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A B S T R A C T

Most of the commonly available sensitivity analysis methods cannot reliably compute the interaction effect.
Even though the Sobol’ type methods that use Monte Carlo simulation can evaluate the interaction effect, the
result is either inaccurate or requires an extraordinary number of model runs to obtain a reasonable estimate.
In this study, we evaluate the sparse polynomial chaos (SPC) method as a reasonable way to estimate the
interaction effect. This method is evaluated on two mathematical test functions (Ishigami and Sobol’ G) and
two hydrologic models (HBV-SASK and SAC-SMA). Our results show the SPC method needs about a sample
size of 30 to 70 times the number of dimensions of the parameter space to evaluate the interaction effects
of hydrologic models. Our findings are significant for hydrologic simulation and model calibration, as we
aim to improve the understanding of complex interactions among model components and to reduce model
uncertainty.

1. Introduction

As more hydrological models are being developed, model structure
is getting increasingly complex, and in many cases, those models are
over-parameterized (Schoups et al., 2008). Sensitivity analysis (SA) is
an important tool for assessing parametric uncertainty of hydrological
models, as it can determine the degree of influence of parameters
on model simulations, improve model identifiability and ultimately
enhance model performance (Song et al., 2015).

There are a number of ways that model parameters influence model
simulations. From a variance decomposition view angle (Razavi and
Gupta, 2015), the impact of variation of a single parameter on model
simulation is known as the first order effect, or the main effect. The
effect of simultaneous variations of two or more parameters on model
simulation is known as higher order effect. The sum of all the ef-
fects connected with a specific parameter is called the total effect. In
practice, only the main effect, the total effect and the second order
effect, which is also known as interaction effect, are evaluated. As
parameter interaction effect plays a big role in hydrological simulation
capability and in robust parameter optimization, accurate calculation
of interaction effect of a hydrological model is vitally important.

The commonly used local SA (LSA) method can only be used to
assess the main effect by varying a single model parameter at a time.
LSA cannot consider higher order effect and its estimate of the main
effect is also not reliable (Li et al., 2013). To assess higher order
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effects, global SA (GSA) methods are required. There are three types of
GSA methods which that are widely applied in hydrological modeling:
derivative-based GSA, regression-based GSA, and variance-based GSA
(Wang et al., 2016). Most derivative based (e.g., Morris-One-At-a-
Time, MOAT) (Morris, 1991) and regression based (e.g., Multivariate
Adaptive Regression Splines, MARS) (Friedman, 1991) GSA methods
are effective in assessing the main effect. However, they cannot be used
to assess higher order effects.

Variance-based GSA methods are designed to compute the main
effect as well as higher order effects. For example, the classical Sobol’
method, one of the commonly used variance based GSA methods, does
a good job of assessing the main effect in a relatively efficient manner
(Gan et al., 2014). However, the Sobol’ method usually requires an
extra-ordinary number of model runs to obtain a reasonable estimate of
the second order effect (typically, thousands to hundreds of thousands)
(Tang et al., 2007; Wan et al., 2015). For large-scale hydrological
model applications, the cost of performing second order or higher order
sensitivity analysis using classical Sobol’ method would be unbearable.

In order to reduce the number of model runs needed to calculate
different sensitivity indices (i.e., the main effect and interaction effect),
meta-model based SA methods have been proposed. Meta-model based
approach is generally implemented in two steps. First, a surrogate
model is constructed. Then SA is performed on the surrogate model.
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The advantage of a meta-model based approach is that it requires a sig-
nificantly smaller number of model runs to perform SA than traditional
SA methods. To construct a surrogate model, a design of experiment
(DoE) approach is usually used to sample the parameter space. Then the
model is run using those sampled parameter sets and the corresponding
performance metrics (i.e., the output of interest) are computed. Finally,
a surrogate model is constructed based on the parameter-objective func-
tion statistical relationship. There exist a plethora of statistical methods
to construct a surrogate model (Razavi et al., 2012a), for example the
aforementioned MARS method, SVM (support vector machine) method,
GPR (Gaussian process regression) method, RF (random forest) and
ANN (artificial neural network) method.

Meta-model based Sobol’ method that uses Monte Carlo simulation
has been used to perform SA of hydrological models by numerous
researchers (Song et al., 2012a,b; Zhan et al., 2013; Wang et al., 2016;
Gan et al., 2017). Because Monte Carlo approximations of the integrals
required in Sobol’ method can lead to some numerical errors, the
estimate of the interaction effect based on meta-model based approach
can be inaccurate. For example, the second order effect computed by
the classical Sobol’ method sometimes results in negative values of
sensitivity indices, which defies the definition of variance terms, which
must be positive (Tang et al., 2007). Furthermore, the estimation of
interaction effect usually requires an extraordinary number of model
runs to obtain a reasonable estimate of the interaction effect. For exam-
ple, Zhan et al. (2013) studied the parameter interaction effects of the
distributed time-variant gain model (DTVGM) with 14 parameters using
the meta-model based Sobol’ method and it required 2600 DTVGM
model runs and 100,000 meta model runs (186 times the number of
parameters) to obtain a reasonable estimate of interaction effect. Song
et al. (2012a) studied Xinanjiang hydrological model (7 parameters)
using the Sobol’ method and it costs 1000 Xinanjiang model runs and
100,000 meta model runs (286 times the number of parameters) to
avoid negative sensitivity indices. Further, there is no guarantee that
the interaction effect computed by the meta-model based Sobol’ method
that uses Monte Carlo simulation is accurate, as we will show in this
study.

Generally, SA based on meta-models involves two kinds of numer-
ical errors, one is the error between the surrogate model and the
real response surface of the physical models, the other is the Monte
Carlo simulation error (The later error will converge to zero when the
sample size is infinite). The superposition of the two errors will have a
significant impact on the confidence of the calculation of Sobol’ global
sensitivity indices. On the contrary, if the Monte Carlo simulation error
can be avoided, the accuracy of global sensitivity indices can be greatly
improved. In this paper, we investigate the use of the sparse polynomial
chaos (SPC) SA method (Sudret, 2008; Blatman, 2009; Blatman and
Sudret, 2011; Fajraoui et al., 2012; Marelli and Sudret, 2014; Tang and
Zhou, 2015; Hu and Zhang, 2016; Shao et al., 2017) to calculate the
interaction effect of the hydrological model parameters. If polynomial
chaos expansion is used as a surrogate model, the mean and variance
of output can be calculated directly by the expansion coefficients, as
well as the global Sobol’ sensitivity indices can be calculated directly.
In other words, the SPC method can avoid Monte Carlo simulation error
directly.

The rest of paper is organized as follows: Section 2 introduces the
SPC method. In Section 3, by using SPC method, the Ishigami function
(3 tunable parameters), Sobol’ function (30 tunable parameters) as
the mathematical function model cases, and the HBV-SASK model
(10 tunable parameters) and SAC-SMA model (13 tunable parameters)
as the hydrological model cases are used for illustration. Section 4
presents a detailed discussion about the interaction effects. Finally, a
short conclusion is given in Section 5.

