitate 
meaningful spatial validation of land surface variables in the hydro
logical and land surface modeling community (Fang et al., 2015; Koch 
et al., 2015, 2016, 2017). To perform spatial evaluation, all the GLDAS- 
2.1 ET products are interpolated to 0.1◦, the same resolution as the CR- 
based ET product. The detailed evaluation results are presented in 
Section 4, and some methodology limitations are discussed in Section 5.  

(1) Empirical orthogonal function (EOF) analysis 

The method of EOF, also known as principal component analysis 
(PCA) in statistics, is a decomposition of a dataset in terms of orthogonal 
basis functions. It is often used in atmosphere, climate, ocean, and hy
drology science to study possible spatial modes of variability and how 
they change with time. The main feature of the EOF analysis is that it 
seeks structures that explain the maximum amount of variance in a two- 
dimensional dataset. Typically, one dimension in the dataset is the space 
dimension, and the other is the time dimension. The EOF decomposes a 

large spatiotemporal dataset into a set of mathematically orthogonal 
modes (structures), which are usually called EOFs and a set of time series 
(loadings) that are related one-to-one to the EOFs and quantify the 
amplitude of each EOF over the period of record. The first EOF explains 
the largest amount of the variance. More detailed description of the EOF 
method can be referred to Björnsson and Venegas (1997). 

While the EOF analysis is typically employed for analyzing the 
spatiotemporal variability of a single filed, Koch et al. (2015) proposed 
the novel concept of performing a joint EOF analysis on a combined data 
matrix that contains both reference and modeled data. By doing so, not 
only do the obtained EOF maps represent the spatiotemporal variability 
of both datasets, but also the difference between the loadings at each 
time step can be used as an indicator of spatial similarity (Koch et al., 
2016). To ensure a reliable pattern similarity score, the loading devia
tion must be weighted according to the variance contribution of the 
corresponding EOF. The EOF-based similarity score between a reference 
dataset and a modeled map at time t can be formulated as: 

St
EOF =

∑n

i=1
wi|(loads

i − loado
i )| (4) 

where wi is the variance contribution of the ith EOF, n is the total 
number of orthogonal modes (EOFs), loads

i and loado
i are the corre

sponding loadings of simulated and observed maps, respectively. In this 
study, the monthly mean is removed from each ET map prior to the EOF 
analysis; thus, the method is based on the spatial anomalies which 
makes it bias insensitive.  

(2) Fractions skill score 

The FSS is a scale-selective method developed by Roberts and Lean 
(2008) to measure forecast skill of precipitation forecasts against spatial 
scale for a given threshold. It uses the concept of nearest neighbors as the 
means of selecting the scales of interest. This approach calculates the 
fractional coverage of binary events that have a value of 1 (have 
exceeded the threshold) in a given spatial window. Generally, percentile 
thresholds are used for conversion into a binary field to remove the 
impact of bias when focusing on the spatial accuracy. The main steps to 
obtain FSS are as follows: 1) convert the reference and the modeled 
spatial patterns into binary fields for a certain threshold; 2) for each grid 
in every binary field obtained in the last step, compute the fractions of 
grids with value of 1 within a given square window of length n; 3) 
calculate the mean square error (MSE) between the referenced and 
modeled fraction fields; 4) obtain the final FSS by normalizing the MSE 
from last step with the largest possible MSE that can be obtained from 
the modeled and referenced fractions. For a certain threshold, FSS at 
spatial scale of n is expressed as: 

FSS(n) = 1 −
1
N

∑N
i=1(O(n)i − S(n)i)

2

1
N

( ∑N
i=1O2

(n)i +
∑N

i=1S2
(n)i

) (5) 

where O(n) and S(n) are the resultant fields of referenced fractions and 
modeled fractions, respectively. N is the total number of valid grids in 
the domain. The FSS ranges from 0 (complete mismatch) to 1 (perfect 
match). As the size of the square windows used to compute the fractions 

Table 1 
The information of the eight flux measurement sites used in this study.  

Station Location Ecosystem type Climate type Elevation (m) Data period 

Changbaishan (CBS) 42.4◦N, 128.1◦E Forest Temperate continental monsoon climate 738 2003–2010 
Qianyanzhou (QYZ) 26.74◦N, 115.05◦E Forest Subtropical monsoon climate 102 2003–2010 
Dinghushan(DHS) 23.17◦N, 112.57◦E Forest Monsoon humid climate of torrid zone of south Asia 300 2003–2010 
Xishuangbanna(XSBN) 21.95◦N, 101.2◦E Forest Monsoon humid climate of torrid zone of south Asia 750 2003–2010 
Haibei (HB) 37.62◦N, 101.31◦E Grassland Highland continental climate 3250 2003–2010 
Inner Mongolia (NMG) 44.5◦N, 117.17◦E Grassland Temperate semi-arid continental climate 1189 2004–2010 
Dangxiong (DX) 30.85◦N, 91.08◦E Grassland Plateau monsoon climate 4333 2004–2010 
Yucheng (YC) 36.95◦N, 116.6◦E Cropland Temperate semi-humid and monsoon climate 28 2003–2010  
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becomes larger, the FSS will reaches an asymptote that depends on the 
ratio between the modeled and observed frequencies of the event. The 
FSS is bias insensitive due to the percentile thresholds used. Further 
information can be referred to Roberts and Lean (2008).  

