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Five scenarios from the Coupled Model Intercomparison Project Phase 6 were chosen
as the inputs of the integrated model in the Mekong River Delta (MRD). Results
showed that rice yields will be vulnerable to extreme climate events. The minimum
autumn rice yield, 4.7 ton/ha in 2023 under the SSP1-2.6 scenario, will be as low as
the yield of the 2016 drought year (4.6 ton/ha). Power generation will increase sharply
due to socio-economic development. The power generation of SSP5-8.5 in 2050 will
be about 10 times higher than that in 2010. The average total water withdrawal in 2050
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Abstract:  11 
Food, energy, and water (FEW) resources are critical concerns to achieve long-term sustainability. Climate change 12 
and socio-economic development both affect the FEW Nexus, but the combined impacts of these two factors on 13 
a Nexus system is not well understood. An integrated management model was applied to quantify the combined 14 
impacts on the FEW Nexus through rice yield, power generation, and water withdrawal. Five scenarios from the 15 
Coupled Model Intercomparison Project Phase 6 were chosen as the inputs of the integrated model in the Mekong 16 
River Delta (MRD). Results showed that rice yields will be vulnerable to extreme climate events. The minimum 17 
autumn rice yield, 4.7 ton/ha in 2023 under the SSP1-2.6 scenario, will be as low as the yield of the 2016 drought 18 
year (4.6 ton/ha). Power generation will increase sharply due to socio-economic development. The power 19 
generation of SSP5-8.5 in 2050 will be about 10 times higher than that in 2010. The average total water withdrawal 20 
in 2050 was estimated to increase by 40% compared to that in the 2016 drought year and will be more than 3 21 
times higher than the average withdrawal of 1995-2010. Nexus analysis found water is a central resource that 22 
connects food and energy sectors in MRD. Regional sustainability analysis showed that climate change and socio-23 
economic development both have a significant impact through affecting the FEW Nexus. Specifically, the energy 24 
and water sectors will be more vulnerable to the combined impacts than the food sector due to the coal-fired power 25 
plants planned in the MRD. 26 
 27 
Keywords: FEW Nexus; impact analysis; climate change; socio-economic development; Mekong River Delta 28 
  29 

1. Introduction  30 

Food, energy, and water (FEW) resources are critical concerns to achieve the United Nations 31 

2030 Sustainable Development Goals (SDGs, Liu et al., 2017a). Achieving food, energy, and 32 

water security is under increasing pressure owing to climate change as well as socio-economic 33 

development. Food demand is projected to increase by 50% from 2015 to 2050 due to 34 

population growth, urbanization, and personal income increases (FAO, 2017). Additionally, 35 

energy demand is projected with a factor of 1.7-2.8 increase above current uses by 2050 due to 36 

socio-economic developments (Van Ruijven et al., 2019). On top of that, climate change makes 37 

water become a growing constraint for food production and energy generation. An additional 38 

120 million people are projected to be at risk of undernourishment as a result of climate change 39 

(FAO, 2017). Drought reduced hydro- and thermal-power generation by 5.2% and 3.8% 40 

compared to the long-term average during 1981-2010 at a global scale (Van Vliet et al., 2016). 41 

Therefore, understanding the impacts of both climate change and socio-economic development 42 

through food, energy, and water resources is not only important for the SDG2 (zero hunger), 43 

SDG6 (clean water and sanitation), and SDG7 (affordable and clean energy) but also critical 44 

for the other SDGs which are closely linked to these three resources (Liu et al., 2020). 45 

 46 

The nexus approach, which “integrates management and governance across sectors and scales” 47 

was first introduced in the Bonn 2011Conference and was recognized as an effective approach 48 

to achieving sustainable management of food, energy, and water resources (Hoff, 2011). Thus, 49 

there is an increasing number of Nexus research since 2011(Zhang et al., 2020). Great progress 50 

has been made in understanding the interaction among food, energy, and water systems, which 51 

laid a solid foundation for the theoretical research and practical process of sustainable 52 
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development (Leck et al., 2015; Endo et al., 2017; Galaitsi et al., 2018; Van Vuuren et al., 53 

2019). The research content has moved from the single and the interaction of two sectors to the 54 

Nexus approach (Endo et al., 2017). Research questions have shifted from how the change of 55 

a single sector affects the other two sectors to the impact of multiple sector changes on the 56 

Nexus (Tashtoush and Shah,2019). Further, an increasing number of researchers adopt 57 

quantitative methods instead of qualitative analysis (Albrecht et al., 2018).  58 