2. Sparse polynomial chaos method for sensitivity analysis

2.1. Full polynomial chaos

Firstly, the full polynomial chaos method is reviewed. Considering a
general second order stochastic process in the probability space (𝛺, P,
F) with space of events 𝛺, 𝜎-algebra P and probability measure F. Let us
consider a stochastic model 𝑌 (𝝃) with model input 𝝃 = (𝜉1, 𝜉2,…) ∈ 𝛺
and model output Y. For a stochastic analysis of Y, the model 𝑌 (𝝃) may
be approached as follows:

𝑌 (𝝃) = 𝑎0𝛹0 +
∞
∑

𝑖1=1
𝑎𝑖1𝛹1(𝜉𝑖1 ) +

∞
∑

𝑖1=1

𝑖1
∑

𝑖2=1
𝑎𝑖1𝑖2𝛹2(𝜉𝑖1 , 𝜉𝑖2 )

+
∞
∑

𝑖1=1

𝑖1
∑

𝑖2=1

𝑖2
∑

𝑖3=1
𝑎𝑖1𝑖2𝑖3𝛹3(𝜉𝑖1 , 𝜉𝑖2 , 𝜉𝑖3 ) +⋯ , (2.1)

where 𝛹𝑖(𝝃) is 𝑖 order orthogonal polynomial basis functions in the
variables (𝝃). 𝑎0, 𝑎𝑖1 ,… is the approximation coefficient. Here the expan-
sion bases 𝛹𝑖(𝝃) are multi-dimensional orthogonal polynomials defined
as tensor products of the corresponding one-dimensional polynomials
bases {𝜙𝑘}∞𝑘=0:

𝛹𝑖(𝝃) ∶=
𝑛
∏

𝑘=1
𝜙𝑖𝑘 (𝜉𝑘), 𝑖 ∶=

𝑛
∑

𝑘=1
𝑖𝑘, (2.2)

where 𝑛 is the number of random variables. In realistic applications,
we usually consider a finite number of terms to truncate (2.1), and we
have,

𝑌 (𝝃) =
∑

𝜶∈𝑝,𝑛
𝑎𝜶𝛹𝜶(𝝃),𝑝,𝑛 ≡ {𝜶 ∈ 𝑁𝑛 ∶ |𝜶| ≤ 𝑝}, (2.3)

where 𝜶 is a multi-index that identifies the components of the multi-
variate polynomials, and  is the set of selected multi-indices of mul-
tivariate polynomials, and 𝑎𝜶 is the corresponding polynomial chaos
expansions coefficients. The number of the polynomial expansion term
𝑁 is related to the number of random space independent variables used
in the stochastic process system, and it is also related to the degree of
freedom (i.e. the maximum number of orders of the polynomial basis).
When the number of random variables and the degree of freedom are
given, the number of the polynomial expansion term 𝑁 in the random
process is as follows:

𝑁 =
(𝑝 + 𝑛)!
𝑝!𝑛!

− 1, (2.4)

where 𝑝 is the degree of freedom, and 𝑛 is the number of random
variables. The expression Eq. (2.1) is called the full polynomial chaos.

For polynomial chaos methods, there are three key steps. They are
respectively the determination of orthogonal polynomial basis of model
input parameters, the calculation of the coefficients of polynomial
chaos and estimators of accuracy of the polynomial chaos approxima-
tions. For the determination of orthogonal polynomial basis, according
to the Wiener–Askey polynomial chaos (Xiu and Karniadakis, 2003),
there exist different optimal polynomials for different probability den-
sity functions, e.g. normalized Legendre (resp. Hermite) polynomials
can be associated to a uniform (resp. Gaussian) probability density
functions. In this work, the model parameters are considered to be
uniformly distributed and the Legendre polynomial chaos are chosen.

In the calculation process of coefficients of the polynomial ex-
pansion, two methods for intrusive method and non-intrusive method
can be used to determine the coefficients of polynomial expansion
(Xiu, 2010). The intrusive method needs to adjust the original model,
and non-intrusive method does not need to adjust the original model
code. In this way, the non-intrusive method is suitable for the study
of most models. The non-intrusive method has two main methods:
the regression method and the projection method (Blatman and Su-
dret, 2011). Here, the regression-based non-intrusive method is chosen
in this work. The coefficients may be estimated by determining the
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𝐿2-projection of the response 𝑌 (𝝃) onto the space spanned by the
polynomials {𝛹𝜶(𝝃), |𝜶| ≤ 𝑝} as follows:

�̂� = argmin
𝒂∈𝑅𝑛

𝐸[𝑌 (𝝃) − 𝒂𝑇𝜳 (𝝃)]. (2.5)

Given a sampling of size N of the input random vector 𝜒 = {𝜉(1),… ,
𝜉(𝑁)}𝑇 (the design of experimental) and the corresponding model re-
sponses  = {𝑦(1),… , 𝑦(𝑁)}𝑇 , the ordinary least-square solution of
Eq. (2.5) is:

�̂� = (𝑨𝑇𝑨)−1𝑨𝑇 , (2.6)

where 𝑨 = {𝑨𝑖𝑗 = 𝛹𝑗 (𝜉(𝑖)), 𝑖 = 1,… , 𝑁 ; 𝑗 = 1,… , 𝑐𝑎𝑟𝑑} is the so-
called experimental matrix that contains the values of all the basis
polynomials in the experimental design points.

After the polynomial coefficients are computed, through the error
estimation, the polynomial chaos-based model with the appropriate
accuracy is successfully established. The leave-one-out (LOO) error esti-
mation is chosen in this work. The leave-one-out (LOO) cross-validation
error 𝜖𝐿𝑂𝑂 is designed by using cross-validation. It consists in building
N meta-models 𝑌 𝑃𝐶∖𝑖, each one created on a reduced experimental
design 𝝌∖𝝃(𝑖) = {𝝃(𝑗), 𝑗 = 1,… , 𝑁, 𝑗 ≠ 𝑖} and comparing its prediction
on the excluded point 𝝃(𝑖) with the real value 𝑦(𝑖) (Blatman and Sudret,
2010). The leave-one-out cross-validation error can be written as:

𝜖𝐿𝑂𝑂 =
∑𝑁

𝑖=1(𝑌 (𝝃
(𝑖)) − 𝑌 𝑃𝐶∖𝑖(𝝃(𝑖)))2

∑𝑁
𝑖=1(𝑌 (𝝃

(𝑖)) − �̂�𝑌 )2
, (2.7)

where �̂�𝑌 is the sample mean of the experimental design response. In
practice, when the results of a least-square minimization are available,
there is no need to explicitly calculate N separate meta-models, after
some algebra Eq. (2.7) can reduce to:

𝜖𝐿𝑂𝑂 =

∑𝑁
𝑖=1(

𝑌 (𝝃(𝑖))−𝑌 𝑃𝐶 (𝝃(𝑖))
1−ℎ𝑖

)2

∑𝑁
𝑖=1(𝑌 (𝝃

(𝑖)) − �̂�𝑌 )2
, (2.8)

where ℎ𝑖 is the 𝑖th diagonal term of matrix 𝑨(𝑨𝑇𝑨)−1𝑨𝑇 (matrix 𝑨 is
defined in Eq. (2.6)) and 𝑌 𝑃𝐶 (⋅) is the PC expansion built up from the
full experimental design 𝜒 .

However, note that the number of full PC coefficients 𝑁 increases
exponentially with 𝑛 and 𝑝 since Eq. (2.4). Thus the number of co-
efficients to be computed increases dramatically when 𝑛 is large, say
n > 10. This is known as the curse of dimensionality. For this issue,
it is solved satisfactorily using specific methods to compute sparse
polynomial chaos.