(3) Connectivity analysis 

Connectivity analysis is usually used in hydrogeology to quantify 
aquifer heterogeneity, where the connectivity structure of the hetero
geneity is understood as a property that strongly influences groundwater 
flow and solute transport (Renard and Allard, 2013). The studies of 
Western et al. 2001 and Grayson et al. (2002) were the early ones that 
applied the connectivity analysis to land surface variables. Connectivity 
can provide a reliable measure of the general structure and heteroge
neity of spatial patterns, which can be used to evaluate the spatial per
formance (Koch et al., 2016; 2017). To apply this methodology to a field 
of continuous variable, Renard and Allard (2013) suggested the 
following steps: 1) decompose the field into a series of binary maps by 
introducing a set of increasing thresholds; 2) perform a cluster analysis 

on each of the binary map to identify connected clusters; 3) use the 
percolation theory to describe the transition from many disconnected 
clusters to a large connected cluster. Hovadik and Larue (2007) pro
posed to use the probability of connection as a suitable metric to 
quantify how percolated clusters are. The metric Γ(t), which is 
computed for the threshold t, is formulated as: 

Γ(t) =
1
n2

t

∑N(Xt)

i=1
n2

i (6) 

where nt is the total number of grids in the binary map Xt, N(Xt)

represents the total number of distinct clusters, and ni is the number of 
grids in the ith cluster. Like FSS, using percentiles makes this method 
bias insensitive, and facilitates separate studies of clusters of a binary 
map above or below a threshold. In this study, we use a series of 
thresholds which move along all percentiles (1%–100%) of the ET range. 
Therefore, the RMSE between the metrics of the reference field and 
modeled field for all thresholds can be computed to indicate the spatial 
similarity. 

Fig. 2. Comparison of the daily ET estimates from the three LSMs with the ET measurements at the eight flux sites (only demonstrated over 2004–2006).  
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RMSECON =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑100

t=1
(Γ(t)o − Γ(t)s)

2

100

√
√
√
√
√

(7) 

where Γ(t)o and Γ(t)s are the connectivity metrics of the reference 
and modeled field, respectively. Interested readers can refer to Renard 
and Allard (2013) and Koch et al. (2016) for further details. 

4. Results 

4.1. Grid-site evaluation 

In this study, the three GLDAS-2.1 ET products are first validated 
against the EC measured ET of 8 flux sites on both daily and monthly 
time scales. In general, all three GLDAS products have the consistent 
trends with the observed ET series at all sites (Figs. 2 and 3). Moreover, 
the ET product from Noah performs well in capturing the magnitude at 
the QYZ and DX sites, and so does the VIC modeled ET at the CBS and 
DHS sites. However, a closer inspection shows that there are overall 

overestimations or underestimations for some GLDAS ET products at 
different sites, which are clearly demonstrated in Fig. 4. Specifically, 
Noah and CLSM modeled ET products show systematic positive biases at 
the four sites of the forest ecosystem, and CLSM is much worse, espe
cially at the XSBN site. On the contrast, VIC shows systematic negative 
biases at two of the three grassland sites (HB and DX), the QYZ forest site 
as well as the YC cropland site. 

To further quantitatively evaluate the performances of the three 
GLDAS ET products, we calculate three statistic metrics on both daily 
and monthly time scales (Tables 2 and 3). It can be found that no single 
LSM consistently outperforms the others at all sites. Overall, Noah and 
VIC have comparable performances while the former performs more 
stable, and they all outperform CLSM. Noah modeled ET product has the 
highest KGE values at more than half of the flux sites, while VIC modeled 
ET product has the superiority in producing lower aRMSE at more sites. 
Noah modeled ET product has the leading performance for at least one 
site of each ecosystem type. The highest KGE values for each ecosystem 
type are all higher than 0.6 and 0.7 (daily and monthly, respectively). 
VIC performs better at the sites of the forest ecosystem than those of 

Fig. 3. Same as in Fig. 2, but for monthly ET over 2003–2010.  
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other ecosystem types, while CLSM performs better at the grassland sites 
and the cropland site. It’s noted that the metrics of aRMSE and KGE 
improve a lot when calculated on monthly time scale for nearly all LSMs 
and sites, indicating that the LSMs modeled ET products are more reli
able on monthly time scale. 