 59 

However, there is still insufficient understanding of the FEW Nexus especially a 60 

comprehensive understanding of the impacts of both climate change and socio-economic 61 

development (Liu et al., 2017b). On the one hand, climate change poses severe impacts on the 62 

FEW Nexus through altering crop yields, changing hydro-power potential and cooling water 63 

usage, and affecting the hydrological cycle due to the changing temperature and precipitation 64 

at both spatial and temporal scales (Howells et al., 2013; Conway et al., 2015; Mpandeli et al., 65 

2018). On the other hand, FEW Nexus such as resource demand and consumption are affected 66 

by the socio-economic development through the population and economic growth, 67 

technological improvement, land-use changes, and resources management (Lawford et al. 2013; 68 

OFID, 2017; Velasco-muñoz et al., 2019). The understanding of the combined impact of 69 

climate change and socio-economic development through FEW Nexus is still limited (Evers 70 

and Pathirana, 2018) due to the difficulties to develop scenarios considering both climate 71 

change and socio-economic development in the future and to quantify the interconnections of 72 

food, energy, and water systems.   73 

 74 

In this research, an integrated water resources management model (Wang et al., 2019) was 75 

adopted to simulate the regional rice production, power generation, and water demands under 76 

various scenarios from the Coupled Model Intercomparison Project Phase 6 (CMIP6) that 77 

consider both climate change and socio-economic pathways. The various model results were 78 

further used to quantify the overall impacts on regional sustainability through the FEW Nexus.  79 

 80 

2. Study Area   81 

The Mekong River Delta (in Vietnam) is located downstream of the Mekong River Basin 82 

(Figure 1) with an area of 40,500 km2 and is the home of 17.8 million people in 2018 (MDP, 83 

2020; GSO, 2020). As the “rice bowl” of the nation, the delta is critical for the national food 84 

security with more than 56% rice production of Vietnam in 2015 (GSO, 2016), and thus plays 85 

a key role in Southeast Asia and global context through food trade (MDP, 2020). The delta has 86 

two seasons, which are the dry season from November to April and the wet season from May 87 

to October. The annual average rainfall is about 1400-2200 mm, and the average monthly flow 88 

is from 6.1 km3 to 69.2 km3 (Tuu et al., 2019). Hydropower is not the energy source of MRD 89 

(Yoshida et al., 2020; World Bank Group, 2014), and the delta is planned as a thermal power 90 

center with 14 new coal-fired plants by 2030 due to the nation’s high growth power demand, 91 

which increased more than 10% per year during 1990-2010 (Kyushu Electric Power, 2015).  92 

 93 
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 94 
Figure 1. The Mekong River Delta 95 

 96 

The delta is facing growing challenges due to climate change and socio-economic development. 97 

The annual rainfall has experienced a 30% increase and the average temperature increased by 98 

0.5oC in the past 30 years (MDP, 2020). Climate change is projected to increase the average 99 

temperature by 1.1~3.6oC, and the maximum and minimum monthly flow are projected to 100 

increase and decrease, respectively (MDP, 2020). This will result in a high risk of flood during 101 

the wet season and water shortages during the dry season. Further, new planned thermal plants 102 

are expected to cause adverse impacts on the environment and intensify water conflicts among 103 

various water-use sectors (Kyushu Electric Power, 2015). Thus, a comprehensive 104 

understanding of the impacts of climate change and socio-economic development through the 105 

FEW Nexus is extremely important to achieve regional resource security and long-term 106 

sustainability (MDP, 2020). Although the MRD was focused on this research, the 107 

comprehensive understanding could contribute to identifying sensitive resource sectors and 108 

supporting policy assessment and planning under the impact of climate change and socio-109 

economic development in regions that face similar issues.  110 

 111 

3. Method 112 

3.1. An IWRM-based Model  113 

An integrated management model was used in this research to quantify climate change and 114 

socio-economic development impacts through the FEW Nexus. The model was developed 115 

using system dynamics (SD) methodology to capture the interactions among the disparate but 116 

interconnected subsystem at an annual scale, as SD is useful for integrating physical processes, 117 

socio-economic, and environmental systems to support integrated resources management 118 

(Davies and Simonovic, 2011). SD has been widely used to improve understanding of complex 119 

system behaviours by identifying their root causes, and assess the effectiveness of alternative 120 

policies through scenario building, sensitivity analysis, and gaming approaches (Savic et al., 121 