2.2. Sparse polynomial chaos

Suppose  be a non-empty finite subset of 𝑁𝑛, with which the
truncated polynomial chaos can be defined by

𝑌 (𝝃) =
∑

𝜶∈
𝑎𝜶𝛹𝜶(𝝃). (2.9)

The common truncation scheme in Eq. (2.3) corresponds to the choice
 = 𝑝,𝑛. Since the curse of dimensionality problem, the determination
of truncation sets  of small cardinality is of interest. Thus, we define
that if the following condition is verified, the truncated PC Eq. (2.9) is
sparse:

𝐼𝑁 =
𝑐𝑎𝑟𝑑()
𝑐𝑎𝑟𝑑(𝑝,𝑛)

< 1. (2.10)

Generally, polynomial chaos can be sparse from two aspects: hy-
pothesis of the structure of polynomial chaos and the numerical al-
gorithm for solving polynomial chaos. From the point of view of
the structure of polynomial chaos, according to the sparsity-of-effects
principle (Montgomery, 2004), the hyperbolic truncation or maximum
interaction can be used. From the point of view of the solution algo-
rithm of polynomial chaos, the least angle regression (LAR)-based or
orthogonal matching pursuit (OMP)-based solution algorithm can be
applied (Blatman and Sudret, 2011; Doostan and Owhadi, 2011).

2.3. Sparse polynomial chaos for sensitivity analysis

Finally, when we obtain the coefficients of Eq. (2.9) successfully,
Eq. (2.9) can be interpreted as a model response surface for 𝑌 (𝝃), the
uncertainty and sensitivity analysis can be calculated directly as simple
analytical functions of the SPC coefficients. For the expectation and
variance, we have

𝐸[𝑌 (𝝃)] = 𝑎0, 𝑉 𝑎𝑟[𝑌 (𝝃)] =
∑

𝛼∈,𝛼≠0
𝑎2𝛼 . (2.11)

For the sensitivity indices, the SPC can be rewritten in the form of
the Sobol’ decomposition:

𝑌 (𝝃) = 𝑎0 +
𝑁
∑

𝑖1=1

∑

𝜶∈𝐼𝑖1

𝑎𝜶𝛹𝜶(𝜉𝑖1 ) +⋯ +
𝑁
∑

𝑖𝑠>⋯>𝑖1

∑

𝜶∈𝐼𝑖1 ,…,𝑖𝑠

𝑎𝜶𝛹𝜶(𝜉𝑖1 ,… , 𝜉𝑖𝑠 )

+⋯ +
∑

𝜶∈𝐼1,…,𝑁

𝑎𝜶𝛹𝜶(𝝃), (2.12)

where 𝐼𝑖1 ,…,𝑖𝑠 = {𝜶 ∈ (𝛼1,… , 𝛼𝑁 ) ∶ 𝛼𝑘 = 0 ⇔ 𝑘 ∉ {𝑖1,… , 𝑖𝑠} ⊂
{1,… , 𝑁}}. Due to the orthogonal property of the polynomial basis, the
partial variance can be derived analytically from the SPC coefficients
as follows:

𝐷𝑖1 ...𝑖𝑁 =
∑

𝛼∈𝐼𝑖1 ,…,𝑖𝑁

𝑎2𝛼 . (2.13)

So the partial sensitivity indices for the subset of input variables
{𝜉𝑖1 ,… , 𝜉𝑖𝑁 } is as follows:

𝑆𝑖1 ...𝑖𝑁 =
𝐷𝑖1 ...𝑖𝑁

𝐷
. (2.14)

Note that once a SPC approximation of the model response has been
built as a metamodel, compared with all Sobol’ type SA methods which
require Monte Carlo simulation to calculate the sensitivity indices, the
SPC-based sensitivity indices are computed analytically from the SPC
coefficients which is of a negligible computational cost.

3. Evaluation of parameter interaction effect of the analytical test
problems and the hydrological models

In this section, the efficiency and effectiveness of the SPC SA
method are evaluated. Firstly, two well-known mathematical func-
tions are investigated: the 3-Dimensional Ishigami function and the
30-Dimensional Sobol’ G function which have analytical expression
for sensitivity indices. Then the SPC SA method is used to exam-
ine the parameter interaction effect of two hydrological models in
real-world application settings, i.e., the 10-Dimensional Hydrologiska
Byråns Vattenbalansavdelning-University of Saskatchewan (HBV-SASK)
hydrological model and the 13-Dimensional Sacramento-Soil Moisture
Accounting (SAC-SMA) hydrological model, both of which have no
analytical expression for sensitivity indices.

3.1. Analytical test models: the Ishigami and Sobol’ G functions

Firstly, the Ishigami function is chosen as our test case (Ishigami
and Homma, 1990). Its expression is shown as follows:

𝑌 (𝒙) = 𝑠𝑖𝑛𝑥1 + 𝑎𝑠𝑖𝑛2𝑥2 + 𝑏𝑥43𝑠𝑖𝑛𝑥1, (3.1)

where the input variables 𝑥1, 𝑥2, and 𝑥3 are uniformly distributed over
[−𝜋, 𝜋]. The variance D of Y and the Sobol’ sensitivity indices can be
computed analytically as follows.

𝐷 = 𝑎2

8
+ 𝑏𝜋4

5
+ 𝑏2𝜋8

18
+ 1

2
, 𝐷1 =

𝑏𝜋4

5
+ 𝑏2𝜋8

50
+ 1

2
, 𝐷2 =

𝑎2

8
,

𝐷3 = 0, 𝐷12 = 𝐷23 = 0, 𝐷13 =
8𝑏2𝜋8

225
.

(3.2)

In this example, 𝑎 = 7 and 𝑏 = 0.1. For the sparse polynomial chaos,
the OMP-based calculation method of the coefficients is selected and
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the adaptive polynomial degree is set as 2 < 𝑝 < 15 based on LOO
cross-validation error estimates. In addition, the classical Sobol’ method
(see Appendix A), the Gaussian process regression-based (GPR) SA
method (see Appendix B) and the polynomial chaos-Kriging-based (PC-
Kring) SA method (see Appendix C) are used for comparison purpose.
The Gaussian process regression and polynomial chaos-Kriging are the
commonly used meta-models (Wang et al., 2014; Kersaudy et al., 2015;
Gong et al., 2015, 2016). Table 1 shows the root mean square errors
(RMSE) of the estimates of the total, first order and second order Sobol’
indices of SPC, GPR and PC-Kring methods against theoretical values
for sample sizes 𝑛 = 20, 𝑛 = 40 and 𝑛 = 80 and Sobol’ method for the
sample size 𝑛 = 200,000, respectively. The negative values calculated
by the Sobol’ method and meta-model based Sobol’ method are all set
to zero in this work.

The second analytical test problem is the Sobol’ G function (Saltelli
and Sobol’, 1995), whose expression is as follows:

𝑌 (𝒙) =
𝑛
∏

𝑖=1

|

|

4𝑋𝑖 − 2|
|

+ 𝑎𝑖
1 + 𝑎𝑖

, (3.3)

where the input variables 𝑿 are uniformly distributed over [0, 1] and 𝒂
are nonnegative. The variance D of Y and the Sobol’ sensitivity indices
can be computed analytically as follows.