4.2. Spatial evaluation of ET patterns 

Fig. 5 depicts the spatial distributions of multi-year (2000–2015) 
mean annual ET of the CR-based reference dataset and the three GLDAS 

ET products. In general, all of them present a consistent ET pattern with 
the increasing amount gradient from northwest to southeast. However, 
there are large differences in the mean annual values among the three 
GLDAS products and the reference, especially in the southeast China, the 
northwestern Tibetan Plateau and the Yangtze river basin. Among the 
three GLDAS LSMs, CLSM generally produces the highest ET values, 
followed by Noah and VIC. Fig. 6 further presents the seasonal mean ET 
patterns of the reference and the three LSMs during 2000–2015. In 
general, the patterns of spring, summer and autumn for the four ET 
products can reflect their corresponding mean annual ET patterns shown 

Fig. 4. Scatter plots showing the comparisons of the monthly ET estimates from the three LSMs with the ET measurements at the eight flux sites over 2003–2010.  

Table 2 
Statistical diagnostics of the daily ET estimates from the three LSMs at eight flux sites. The values shown in bold denote the best performance among the three LSMs for 
each site.  

Station RE (%) aRMSE (mm/d) KGE 

Noah VIC CLSM Noah VIC CLSM Noah VIC CLSM 

CBS  49.6 ¡0.6  55.5  0.79  0.68  0.93  0.36  0.75  0.31 
QYZ  17.3 − 38.3  47.8  0.85  0.94  1.20  0.74  0.46  0.35 
DHS  20.9 − 22.5  67.9  0.93  0.87  1.15  0.57  0.55  0.07 
XSBN  61.4 19.5  93.7  1.18  0.95  1.56  0.04  0.34  − 0.51 
HB  − 54.0 − 58.4  ¡47.8  0.96  0.95  1.02  0.29  0.26  0.20 
NMG  − 24.3 − 24.6  ¡20.6  1.04  1.17  0.94  0.40  0.39  0.44 
DX  ¡18.2 − 49.8  22.8  1.03  1.27  1.01  0.64  0.18  0.50 
YC  − 9.5 − 57.7  ¡7.2  1.22  1.35  1.30  0.63  0.10  0.52  

Table 3 
Same as Table 2, but for monthly ET.  

Station RE (%) aRMSE (mm/d) KGE 

Noah VIC CLSM Noah VIC CLSM Noah VIC CLSM 

CBS  49.6 ¡0.7  55.5  0.42  0.37  0.46  0.42  0.78  0.39 
QYZ  17.3 − 38.3  47.7  0.47  0.49  0.80  0.79  0.55  0.34 
DHS  20.9 − 22.6  67.8  0.51  0.41  0.68  0.53  0.70  − 0.02 
XSBN  61.2 19.4  93.7  0.72  0.46  0.78  0.06  0.46  − 0.24 
HB  − 54.1 − 58.5  ¡47.8  0.63  0.63  0.78  0.32  0.30  0.21 
NMG  − 24.6 − 25.0  ¡20.9  0.77  0.78  0.68  0.52  0.56  0.56 
DX  ¡18.3 − 49.9  23.0  0.66  0.99  0.74  0.72  0.24  0.56 
YC  − 9.6 − 57.8  ¡7.2  0.89  0.96  0.92  0.71  0.21  0.62  
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Fig. 5. The spatial distributions of multi-year (2000–2015) mean annual ET of the CR-based reference dataset and the three GLDAS ET products.  

Fig. 6. The multi-year (2000–2015) seasonal mean ET patterns of the reference dataset, Noah, VIC and CLSM (from top to bottom) for winter, spring, summer and 
autumn (from left to right). 
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in Fig. 5. The winter ET patterns have the least apparent spatial het
erogeneity due to the minimum precipitation and energy in this season. 
Among the three LSMs, VIC modeled ET patterns have the smallest 
spatial variability, especially for the winter season. In addition, CLSM 
produces the highest ET values across the seasons over vast parts of the 
northern China, whereas VIC modeled ET products have the lowest ET 
values. 

From the above results we know that the three LSMs show different 
error characteristics. Nevertheless, different products may exhibit 
similar spatial patterns given their individual biases (Beck et al., 2017; 
Sun et al., 2016). Further evaluations are based on bias-insensitive 
metrics as the point-to-point evaluation may not be reliable.  

a. EOF analysis 

First, we conduct the joint EOF analyses for the CR-based reference 
dataset and each of the GLDAS ET product during the period of 
2000–2015. Therefore, each EOF analysis is computed based on the 
decomposition of a concatenated spatiotemporal matrix of 384 monthly 
ET maps with spatial mean removed. Because of the mean removal, the 
EOF analysis is a bias-insensitive approach and not affected by the model 
bias. Each row in Fig. 7 shows the first two EOFs of the EOF analysis for 
Noah, VIC and CLSM, respectively. The first EOFs of Noah and CLSM can 
explain about 75% of the total variance, while the first EOF of VIC can 
explain about 65% of the variance. Moreover, the first two EOFs for all 
the GLDAS ET products can contribute more than 80% of the total 
variance. Generally, the values of the EOF maps do not represent the real 
amplitude of the original field. Instead, the first few EOF modes with 
large accumulated variance contribution are usually used to analyze the 
spatial characteristics of the original field, as well as covering the major 
information of the original field. The first EOF modes of the three GLDAS 