2016; Wang and Davies, 2018). 122 
 123 
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The model was developed for Integrated Water Resources Management (IWRM) and includes 124 

main water use sectors: agricultural, municipal, industrial, environmental, and recreational 125 

water uses, as well as the water supply (Wang et al., 2019). These sectors are connected through 126 

water allocations and various land, water, and technical management policies. The model 127 

simulates water balance including water demands, allocation, and consumption, and further 128 

generates socio-economic and environmental indicators for sustainability assessment at the 129 

basin scale.  130 

 131 

This research adopted the agricultural, industrial, water use, and supply sectors to quantify the 132 

changes of FEW Nexus under various climate change and socio-economic scenarios (Figure 133 

2). Rice accounts for about 80% of surface irrigation withdrawal and is recognized as a major 134 

driving factor of water competition in the MRD (Nhan et al., 2007). Coal-fired power will be 135 

the main energy source, which will take over 50% of power capacity (Kyushu Electric Power, 136 

2015). Therefore, the agricultural and industrial sectors simulate rice yield and thermal power 137 

generation, and water withdrawal is thus used for irrigation and cooling purposes. The water 138 

sector connects food and energy sectors through water allocation based on available water each 139 

year, and competition between food and energy sectors happens when their demands cannot be 140 

fully satisfied. Various RCP-SSP scenarios were set to drive the changes of rice planting area, 141 

thermal power demand, available water for allocation, and climate variables such as 142 

precipitation. These changes further affect irrigation and cooling water requirements, rice yield, 143 

and power generation. Detailed information of each sector including equations, mechanisms, 144 

interactions, and assumptions is provided in Appendix A. Please also refer to Wang et al. (2019) 145 
and Wang and Davies (2015) for a further description of the IWRM-based model structures. 146 
 147 

 148 
Figure 2. The conceptual structure of the integrated water management model used for MRD with 149 

bolded key variables and scenarios impact in red arrows. 150 
 151 
3.2. Data Sources 152 

The integrated management model was adapted to the Mekong River Delta using the following 153 

data sources. Crop parameters were from Nhan et al. (2007) and Arthi et al. (2018), and the 154 

rice yields and area data were from GSO (2020). Socio-economic data such as population and 155 

GDP were from Riahi et al. (2017) and GSO (2020). Hydrology and climate data were from 156 
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the Mekong River Commission (MRC, 2020) and CMIP6 (O’Neill et al., 2016). Water-use 157 

data were estimated based on Huang et al. (2018). Energy demand and water efficiency were 158 

initialized based on Kyushu Electric Power (2015) and Nguyen et al. (2018).  159 
 160 
3.3. Sustainability Index 161 

The simulated results were adopted to evaluate the sustainability of the five scenarios under 162 

the context of climate change and socio-economic development. According to Kulat et al. 163 

(2019), the sustainability index (SI) of each scenario was calculated based on the resources 164 

index (RI) and weighting factors (Wf), see Equation (1). Therefore, scenarios can be compared 165 

according to the index values, which means a higher index represents more sustainable 166 

conditions. Each scenario has three resources index which was normalized by using the output 167 

of this scenario divided by the maximum output of all scenarios for a variable such as power 168 

demand and water withdrawal (Equation 2). The resource index for food was calculated using 169 

Equation (3) as a higher yield represents more sustainability. The weighting factor was used to 170 

reveal the importance of the resources to scenario sustainability.  171 

 172 

𝑆𝐼 = 1 −∑𝑅𝐼  ×𝑊𝑓 (1) 

𝑅𝐼 =

{
 

 
𝑂𝑢𝑡𝑝𝑢𝑡

𝑚𝑎𝑥 (𝑂𝑢𝑡𝑝𝑢𝑡)
  

1 −
𝑂𝑢𝑡𝑝𝑢𝑡

max(𝑂𝑢𝑡𝑝𝑢𝑡)
   

 

(2) 

(3) 

 173 

3.4. Scenario Setup 174 

This study adopted SSP-RCP (SSP: Shared Socioeconomic Pathway, RCP: Representative 175 

Concentration Pathway) scenarios from the Coupled Model Intercomparison Project Phase 6 176 

(CMIP6), whereby, SSP described socio-economic futures and RCP described climate futures. 177 

The integration of climate and socio-economic futures allows CIMIP6 scenarios to be used to 178 

explore the future conditions of the FEW Nexus comprehensively (O’Neill et al., 2016). 179 