𝐷 =
𝑛
∏

𝑖=1
(𝐷𝑖 + 1) − 1, 𝐷𝑖 =

1
3(1 + 𝑎𝑖)2

, 𝐷𝑇 𝑖 = 𝐷𝑖
∏

𝑗≠𝑖
(1 +𝐷𝑗 ),

𝑆𝑖1 ,…,𝑖𝑛 = 1
𝐷

𝑛
∏

𝑗=1
𝐷𝑖𝑗 .

(3.4)

In this example, 𝑛 = 30 and 𝑎 = [1, 2, 5, 10, 20, 50, 100, 500, 999,
… , 999]. For the sparse polynomial chaos, the OMP-based calculation
method of the coefficients is selected and the adaptive polynomial de-
gree is set as 2 < 𝑝 < 5 based on LOO cross-validation error estimates. In
addition, the classical Sobol’ method, the Gaussian process regression-
based SA method and the polynomial chaos-Kriging-based SA method
are still chosen for comparison. Table 2 displays the RMSEs of the
estimates of the total, first order and second order Sobol’ indices of
SPC, GPR and PC-Kring methods against theoretical values for sample
sizes 𝑛 = 150, 𝑛 = 300 and 𝑛 = 600 and Sobol’ method for 𝑛 = 200,000,
respectively.

From the sensitivity indices results of the Ishigami (Table 1) and
Sobol’ G functions (Table 2), it is easy to see that the SPC method is
more accurate in calculating all second order effects while identifying
total and first order effects. In particular, when the sample size of the
Ishigami function is 80 and the sample size of the Sobol’ G function is
300, the RMSEs of their second order indices against theoretical indices
reach 0. In addition, as in the case of the Ishigami test function, we can
see the importance of interaction effect. The parameter 𝑥3 is of zero
main effect, but has strong interaction with parameter 𝑥1, under which
situation interaction effect should not be ignored.

It is essential to monitor and evaluate the convergence rate of the
GSA methods using some efficient techniques (Nossent et al., 2011;
Razavi et al., 2012b; Sarrazin et al., 2016; Harenberg et al., 2019;
Sheikholeslami et al., 2019), as it can enable us to diagnose the
convergence behavior of the GSA. Thus, in order to test the conver-
gence behavior, the robustness analysis is designed to estimate first
and second order indices for a set of increasingly larger experimental
designs by means of bootstrap method (using 100 bootstrap replicates)
(Efron, 1979). For the Ishigami function and the Sobol’ G function, the
results of the convergence of the estimates of the first order indices
for two most sensitive parameters (e.g. parameters 𝑥1 and 𝑥2 of the
Ishigami function, parameters 𝑋1 and 𝑋2 of the Sobol’G function ) and
the largest second order indices (e.g., parameter pair 𝑥13 of the Ishigami
function, parameter pair 𝑋12 of the Sobol’G function) are shown in
Figs. 1 and 2, respectively. The Sobol’ total effect indices are not shown
because their convergence behavior is essentially identical to that of
the first order indices. By the convergence analysis, confirming that
the estimation of interaction effects is accurate enough to make a solid
conclusion.

3.2. Evaluation of parameter interaction effect of the HBV-SASK hydrolog-
ical model

The HBV-SASK model (Fig. 3) is a conceptual rainfall-runoff model
which was coded at the University of Saskatchewan for educational
purposes, based on an interpretation of the Hydrologiska Byråns Vat-
tenbalansavdelning model (Lindström et al., 1997). Here, ten of the
HBV-SASK model parameters are considered tunable. These parameters
are described in Table 3. The rainfall-runoff model (HBV-SASK) used
in this study has 12 tunable parameters, as presented in (Gupta and
Razavi, 2018; Razavi and Gupta, 2019; Razavi et al., 2019). Here we
consider only 10 parameters. Because parameter 11 is the base of unit
hydrograph for watershed routing in day and its default is 1 for small
watersheds. Parameter 12 is the precipitation multiplier to address
uncertainty in precipitation and its default is 1. Here we chose their
default values in the HBV-SASK model.

The Oldman watershed is chosen as the study area. The 1434.73
km2 Oldman watershed is located in the Rocky Mountains of Alberta,
Canada. Historical data is available for the period 1979–2008, from
which the average annual precipitation (rainfall+snowfall) is estimated
to be 611 mm, and average annual streamflow to be 11.7 m3/s at gauge
05AA023 on the Oldman River (runoff ratio = 0.42) (Razavi and Gupta,
2019).

To evaluate model responses as a function of different parameter
values, the RMSE values between the simulated and observed daily
streamflow discharge (m3/s) is used as the objective function:

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑄𝑠,𝑡 −𝑄𝑜,𝑡)2, (3.5)

where 𝑄𝑠,𝑡 and 𝑄𝑜,𝑡 are simulated and observed streamflow discharge
values at time 𝑡, 𝑛 is the total number of observations. There is no
analytical values for the sensitivity indices of the HBV-SASK hydrol-
ogy model in a real-world application setting. To obtain a reasonable
estimate of the ‘‘true’’ sensitivity indices, we performed SA using the
classical Sobol’ method that employs 1000,000 Monte Carlo simulations
(MCS) (see Appendix A for details) to approximate the ‘‘true’’ sensitivity
indices. To demonstrate the convergence of the SPC method, a set
of nested experimental designs of increasing sample sizes {100, 200,
300, 400, 500, 700, 1000} are generated based on the Sobol’ sequence
sampling. For the sparse polynomial chaos, selecting the adaptive
polynomial degree 2 < 𝑝 < 5 and OMP-based calculation method
of the coefficients. The selections of adaptive polynomial degree and
calculation method are based on the leave-one-out error estimation
of SPC method. The leave-one-out errors of the experimental designs
{100, 200, 300, 400, 500, 700, 1000} are 5.96𝑒−12, 4.45𝑒−15, 1.54𝑒−12,
5.02𝑒−13, 1.34𝑒−13, 4.38𝑒−14 and 8.45𝑒−14, respectively. Again, the GPR
SA method and PC-Kriging SA method are used for comparison purpose.

3.2.1. Effectiveness of the SPC method in calculating interaction effects
Firstly, the effectiveness in estimating the total and first order SA in-

dices by different meta-model based SA methods is investigated. Param-
eter sensitivity rankings of MCS-based Sobol’ method with 1000,000
model evaluations and SPC-based Sobol’ method with 1000 model eval-
uations are given in Fig. 4, which shows that the three most sensitive
parameters are parameters 7, 5 and 2, respectively, based on both the
first order and total SA indices. The SPC-based Sobol’ method provides
excellent matches with MCS-based Sobol’ method. Fig. 5 displays the
RMSE values of the estimates of the first order and total SA indices
calculated by SPC, GPR and PC-Kriging SA methods. Compared with
the GPR and PC-Kriging methods, the SPC method has much smaller
RMSE values for both the first order and total effects than the other
two methods.

Next, the effectiveness in estimating the second order SA indices is
considered. The second order results for the MCS-based Sobol’ and SPC-
based Sobol’ methods are given in Fig. 6, which shows that parameter
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Table 1
The comparison of the RMSE values of SA indices for the 3-Dimensional Ishigami function based on Monte Carlo simulations and three meta-model based methods.