ET products are very similar and can depict the predominant pattern of 
the general increasing trend from northwest China to southeast China. In 
addition, the second EOF modes for the three LSMs also show very 
similar patterns, but the spatial variability is much more complex. It is 
notable that multiplying an EOF map with its corresponding loading can 
reflect the ET anomaly fields. Therefore, for all three GLDAS LSMs, the 
areas with positive values in EOF1 have negative deviations from the 
spatial mean, and vice versa, as the loadings corresponding to the first 
EOFs are negative all the time (Fig. 8). This result is consistent with 
Fig. 5, in which the lowest ET is observed in northwest China. Moreover, 
the first loadings also demonstrate an obvious characteristic of seasonal 
variation with peak values in summer and values close to zero in winter. 
This translates to large spatial variability in summer and small spatial 
variability in winter. The loadings for the second EOFs also show a 
strong seasonal signal, but the values switch from positive in winter to 
negative in summer, indicating that the pattern of the second EOF modes 
are inverted with seasons. 

Fig. 8 also reveals that the loadings of the reference and three GLDAS 
ET products have consistent trends for both the first and the second EOF 
modes. The loadings of Noah and CLSM for the first EOF are lower than 
those of the reference, and the situation is opposite for VIC. This results 
in small spatial variability of VIC modeled ET compared to the reference 
dataset and the other two LSMs modeled ET products. The loadings of 
the three GLDAS ET products for the second EOF all show negative 
biases compared to those of the reference, and VIC has the largest biases 
among them. Fig. 9 further presents the EOF-based similarity scores for 
the three GLDAS ET products based on Eq. (4). Low values of the EOF- 
based metric are preferred, indicating the spatial performances of the 
modeled ET and the reference are very similar. All the time series of 
EOF-based scores show obvious seasonal signals with peaks in July and 
August and valleys in January. The small spatial variability in winter 

Fig. 7. The first (left column) and the second (right column) EOF modes of the joint EOF analyses for Noah, VIC and CLSM (from top to bottom).  

R. Sun et al.                                                                                                                                                                                                                                      



Journal of Hydrology 595 (2021) 126021

10

makes it easier for the LSMs to reproduce the referenced spatial pattern. 
Fig. 9 reveals that the spatial performances of Noah and VIC are close in 
winter, which are also very similar to the reference. However, VIC 
provides a significantly worse spatial performance than Noah in sum
mer. ET patterns modeled by CLSM are slightly worse than by Noah and 
VIC in winter, while they are better than those modeled by VIC in the hot 
months. Overall, Noah modeled ET has the best spatial performance in 
terms of the EOF-based metric among the three GLDAS ET products.  

b. FSS 

FSS is a scale-dependent verification method which has been widely 
used to evaluate precipitation forecasts. Recently, Koch et al. (2017) first 
applied this method to hydrological variables and stressed that it could 
clearly provide more information to a spatial pattern comparison. In our 
study, if a threshold percentile is below 50 the method will use the grids 
that fall below the value (low phase). On the contrary, it will focus on 

Fig. 8. Comparisons of the loadings of the reference dataset and those of the three LSMs modeled ET for the first (left column) and the second (right column) 
EOF modes. 
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grids exceeding the threshold (high phase) when it is above 50. Fig. 10 
shows the FSS curves for the multi-year (2000–2015) mean ET patterns 
of July using different percentile thresholds. At all thresholds the FSS 
values increase gradually with the scale used to compute the fractions 
getting larger. This is the essential feature of the method because the 
numbers of grids with a value of 1 in the binary maps for the reference 
and model output are more likely to be close within a big square win
dow. However, the increasing rate differs a lot among the thresholds. 

The differences in the spatial performance of the LSMs are clearly 
demonstrated by FSS. VIC and CLSM have very similar skill in capturing 
the patterns of low ET values. Noah performs much worse than VIC and 
CLSM for the 5% and 10% thresholds, but it achieves great improvement 
for the 20th percentile and has comparable spatial performance with the 
other two models. On the contrary, Noah has the best skill in repro
ducing the localized features in the regions of high ET values, and it 
greatly outperforms VIC for modeling the highest 5% and 10% ET 

Fig. 9. Comparison of the EOF-based similarity scores for the LSMs modeled ET over 2000–2015.  

Fig. 10. Graphs of FSS against neighborhood length for the multi-year (2000–2015) mean ET patterns of July of the three LSMs using different percentile thresholds.  
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patterns. The reason why all the LSMs show a certain degree of 
improvement as the percentile moves toward the middle is that more 
localized ET features are more difficult to capture accurately. 

Fig. 11 further depicts the FSS time series of the multi-year 
(2000–2015) average monthly ET patterns for the three GLDAS LSMs 
using different percentile thresholds. FSS is calculated at the predefined 
critical scale for each threshold following the suggestion of Koch et al. 
(2017). We use the critical scales of 65, 35 and 15 grids for calculating 
FSS at 5th, 20th and 40th percentiles (both top and bottom percentiles), 
respectively. The selection of critical scales is highly subjective, but we 
found that the results are basically the same with different selections of 
critical scales. For the low phase, FSSs of Noah and CLSM show distinct 
seasonality with lower values in cold months and higher values in warm 
months. VIC shows superiority in predicting the patterns of low ET in 
cold months. Noah produced FSS is the worst for the bottom 5th 
percentile, while it surpasses VIC in warm months for higher percentiles. 
For the high phase, VIC performs badly in capturing the localized pat
terns of the highest 5% ET in summer but performs well enough in 
wintertime. Noah and CLSM produced FSSs for the top 5% percentile 
feature large fluctuations but no obvious seasonality. Oppositely, Noah 
and CLSM provide good and consistent spatial performance and 
outperform VIC for the top 20th and 40th percentiles.  

c. Connectivity analysis 

The connectivity analysis is then applied to further assess and eval
uate the spatial performance of the three LSMs. Fig. 12 gives an example 
of the cluster analysis of the reference and the three GLDAS ET products 
in July 2000. The first and second rows represent the connected clusters 
for the highest and the lowest 20% ET binary maps. For the top 20th 
percentile, the general cluster patterns of the three LSMs resemble that 
of the reference, but the differences in size and number of clusters are 
obvious. CLSM and Noah outperform VIC in terms of the spatial simi
larity of the cluster maps. The cluster of VIC in northeast China is much 
smaller than that of the reference, whereas VIC generates a much bigger 
cluster in northeast China. For the bottom 20th percentile, the three 
LSMs all reproduce the main cluster located in northwest China but miss 
the part in Inner Mongolia. In addition, they also fail to identify the 
small-sized clusters. Fig. 12 also shows the connectivity curves, which 

depict the probability of connection, Γ(t), at all thresholds for the high 
(grid cells above the threshold) and low phase (grid cells below the 
threshold) of the referenced and modeled ET patterns in July 2000. As 
the percentile used as threshold increases for the high (from right to left 
in the x-axis) and low phase (from left to right in the x-axis), the con
nectivity Γ(t) generally increases as well. Renard and Allard (2013) 
underlined that the percolation threshold, at which the connectivity 
increases abruptly, is a distinct characteristic of a spatial pattern. There 
is large disparity among the three LSMs in terms of their shapes of 
connectivity curves and percolation thresholds for the high phase. The 
connectivity curve of VIC shows the earliest percolation, indicating the 
overall large degree of homogeneity in it modeled ET pattern. However, 
VIC modeled ET pattern is more heterogeneous than the reference and 
other two LSMs at some thresholds lower than VIC’s percolation 
threshold, for example, the highest 20% ET patterns shown in Fig. 12. 
Noah and CLSM simulated connectivity percolates later than the refer
ence, and basically shows underestimation. This means that their 
modeled ET patterns are too heterogeneous relative to the reference. In 
contrast to the high phase, the three LSMs generate very similar con
nectivity curves for the low phase, which overestimate the connectivity 
and show very early percolations compared to the reference. 

To investigate the features of the transition of different ET patterns 
from winter to summer, Fig. 13 illustrates the connectivity curves of the 
multi-year average ET patterns of February and August for the reference 
and the three LSMs. In general, the observed connectivity curves for the 
high phase show earlier percolations in February than in August, which 
is opposite to the low phase. The LSMs behave quite differently in terms 
of their connectivity and their difference is more distinct for the high 
phase. The RMSE between the connectivity curves as shown in Eq. (7) 
for both the high and low phase is used to quantify the pattern similarity 
with respect to the reference for each LSM modeled ET product. Fig. 14 
shows the RMSE time series based on the connectivity analyses of the 
mean monthly ET patterns during 2000–2015 for the three LSMs. VIC’s 
spatial performance for the high phase is worse than Noah and CLSM in 
warm months. Noah shows the largest spatial similarity to the reference 
in terms of the RMSE value in summer while CLSM has the best spatial 
performance in winter. For the low phase, the connectivity of the ET 
clusters shows similar RMSE values for the three LSMs except that VIC 
significantly outperforms Noah and CLSM in February and March. 

Fig. 11. Comparison of the FSS time series of the multi-year (2000–2015) average monthly ET patterns for the three LSMs using different percentile thresholds.  
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Fig. 12. The connected clusters of the highest 20% (first row) and the lowest 20% (second row) ET binary maps for the reference and the three GLDAS ET products in 
July 2000. The connectivity curves are shown at all percentile thresholds for the high phase (third row) and the low phase (fourth row). 