Root mean square error (RMSE) MCS SPC GPR PC-Kring

200,000 40 80 160 40 80 160 40 80 160

Total order indices 0.003 0.048 0 0 0.217 0.124 0.041 0.069 0.061 0.012
First order indices 0.002 0.034 0 0 0.061 0.044 0.017 0.032 0.027 0.005
Second order indices 0.006 0.020 0 0 0.170 0.091 0.031 0.050 0.054 0.010

Table 2
The comparison of the RMSE values of SA indices for the 30-Dimensional Sobol’s G function based on Monte Carlo simulations and three meta-model based SA methods.

Root mean square error (RMSE) MCS SPC GPR PC-Kring

200,000 150 300 600 150 300 600 150 300 600

Total order indices 0.001 0.022 0.007 0.006 0.021 0.010 0.005 0.015 0.005 0.003
First order indices 0.006 0.010 0.006 0.005 0.023 0.014 0.009 0.006 0.008 0.007
Second order indices 0.001 0.001 0 0 0.004 0.005 0.005 0.003 0.005 0.005

Fig. 1. Convergence of the estimates of the first and second order indices for the Ishigami function. Error bounds are calculated by bootstrap resampling.

Fig. 2. Convergence of the estimates of the first and second order indices for the Sobol’ G function. Error bounds are calculated by bootstrap resampling.

pairs {5, 7}, {2, 7}, {1, 2}, and {2, 5} have the largest interaction effects.
Note that when the sample size for the SPC method reaches 300 or
more, the results of SPC-based and MCS-based Sobol’ methods are
very similar. Fig. 7 exhibits the RMSE values of the estimates of the
second order sensitivity indices calculated by SPC, GPR and PC-Kriging
methods, respectively. From Fig. 7, the SPC method shows a better con-
vergence behavior than the GPR and PC-Kriging methods. In addition,

for the training time of various methods, the time consumption of SPC
method is the least. For sample sizes {100, 300, 500, 700, 1000}, the
SPC method can save {10, 4, 5, 4, 2} times against the GPR method and
{12, 9, 13, 7, 11} times against the PC-Kriging method, respectively.

The interaction between TT (parameter 1), the air temperature
threshold about melting/freezing state of precipitation, and CO (param-
eter 2), the base melt factor of snow, is due to the melting/freezing
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Fig. 3. System architecture of the HBV-SASK hydrologic model (Razavi and Gupta, 2019).

Fig. 4. The first and total order sensitivity indices obtained by MCS-based and SPC-based methods.

state of water before and after reaching ground. CO also has a strong
correlation with FC (parameter 5), the soil field capacity, and FRAC
(parameter 7), the fraction of water released from soil to fast reservoir.
The reason of strong interaction between CO, FC and FRAC is that
these three parameters control the state of water in this watershed:
frozen in snowpack, stored in soil, or flowing in the river channel. These
three parameters are also the most important parameters controlling
the whole hydrological process in this watershed. Parameter TT only
interacts with CO as both of them are related to the process in snow
cover.

3.2.2. Robustness of the SPC method in calculating interaction effects
The robustness of the SPC method using different samples sizes in

obtaining reliable estimates of different SA indices is analyzed. In order
to test the convergence behavior, a robustness study is still designed
to estimate first and second order indices for a set of increasingly
larger experimental designs with a maximum of N = 1000. Confidence
bounds for each estimate are calculated by means of a bootstrap method
(using 100 bootstrap replicates). The results of the convergence of the
estimates of the first order indices for three most sensitive parameters
(e.g., parameters 7, 5, 2) are shown in Fig. 8 (violin graph). The Sobol’
total effect indices are not shown because their convergence behavior
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Fig. 5. The comparison of the RMSE values of the first and total order SA indices by three meta-model based SA methods.

Fig. 6. The second order SA indices obtained by MCS-based with 1000,000 parameter samples and the SPC-based method with different sample sizes. The color legends and
shading represent the Sobol’ indices’ magnitudes and ranges.

is essentially identical to that of the first order indices. From Fig. 8,
it is clear that reasonably good estimates of the first order indices are
already obtained with 200 model evaluations (i.e. the sample size is 20
times as large as the number of parameters).

For the robustness of the second order SA indices estimates, the
convergence behavior of the estimates of the Sobol’ second order
indices as a function of the experimental design sizes is shown in Fig. 9
for the four parameter pairs with the largest second order Sobol’ indices
(e.g., pairs {5, 7}, {2, 7}, {1, 2}, {2, 5}). Fig. 9 shows clearly that
reasonably good estimates of the second order indices can be obtained
with 300 model evaluations (i.e. the sample size is 30 times as large as
the number of parameters).

3.3. Evaluation of parameter interaction effect of the SAC-SMA hydrologi-
cal model

The SAC-SMA hydrological model (Fig. 10) has a highly non-
monotonic, non-linear input parameter-model output relationship. This
model is the most widely used hydrological model by the River Forecast
Centers of the U.S. National Weather Service for catchment modeling
and flood forecasting (Burnash et al., 1973). Here, thirteen of the SAC-
SMA model parameters are considered tunable (Brazil, 1988). These
parameters are described in Table 4.

The South Branch Potomac River basin near Springfield, West Vir-
ginia in the U.S. is chosen as the study area. Historical precipitation,
potential evapotranspiration and streamflow observations from Jan-
uary 1, 1960 to December 31, 1979 are obtained from the Model
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Fig. 7. The comparison of the RMSE values of the second order sensitivity indices by three meta-model based SA methods.

Fig. 8. Convergence of the estimates of the first order indices for different parameters. Error bounds are calculated by bootstrap resampling.

Parameter Estimation Experiment (MOPEX) database for this study
(Duan et al., 2006). The hydrological simulations were run at a 6h
time step over the entire data period. The average annual runoff is
39.5 m3/s, average annual potential evapotranspiration is 762 mm, and
average annual precipitation over this period is 1021 mm (Wang et al.,
2014).

To evaluate model responses under different parameters, the root
mean square error (RMSE) is chosen as the objective function. Sim-
ilarly, we still performed SA using the classical Sobol’ method that
employs 1000,000 Monte Carlo simulations (MCS) to approximate the
‘‘true’’ sensitivity indices. To demonstrate the convergence of the SPC
method, a set of nested experimental designs of increasing size {130,
260, 390, 520, 650, 910, 1300} is generated based on the Sobol’
sequence sampling. For the sparse polynomial chaos, selecting the
adaptive polynomial degree 2 < 𝑝 < 5 and OMP-based calculation

method of the coefficients. The leave-one-out errors of the experimental
designs {130, 260, 390, 520, 650, 910, 1300} are 1.28𝑒−10, 3.68𝑒−16,
3.71𝑒−11, 1.52𝑒−12, 2.16𝑒−12, 6.41𝑒−13 and 1.59𝑒−12, respectively. Again,
the GPR SA method and PC-Kriging SA method are still used for
comparison purpose.

3.3.1. Effectiveness of the SPC method in calculating interaction effects
Firstly, the effectiveness in estimating the total and first order SA in-

dices by different meta-model based SA methods is investigated. Param-
eter sensitivity rankings of MCS-based Sobol’ method with 1000,000
model evaluations and SPC-based Sobol’ method with 1300 model eval-
uations are given in Fig. 11, which shows that the two most sensitive
parameters are parameters 5 and 4, respectively, based on both the
first order and total SA indices. The SPC based Sobol’ method provides
excellent matches with MCS-based Sobol’ method. Fig. 12 displays the
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Fig. 9. Convergence of the estimates of the second order indices for different parameter pairs. Error bounds are calculated by bootstrap resampling.

Fig. 10. A schematic of the SAC-SMA model (Tang et al., 2007).

RMSE values of the estimates of the first order and total SA indices
calculated by SPC, GPR and PC-Kriging SA methods. Compared with
the GPR and PC-Kriging methods, SPC method is also effective for
identifying first and total order effects.

Next, the effectiveness in estimating the second order SA indices is
considered. The second order results for the MCS-based Sobol’ and SPC-
based Sobol’ methods are given in Fig. 13, which shows that parameter
pairs {9, 11}, {10, 11} and {5, 8} have the largest interaction effects.
Note that when the sample size for the SPC method reaches 910 or
more, the results of SPC-based and MCS-based Sobol’ methods are
very similar. Fig. 14 exhibits the RMSE values of the estimates of the
second order sensitivity indices calculated by SPC, GPR and PC-Kriging
methods, respectively. Similarly, the SPC method shows a better con-
vergence behavior than the GPR and PC-Kriging methods. In addition,
for the training time of various methods, the time consumption of SPC is
the least. For sample sets {130, 390, 650, 910, 1300}, the SPC method

can save {2, 3, 2, 1, 1} times against the GPR method and {5, 5, 2, 2,
1} times against the PC-Kriging method, respectively.

The LZPK (parameter 11), which is about the lateral drainage rate of
lower zone supplementary free water, has significant interaction with
the LSFSM (parameter 9) and LZFPM (parameter 10), because the three
parameters are about the free water in the lower zone. LZPK controls
the drainage rate, while LZFPM controls the storage capacity of the
lower zone primary free water (slower). LZPK also have interactions
with LZFSM, which controls the storage of supplementary free water
(faster). The strong interactions between the three parameters indicated
that these processes are highly correlated and with only the observation
of streamflow, it will be not easy to identify the values of them. The
interaction between ADIMP (parameter 5) and LZTWM (parameter 8),
as well as many other moderate interaction effects, indicated that in
SAC-SMA there are many not overwhelmingly strong but nonnegligible
interactions that make a great challenge to parameter calibration. The
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Fig. 11. The first and total order sensitivity indices obtained by MCS-based and SPC-based methods.

Fig. 12. The comparison of the RMSE values of the first and total order SA indices by three meta-model based SA methods.

interaction effects are the inherent reason of equifinality, and the quan-
tification of interaction effects will provide a lot of useful information
to understand the uncertainty of hydrological models.

3.3.2. Robustness of the SPC method in calculating interaction effects
The robustness of the SPC method using different samples sizes

in obtaining reliable estimates of different SA indices is analyzed. In
order to test the convergence behavior, a robustness study is designed
to estimate first and second order indices for a set of increasingly
larger experimental designs with a maximum of N = 2000. Confidence
bounds for each estimate are calculated by means of bootstrap method
(using 100 bootstrap replicates). The results of the convergence of the
estimates of the first order indices for six most sensitive parameters
(e.g., parameters 5, 4, 1, 8, 12 and 11) are shown in Fig. 15 (violin
graph). Similarly, the Sobol’ total effect indices are not shown because
their convergence behavior is essentially identical to that of the first
order indices. From Fig. 15, it is clear that reasonably good estimates of
the first order indices are already obtained with 390 model evaluations
(i.e. the sample size is 30 times as large as the number of parameters).

For the robustness of the second order SA indices estimates, the con-
vergence behavior of the estimates of the Sobol’ second order indices
as a function of the experimental design sizes is shown in Fig. 16 for
the three parameter pairs with the largest second order Sobol’ indices
(e.g., pairs {9, 11}, {10, 11} and {5, 8}). Fig. 16 shows clearly that
reasonably good estimates of the second order indices can be obtained
with 910 model evaluations (i.e. the sample size is 70 times as large as
the number of parameters).

4. Discussion

As discussed in Razavi and Gupta (2015), the variance-based ap-
proach is the most commonly used approach that provides a global
measure of interaction effects. The Sobol’ type sensitivity analysis
method is a variance-based SA method. However, the way that Sobol’
SA indices are computed can lead to negative variances, as the for-
mulation contains pluses and minuses terms. Due to sampling errors
(especially when the sample size is relatively small), the minus terms
can dominate and lead to negative values. This work conducted an
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Fig. 13. The second order SA indices obtained by MCS-based with 1000,000 parameter samples and the SPC-based method with different sample sizes. The color legends and
shading represent the Sobol’ indices’ magnitudes and ranges.

Fig. 14. The comparison of the RMSE values of the second order sensitivity indices by three meta-model based SA methods.

evaluation of parameter interaction effect based on Sobol’s definition
of SA indices. The second order interaction effects based on two meta-
model based Sobol’ methods evaluated in this study (i.e., GPR and
PC-Kriging) can result in negative values in SA indices. This is not an
artifact of the ANOVA decomposition, but rather is due to the sampling
errors that are inherent in Monte Carlo simulations in those Sobol’
methods. The SPC SA method presented in this study does not have
this problem and provides more reliable estimates of the SA indices.

With the knowledge of not only the main effects but also the
interaction effects, the parameters can be optimized more accurately.
As in the case of the Ishigami test function in this paper, parameter
𝑥3 is of zero main effect, but has strong interaction with parameter
𝑥1, under which situation interaction effects should not be ignored. Shi
et al. (2019) have shown that in analyzing the sensitivity of parameters
of the Earth system model of intermediate complexity (LOVECLIM),
the parameter interaction effects cannot be ignored in identifying the
optimal model parameters. Their results showed that all ocean-related

parameters have shown only a little sensitivity in the time scale of thou-
sands of years. But as the ocean processes control the climate variability
through their interactions with other earth system components such
as land and atmospheric systems, the ocean-related parameters should
be considered in parameter optimization. Huang et al. (2018), who
examined the parameter optimization of a single column community
atmosphere model, pointed out that the optimization metrics improved
by 67% by considering interaction effects.

The sensitivities of model parameters are dependent on the choice
of objective functions. Here the root mean square error (RMSE) is
chosen as the objective function, which is commonly used in model
calibration (parameter identification). The role of objective function’s
selection on the implementation and interpretation of parameter inter-
action evaluation is vital. RMSE depicts different behavior compared to
other objective functions such as Nash–Sutcliffe efficiency coefficient
(NSE) and Kling–Gupta efficiency coefficient (KGE) that would yield
different results. In recent studies (Gupta and Razavi, 2018; Razavi and



Environmental Modelling and Software 125 (2020) 104612

12

H. Wang et al.

Fig. 15. Convergence of the estimates of the first order indices for different parameters. Error bounds are calculated by bootstrap resampling.

Fig. 16. Convergence of the estimates of the second order indices for different parameter pairs. Error bounds are calculated by bootstrap resampling.

Gupta, 2019), the filtering role of objective functions when used in
sensitivity analysis was discussed. Because sensitivity analysis is not
only for parameter optimization, it can have other applications. One
of the applications is to support a better understanding of the model
behaviors. For example, interaction effects can improve understanding
of the interaction processes and mechanisms in model simulations.