Fig. 13. The connectivity curves of the multi-year (2000–2015) average ET patterns of February (first row) and August (second row) for the high phase (left column) 
and the low phase (right column) corresponding to the reference and the three LSMs. 
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5. Discussion 

5.1. Uncertainties in the evaluation methods 

This study evaluated three reprocessed and recently released GLDAS- 
2.1 ET products based on the EC-measured ET values and the spatial 
evaluation methods. Although the EC flux measurements are considered 
as the most accurate method to provide ET estimates at a site, a direct 
grid-site comparison always suffers from the issues of spatial scale 
mismatch. For example, the highest spatial resolution of GLDAS ET 
products is 0.25◦, which is far beyond the spatial representativeness of 
an EC flux site (Liu et al., 2011). In addition, EC systems are susceptible 
to the energy imbalance problem, and the number of EC flux sites is 
usually very limited. Therefore, the grid-site evaluation performed in 
this study only serves as an auxiliary part to help understand the errors 
of the new GLDAS ET products in general. 

Spatially distributed and process-based modeling has been prolifer
ated and regarded as a very important tool to provide predictions of the 
spatiotemporal variability of terrestrial energy, water and carbon cycle, 
which can help people to address a variety of environmental problems, 
such as climate change impacts, water resources management, drought 
monitoring. Therefore, the comprehensive spatial evaluation is of great 
importance to give model users and developers an insight into the spatial 
predictability of the models. The core content of this study is to conduct 
true spatial evaluations of the GLDAS ET products based on three bias- 
insensitive spatial performance metrics, namely EOF analysis, FSS and 
connectivity analysis. Although these metrics or methods are not novel, 
they were not used and focused on by the hydrological and land surface 
modeling community until recently. 

The results show that CLSM performs worst based on the grid-site 
evaluation, whereas its spatial performance is overall better than VIC 
and even outperforms Noah sometimes. This indicates that the spatial 
performance of a model for representing the spatial variability of the 
natural system is not related to the model bias. In addition, no single 
method can offer enough information to quantify the spatial perfor
mance comprehensively. Different metrics may indicate opposite results 
as they provide different interpretations of the spatial similarity. For 
example, Noah performs the best in winter in terms of the EOF-based 
similarity score. However, the connectivity analysis of the high phase 
for Noah produces the worst RMSE performance, indicating the patterns 

are too heterogeneous compared to the reference. Therefore, a combi
nation of metrics is suggested for a reliable spatial evaluation. Koch et al. 
(2017) underlined that the EOF analysis is the best option for a stand- 
alone metric. Connectivity analysis and FSS which compare spatial 
patterns at threshold percentiles can add unique information to a pattern 
evaluation besides the EOF analysis. However, one common drawback 
of the two threshold-based methods is that they may artificially increase 
spatial variability when the pattern is homogeneous. For example, the 
connectivity curves in Fig. 13 indicate that the patterns of low phase for 
the reference and VIC are very heterogeneous in February, which do not 
conform with the direct visual inspection of the ET patterns. After 
looking into the original data, we found that the connectivity analysis 
classified the grid cells with zero value and marginal values into 
different clusters, which led to the artificially increased spatial vari
ability, especially for the reference and VIC. 

5.2. Potential causes of the ET simulation errors 

Even though the same meteorological forcing data are used to drive 
the LSMs in the GLDAS project, their ET simulations exhibit large dif
ferences regardless of the evaluation methods used. The differences are 
mainly attributed to the distinctions in model formulations of ET, model 
structures and model parametrizations. Generally, all LSMs use the PM 
approach for potential ET (PET) computations, then evaporation and 
transpiration are calculated by scaling PET (Kumar et al., 2018). The 
specific scaling method and model parameterizations differ in each LSM. 
A distinct feature of VIC is that it does not consider evaporation from soil 
underlying vegetations. In addition, the three LSMs also present differ
ences in physics components such as soil hydrology, soil thermody
namics, and snowpack physics (Kumar et al., 2017). It should be noted 
that vegetation- and soil-related parameters also have large impacts on 
the modeled ET (Cuntz et al., 2016; Ma et al., 2019). Current GLDAS 
approach is to stay with model’s default parameters which are indexed 
based on the soil texture classification and the vegetation classification. 
Noah uses the modified International Geosphere-Biosphere Programme 
(IGBP) 20-category vegetation classification based on the Moderate 
Resolution Imaging Spectroradiometer (MODIS) vegetation data, while 
VIC and CLSM use the University of Maryland (UMD) land cover clas
sification. For the soil texture classification, Noah uses soil texture map 
is a hybrid of State Soil Geographic (STATSGO) over Continental United 

Fig. 14. The RMSE between the reference and model connectivity of the average monthly ET patterns during 2000–2015 for the high phase (left column) and the low 
phase (right column). 
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States (CONUS) and Food and Agriculture Organization (FAO) soil map 
elsewhere, and the soil texture map for VIC and CLSM was derived from 
the soil fractions dataset from Reynolds et al. (2000), which were also 
based on the FAO Soil Map. 