As discussed in Razavi et al. (2012b) and Harenberg et al. (2019),
due to the randomness inherent in DoEs, a robust numerical assessment
is needed for a meta-modeling method. Therefore, for the robustness of
the SPC method in calculating interaction effects, we apply the boot-
strap resampling technique (Efron, 1979) to SPC method. Because the
bootstrap resampling technique can easily be performed without adding
to the overall computing cost of GSA, the efficiency analysis does not
require extra model evaluations. Our results show that the SPC method

needs about 300 samples (30 times the parameter dimension) and 910
samples (70 times the parameter dimension) to evaluate the interac-
tion effects of the HBV-SASK and SAC-SMA models, respectively. The
computational cost for interaction effects can depend on the number of
interaction effects. For a n-dimensional model, its number of interaction
effects is 𝑛(𝑛 − 1)∕2. The more the number of interaction effects, the
more complex the model may be. The complexity of (the original)
model structure is an important factor affecting the performance of
meta-modeling. Therefore, the computational cost of interaction effects
is closely related to the number of model parameters. From the results
of robustness assessment, as the sample size increases, the confidence
intervals of interaction effects narrow. It shows the robustness of our
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Table 3
The description of the parameters of the HBV-SASK model.

No. Random
variables

Description Range

1 TT Air temperature threshold in ◦C for
melting/freezing and separating rain and snow

[−4, 4]

2 CO Base melt factor, in mm/◦C per day [0, 10]
3 ETF Temperature anomaly correction in 1/◦C of

potential evapotranspiration
[0, 1]

4 LP Limit for PET as a multiplier to FC, that is, soil
moisture below which evaporation becomes
supply limited

[0, 1]

5 FC Field capacity of soil, in mm. The maximum
amount of water that the soil can retain

[50, 500]

6 𝛽 Shape parameter (exponent) for soil release
equation (unitless)

[1, 3]

7 FRAC Fraction of soil release entering fast reservoir
(unitless)

[0.1, 0.9]

8 K1 Fast reservoir coefficient, which determines
what proportion of the storage is released per
day (unitless)

[0.05, 1]

9 𝛼 Shape parameter (exponent) for fast reservoir
equation (unitless)

[1, 3]

10 K2 Slow reservoir coefficient, which determines
what proportion of the storage is released per
day (unitless)

[0, 0.05]

Table 4
The description of the parameters of the SAC-SMA model.

No. Random
variables

Description Range

1 UZTWM Upper zone tension water maximum storage
(mm)

[5.0, 300.0]

2 UZFWM Upper zone free water maximum storage
(mm)

[5.0, 150.0]

3 UZK Upper zone free water lateral drainage rate
(day−1)

[0.1, 0.75]

4 PCTIM Impervious fraction of the watershed area
(decimal fraction)

[0.0, 0.1]

5 ADIMP Additional impervious area (decimal
fraction)

[0.0, 0.4]

6 ZPERC Maximum percolation rate (dimensionless) [5.0, 350.0]
7 REXP Exponent of the percolation equation

(dimensionless)
[1.0, 5.0]

8 LZTWM Lower zone tension water maximum storage
(mm)

[10.0, 700.0]

9 LZFSM Lower zone supplemental free water
maximum storage (mm)

[5.0, 500.0]

10 LZFPM Lower zone primary free water maximum
storage (mm)

[100.0, 1200.0]

11 LZSK Lower zone supplemental free water lateral
drainage rate (day−1)

[0.01, 0.6]

12 LZPK Lower zone primary free water lateral
drainage rate (day−1)

[0.001, 0.05]

13 PFREE Fraction of water percolating from upper
zone directly to lower zone free water
(decimal fraction)

[0.0, 0.9]

results. By the robustness assessment and convergence analysis, con-
firming that the estimation of interaction effects is accurate enough to
make a solid conclusion. In addition, the impact of employing different
sampling strategies on the results of sensitivity analysis is different.
Here, the Sobol’ sequence sampling is chosen to construct a surrogate
model (Wang et al., 2014).

Finally, it must be noted that a limitation of Sobol’ based method
is that it only exists in the case of independent input variables. When
the parameters are correlated, the so-called analysis of covariance
(ANCOVA) method may be needed to generalize the Sobol’ decompo-
sition for models with correlated inputs to calculate sensitivity indices
(Caniou, 2012).

5. Conclusion

In this work, the second order interaction effects of model param-
eters are studied. The SPC SA method was tested on four case stud-
ies, including two mathematical functions, namely the 3-Dimensional
Ishigami and 30-Dimensional Sobol’ G function and two hydrological
models, namely 10-Dimensional HBV-SASK model and 13-Dimensional
SAC-SMA model. Compared with the classical Sobol’ and meta-model
based Sobol’ SA methods, the effectiveness and efficiency of the SPC
method in the second-order sensitivity analysis are shown. The investi-
gation we have carried out leads to reference takeaways for the analysis
of hydrological models as well as for the practice of sensitivity analysis:
(1) which method can calculate all the interaction effects effectively;
and (2) how much computational cost is required to achieve the robust
interaction effects.

When the expansion of SPC is available, the advantage of SPC
method is that the Sobol’ indices at any order may be computed
analytically. Hence, as one of meta-model based SA, the approach
not only avoids expensive computing, but also avoids sampling errors
from the Monte Carlo simulation. The SPC method is shown to be
one effective and efficient sensitivity analysis method for calculating
interaction effects. It has much potential for further applications. For
instance, the parameters may be optimized reasonably by combining
main effects and interaction effects. Further studies should be as well
focused on general application to other uncertainty quantification cases
such as large complex dynamical system models, which would be of
great significance on practical application.
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Appendix A. Sobol’ sensitivity analysis method

In Sobol’ method (Sobol, 1993), the variance of the model output is
decomposed into components that result from individual parameters
as well as parameter interactions. Conventionally, the direct model
output is replaced by a model performance measure such as RMSE
as used in this study. The sensitivity of each parameter or parameter
interaction is then assessed based on its contribution (measured as
a percentage) to the total variance computed using a distribution of
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model responses. Assuming the parameters are independent, the Sobol’
variance decomposition is:

𝐷(𝑌 ) =
∑

𝑖
𝐷𝑖 +

∑

𝑖<𝑗
𝐷𝑖𝑗 +

∑

𝑖<𝑗<𝑘
𝐷𝑖𝑗𝑘 +⋯ +𝐷12...𝑛, (A.1)

where 𝐷𝑖 is the measure of the sensitivity to model output y due to
the 𝑖th component of the input parameter vector, 𝐷𝑖𝑗 is the portion of
output variance that results due to the interaction between parameters.
The variable 𝑛 defines the total number of parameters. The sensitiv-
ity of parameters and interaction between parameters is obtained by
normalizing the above formula,

1 =
∑

𝑖

𝐷𝑖
𝐷(𝑌 )

+
∑

𝑖<𝑗

𝐷𝑖𝑗

𝐷(𝑌 )
+

∑

𝑖<𝑗<𝑘

𝐷𝑖𝑗𝑘

𝐷(𝑌 )
+⋯ +

𝐷12...𝑛
𝐷(𝑌 )

, (A.2)

the variance decomposition shown in Eq. (A.2) can be used to define
the sensitivity indices of different orders as

𝑆𝑖 =
𝐷𝑖
𝐷

,𝑆𝑖𝑗 =
𝐷𝑖𝑗

𝐷
,𝑆𝑇 𝑖 = 1 −

𝐷∼𝑖
𝐷

, (A.3)

where 𝑆𝑖 is the first order sensitivity index (main effect), 𝑆𝑖𝑗 is the
second order sensitivity index (interaction effect) and 𝑆𝑇 𝑖 is the total
order sensitivity index (total effect).

The original Sobol’ method required 𝑛 ∗ (2𝑚 + 1) model runs to
calculate all the first, second order and total order sensitivity indices.
An enhancement of the method made by Saltelli (2002) provides the
first, second and total order sensitivity indices using 𝑛 ∗ (2𝑚+2) model
runs. In this study, this modified version of Sobol’ methodology is
chosen to compute the first order, second order and total order indices.

Appendix B. Gaussian process regression-based Sobol’ sensitivity
analysis method

Gaussian process regression (GPR) is a machine learning method
based on statistical learning theory and Bayesian theory. A Gaussian
process regression meta-model is described by the following equation
(Santner et al., 2003; Rasmussen and Williams, 2006; Dubourg, 2011;
Lataniotis et al., 2018)

𝑌 (𝒙) = 𝜷𝑇 𝑓 (𝒙) + 𝜎2𝑍(𝒙, 𝜔), (B.1)

the first term in Eq. (B.1), 𝜷𝑇 𝑓 (𝒙), is the mean value of the Gaussian
process (i.e. trend) and it consists of the regression coefficients {𝛽𝑗 , 𝑗 =
1,… , 𝑃 } and the basis functions {𝑓𝑗 , 𝑗 = 1,… , 𝑃 }. The second term
in Eq. (B.1) consists of 𝜎2, the variance of the Gaussian process and
𝑍(𝒙, 𝜔), a zero mean, unit variance, stationary Gaussian process. The
𝑍(𝒙) is fully determined by the auto-correlation function between two
input sample points 𝑅(𝒙,𝒙′) = 𝑅(|𝒙 − 𝒙′|;𝜽) due to stationarity, where
𝜽 are hyper-parameters to be computed.

The Gaussian assumption states that the vector formed by the true
model responses, 𝒚 and the prediction, 𝑌 (𝒙), has a joint Gaussian
distribution defined by
{

𝑌 (𝒙)
𝒚

}

∼ 𝑁+1

({

𝜷𝑓 (𝒙)𝑇
𝜷𝑭

}

, 𝜎2
{

1 𝒓𝑇 (𝒙)
𝒓(𝒙) 𝑹

})

(B.2)

where 𝑭 is the information matrix of generic terms 𝐹𝑖𝑗 = 𝑓𝑗 (𝒙𝒊), 𝑖 =
1,… , 𝑁, 𝑗 = 1,… , 𝑃 . 𝒓(𝒙) is the vector of cross-correlations between
the prediction point x and each one of the observations whose terms
read 𝒓𝒊 = 𝑅(𝒙,𝒙𝒊;𝜽), 𝑖 = 1,… , 𝑁 . 𝑹 is the correlation matrix whose
terms read 𝑅𝑖𝑗 = 𝑅(𝒙𝒊,𝒙𝒋 ;𝜽), 𝑖, 𝑗 = 1,… , 𝑁 .

Then the mean and variance of the Gaussian random variate Y(x)
(a.k.a. mean and variance of the GPR predictor) can be calculated

𝜇𝑌 (𝒙) = 𝜷𝑓 (𝒙)𝑇 + 𝒓(𝒙)𝑇𝑹−1(𝒚 − 𝑭𝜷) (B.3)

𝜎2
𝑌
(𝒙) = 𝜎2(1 − 𝒓(𝒙)𝑇𝑹−1𝒓(𝒙) + 𝒖(𝒙)𝑇 (𝑭 𝑇𝑹−1𝑭 )−1𝝁(𝒙)) (B.4)

where 𝜷 = (𝑭 𝑇𝑹−1𝑭 )−1𝑭 𝑇𝑹−1𝒚 is the generalized least-squares esti-
mate of the underlying regression problem and 𝒖(𝒙) = 𝑭 𝑇𝑹−1𝒓(𝒙) −

𝒇 (𝒙). Then predictions for new points can be made in terms of the mean
and variance of 𝑌 (𝑥), using Eqs. (B.3) and (B.4).

Finally, combining with Sobol’ method, Gaussian process regression-
based sensitivity analysis method can be carried out. The Sobol’ sensi-
tivity indices can be calculated by means of samples of input parameters
and the mean values of GPR output. It needs to be estimated at the cost
of 𝑁 = 𝑛 ∗ (2𝑚 + 2) model evaluations when using Sobol’ sampling.

In this work, for the selection of correlation function and trend
for Gaussian process regression, the Matérn-5/2 covariance kernel is
considered with a constant yet unknown trend. The hyper-parameters
are estimated with the maximum likelihood method and are solved by
using the hybrid genetic algorithm. We select about 200,000 samples
to calculate the sensitivity indices through Sobol’ sampling method.

Appendix C. Polynomial Chaos Kriging-based Sobol’ sensitivity
analysis method

Kriging (a.k.a. Gaussian process regression) interpolates the local
variations of Y as a function of the neighboring experimental design
points, whereas polynomial chaos approximates well the global behav-
ior of Y. By combining the global and local approximation of these
techniques, the polynomial-chaos-Kriging metamodel is achieved. The
polynomial-chaos-Kriging (PC-Kriging) is defined as a universal Kriging
model the trend of which consists of a set of orthonormal polynomials
(Kersaudy et al., 2015; Schobi et al., 2019):

𝑌 (𝒙) =
∑

𝜶∈
𝑎𝜶𝛹𝜶(𝝃) + 𝜎2𝑍(𝒙, 𝜔), (C.1)

where ∑

𝜶∈ 𝑎𝜶𝛹𝜶(𝝃) is a weighted sum of orthonormal polynomials
describing the trend of the PC-Kriging model, 𝜎2 and 𝑍(𝒙, 𝜔) denote the
variance and the zero mean, unit variance, stationary Gaussian process,
respectively, as introduced in Appendix B. Hence, PC-Kriging can be
interpreted as a universal Kriging model with a specific trend.

Constructing a PC-Kriging model consists of two parts: the deter-
mination of the optimal set of polynomials contained in the trend and
the calibration of the Kriging model. The two parts can be combined
in various ways. Sequential PC-Kriging and optimal PC-Kriging can be
implemented.

Finally, combining with Sobol’ method, Gaussian process regression-
based sensitivity analysis method can be carried out. The Sobol’ sensi-
tivity indices can be calculated by means of samples of input parameters
and the mean values of PC-Kriging output. It needs to be estimated at
the cost of 𝑁 = 𝑛 ∗ (2𝑚 + 2) model evaluations when using Sobol’
sampling.

In this work, the sequential PC-Kriging is chosen. The optimal set
of polynomials is determined by sparse polynomial chaos based on
least angle regression (LAR), and the adaptive polynomial degree is
set as 2 < 𝑝 < 5. For the selection of correlation function and trend
for Gaussian process regression, the Matérn-5/2 covariance kernel is
considered with a constant yet unknown trend. The hyper-parameters
are estimated with the maximum likelihood method and are solved by
using the hybrid genetic algorithm. Similarly, we select about 200,000
samples to calculate the sensitivity indices through Sobol’ sampling
method.
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