Although attributing the model deficiencies diagnosed by the spatial 
evaluations to specific causes is a difficult task, we still attempt to 
qualitatively account for the problems. We first looked into the model 
simulated transpiration, soil evaporation and canopy evaporation, 
which are the three components of the modeled ET. As shown in Fig. 15, 
VIC modeled soil evaporation is extremely small and shows no spatial 
variability compared to Noah and CLSM. Soil evaporation only accounts 
for a very small portion of the VIC modeled ET, which is consistent with 
the result of Kumar et al. (2018). As for the transpiration (Fig. 16) and 
canopy evaporation (not shown), VIC does not show significant differ
ences in spatial pattern with Noah and CLSM. Because canopy evapo
ration is not the dominant source of ET, the spatial performance of VIC 
modeled ET is mainly determined by the modeled transpiration, which 
has smaller values and more homogenous patterns compared to Noah 
and CLSM modeled transpiration in southeast China, especially during 
summer. These factors caused the lack of spatial variability diagnosed by 
the EOF analysis, and the poor spatial performance reflected by FSS and 
the connectivity analysis in warm months, especially for the patterns of 
high phase. The diagnosed model deficiency of VIC is mainly attributed 
to the “big leaf” vegetation scheme in the VIC-4.1.2 model version, 
which was also indicated by Bohn and Vivoni (2016). It assumes there 
are no canopy gaps or exposed soil between plants, so soil evaporation 
only occurs in unvegetated areas. Since VIC-4.2 version, the “clumped’’ 
vegetation scheme replaces the “big leaf” scheme. The former one di
vides each vegetation tile into vegetated and non-vegetated area frac
tions to account for soil evaporation and different wind and radiation 
attenuation in spaces between individual plants or gaps in the canopy 
(Bohn and Vivoni, 2016). The VIC-4.2 and later versions also support 
optional input of daily timeseries of LAI, albedo, and vegetated area 
fraction from forcing files instead of using the monthly climatology. 
Therefore, future GLDAS system could upgrade VIC to version 4.2 to 
improve the ET simulation. As for the good performance of VIC for the 
low phase in cold months pointed out by FSS and connectivity analysis, 
we know that it is mainly due to the artificially increased spatial vari
ability based on the discussion in section 5.1. The similar phenomenon 

was also demonstrated by Koch et al. (2016) for spatial evaluation of VIC 
modeled LST over CONUS. Further investigation shows that the identi
fied cluster patterns at extreme low percentiles in cold months are 
analogous to the snow water equivalent (SWE) pattern (not shown), 
which also has high similarity with the albedo pattern. In another word, 
VIC generates more snow cover areas and larger SWE in snow areas than 
the other two models, and the uncommon snow occurrence of VIC is 
strongly related to its extreme low ET values which are classified as a 
unique cluster. It’s noted that the major update of VIC-4.1.2 was related 
to snowpack-related calculations and parameterizations (Xia et al., 
2018), but the specific reason behind the phenomenon is worth further 
analysis. 

The high connectivity of CLSM at extreme high percentiles indicates 
that the patterns of high ET values are too homogenous in summer, but 
its latest percolation stresses the overall heterogeneous pattern for the 
high phase. This phenomenon is mainly caused by the strong ET gradient 
across China with large transpiration areas located in southeast China. 
The significant larger transpiration simulated by CLSM in humid regions 
is possibly because CLSM develops vigorous upward diffusion of water 
to its root zone from its groundwater storage during the warm season 
(Mitchell et al., 2004), which is inherited from its predecessor-the 
Mosaic model (Koster and Suarez, 1992). In addition to transpiration, 
CLSM modeled soil evaporation is generally larger than that modeled by 
Noah and VIC. The overestimation of CLSM modeled ET in humid re
gions were also pointed out by some previous studies (Bai et al., 2018; 
Ma et al., 2019). CLSM employs a non-traditional approach where the 
subgrid heterogeneity of soil moisture in the root zone is statistically 
represented by separating the catchment into three distinct and 
dynamically varying subareas: (1) a saturated region where evaporation 
occurs without the consideration of water stress; (2) an unsaturated 
region where transpiration occurs with limited water stress and (3) a 
wilting region where transpiration is shut off. How this separation 
scheme impacts the calculation of soil evaporation deserves further 
study. As for the Noah model, it has overall better performance than VIC 
and CLSM in terms of both the grid-site evaluation and the spatial 
evaluations. However, Noah’s spatial performance for high phase is 
inferior to CLSM and even slightly worse than VIC in late winter and 
early spring. The reason behind this remains ambiguous and needs to be 
investigated further in the future. 

Fig. 15. Same as in Fig. 6, but for soil evaporation.  
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In addition to the respective deficiencies of the three LSMs, they all 
lack consideration of the effects of irrigation on ET. Moreover, they do 
not include a ground water module except CLSM. These two physical 
processes are very important for water cycle simulation and the lack of 
such processes may cause large simulation errors (Lawston et al., 2017; 
Xia et al., 2017, 2018). Another notable thing is that current GLDAS-2 
models stay with their default parameter datasets as much as possible. 
However, in many cases the assigned default values based on land sur
face characteristics (e.g., soil and vegetation types) are inappropriate 
(Hou et al., 2012; Huang et al., 2013; Sun et al., 2020). Many studies 
have also highlighted the significant effects of model parameters on 
terrestrial processes modeling and the need of model calibration to 
improve them (Gong et al., 2016; Xia et al., 2018; Xu et al., 2019; Yang 
et al., 2016). Among all these potential causes of the differences and 
spatial deficiencies, it is difficult to tell which one plays a dominant role 
as they all contribute in some way to the uncertainty in modeling ET and 
may even compensate for each other. Therefore, future work is needed 
to systematically investigate the main drivers of spatial variability of the 
simulated ET and quantify the effects of different sources of un
certainties on land surface modeling. 

Spatial evaluation of model is an important step during the process of 
model development. For example, Mendiguren et al. (2017) used the 
spatial evaluation method to reveal model structural insufficiencies and 
inconsistencies, which further helped to improve the model parame
terizations. In addition, spatial pattern evaluation can also facilitate the 
development of alternative calibration strategies. Some recent studies 
have developed novel calibration methods of incorporating spatial 
pattern information of ET products to improve distributed hydrological 
modeling (Dembélé et al., 2020a, 2020b; Demirel et al., 2018). There
fore, the gained insights in this study will help us to develop long-term, 
high-resolution, and reliable ET products over China using LSMs with 
improved calibration methods and parameterization schemes, but it’s 
beyond the scope of this study. 

6. Conclusions 

By ingesting the ground- and satellite-based observational datasets 
as well as taking advantages of the advanced techniques like data 
assimilation and model calibration, LSMs can produce long-term 

consistent ET products with high spatial–temporal resolution at 
regional to global scales, thus benefiting hydrometeorological research 
and applications. This study comprehensively evaluated the recently 
released GLDAS-2.1 ET products from three LSMs over China. We first 
performed a classical evaluation against EC-based ET observations at 8 
sites. Then three spatial performance metrics which are relatively new to 
the land surface modeling communities were adopted to conduct the 
spatial evaluations of the GLDAS ET products. The primary conclusions 
are summarized as follows:  

1. Evaluations against the EC measurements show that all three GLDAS 
products have the consistent trends with the observed ET series at 
both daily and monthly time scales. VIC tends to underestimate ET at 
most sites, while serious overestimations are observed in the simu
lated ET of CLSM. Noah and VIC have comparable performances in 
terms of different statistic metrics and outperform CLSM at both time 
scales.  

2. The three GLDAS ET products could generally capture the spatial 
distribution of the ET reference dataset well. The main ET pattern 
with the increasing amount gradient from northwest to southeast 
China is consistent throughout the year. This dominant pattern is 
also captured by the joint EOF analyses of the referenced and 
simulated ET maps. The first EOFs of Noah and CLSM can explain 
about 75% of the total variance, while the first EOF of VIC can 
explain about 65% of the variance. In addition, the first two EOFs for 
all the GLDAS ET products contribute more than 80% of the total 
variance. The agreement between loadings of the reference and the 
simulated ET map is used to reflect the spatial performance quanti
tively. The EOF-based scores clearly indicate the spatial perfor
mances of the three LSMs are characterized by evident seasonal 
variations with the highest similarity in winter. Noah has the best 
performance in terms of the EOF-based score among the three LSMs.  

3. Different spatial evaluation methods are not guaranteed to give 
consistent evaluation results because they focus on different aspects 
of the spatial performance. FSS and connectivity analysis, which are 
two spatial evaluation methods based on percentile thresholds, allow 
a separate analysis of the patterns of high phase and low phase. VIC 
generally performs the best in winter in terms of better performance 
of low phase and comparable performance of high phase with Noah 

Fig. 16. Same as in Fig. 6, but for transpiration.  
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and CLSM. During warm months, VIC fails to reproduce the patterns 
of high phase, due to the low spatial variability indicated by the 
connectivity analysis. In contrast, VIC’s performance for low phase is 
close to Noah and CLSM in warm months. Noah and CLSM show very 
similar spatial performance for representing the patterns of low 
phase. For high phase, Noah performs slightly better than CLSM in 
summer, mainly because that CLSM’s patterns of high phase are too 
heterogeneous. 

Overall, among the three GLDAS ET products, Noah modeled ET 
product shows certain superiority in matching the ET value and pattern. 
Thus, we recommend it as the first choice of the GLDAS ET products. 
This study shows that models with more accurate ET estimates at given 
sites may have worse spatial performance. The spatial evaluation 
methods thus show certain advantages over the traditional grid-site 
evaluation method of ET, which is valuable for large scale ET esti
mates, especially in the regions and countries where flux measurement 
sites are very scarce. Our study also indicates that the spatial evaluation 
methods can be used as effective tools to diagnose modeling de
ficiencies, thus helping future development and improvement of 
modeling techniques. More importantly, these methods are easily 
transferable to other distributed models and variables. Therefore, we 
recommend the spatial evaluation should be considered as a new para
digm in land surface and hydrological modeling communities. 

Our future works will explore the main drivers of spatial variability 
of terrestrial ecological and hydrological process modeling. Moreover, 
further efforts are also needed to improve the model spatial predict
ability by developing high-quality model inputs, new parameterization 
schemes and calibration methods. 
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