 180 

According to levels of socio-economic challenges for mitigation and adaptation, five SSPs are 181 

defined for IPCC Sixth Assessment Report (AR6), from the most sustainable SSP1 (low levels 182 

of challenges for both mitigation and adaptation) to the most fossil-fueled SSP5 (high levels of 183 

challenges for both mitigation and adaptation). RCPs are labeled after the projected radiative 184 

forcing values in 2100 induced by greenhouse gas emissions in the years to come. For example, 185 

RCP2.6 represents the projected 2.6 W/m2 radiative forcing in the year 2100. To quantify the 186 

concurrent effects of socio-economy and climate, the future scenario setting in this study 187 

comprises five representative SSP-RCP combinations. Specifically, SSP5-8.5 represents the 188 

case of future pathways with high emissions of greenhouse gas and a high challenge to 189 

mitigation and adaptation. SSP4-6.0 is in the range of medium forcing pathways with a high 190 

challenge to adaptation, and SSP3-7.0 represents medium-high future mitigation and forcing 191 

pathway. SSP2-4.5, the middle of the road, combines intermediate challenges for mitigation 192 

and forcing signal. Finally, SSP1-2.6 is the case with low societal vulnerability and forcing 193 

level. 194 

 195 

To reduce projection uncertainties, ensemble modelling results of future precipitation and 196 

temperature were used as inputs of the integrated management model. The modelling results 197 

were simulated by five Earth System Models (ESMs) under CMIP6 experimental protocol 198 

(Pincus et al., 2016), including CESM2, GFDL-ESM4, GISS-E2-G, HadGEM3, and MIROC. 199 
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Additionally, future trends of national GDP and population from the five scenarios were used 200 

to drive the changes in power demand and rice planting area, respectively. Next, simulation 201 

results were normalized to calculate the resources index (RI) and further multiplied by 202 

weighting factors (Wf) to obtain the sustainability index (SI) of the five scenarios. Four types 203 

of weighting factors (Table 1), which represent the importance of the resources to regional 204 

sustainability, were used to enable ranking the five scenarios concerning the priority for food, 205 

energy, and water resources as well as all equal conditions. Note that, values set for weighting 206 

factors in Table 1 were used to show examples of different resource importance and enable 207 

ranking the scenarios, and actual weighting factors can be determined by stakeholders' view.    208 

 209 

Table 1. Weighting factors for food, energy, and water resources 210 

 Food-first Energy-first Water-first All Equal 

Food 0.50 0.25 0.25 1/3 

Energy 0.25 0.50 0.25 1/3 

Water 0.25 0.25 0.50 1/3 

 211 

4. Results and Discussion 212 

4.1. Model Validation  213 

Modified to the Mekong River Delta, the model was tested under several extreme conditions 214 

to ensure it generated reasonable results even with extreme model parameters. Further, a 215 

sensitivity analysis was also used to investigate model responsiveness to important 216 

uncertainties of model equations and parameters to improve confidence in model performance. 217 

Examples of extreme condition texts and sensitivity analysis are provided in Appendix A.  218 

 219 

Key model outputs such as rice yields, water withdrawal, and power generation were compared 220 

with historical data and trends for the Mekong River Delta in Figure 3 to ensure the model 221 

could replicate historical behaviour. The coefficient of determination (R2) and normalized root 222 

mean square error (NRMSE) were used to evaluate the magnitude of variance explained by the 223 

model compared with the total observed variance, and the percentage of differences (between 224 

simulated and observed values) in the mean actual value. In general, the model outputs 225 

explained most of the actual data with acceptable errors, see Figure 3a and Figure 3c. Note that, 226 

the simulated rice irrigation withdrawal was compared with the total irrigation withdrawal, 227 

including rice and other crops, as the actual irrigation withdrawal for rice was not available. 228 

As a result, the simulated withdrawal for rice had the same trends of regional total withdrawal 229 

for most of the years (Figure 3b). The difference between the trends of rice and total withdrawal 230 

could due to regional crop pattern changes. For example, rice withdrawal in 1998 decreased 231 

due to more precipitation than in 1997, and the total irrigation increased because of the 232 

expansion of many water-intensive crops such as cotton, sugarcane, soya, and fruit (GSO, 233 

2020).  234 

 235 
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 236 

Figure 3. Model simulation and observed data 237 

 238 

4.2. Model Results  239 

This section explores the impacts of climate change and socio-economic development through 240 

the FEW Nexus system. The five SSP-RCP scenarios represent a wide range of plausible 241 

climate and socio-economic conditions in the Mekong River Delta and were used to explore 242 

their impacts on the food, energy, water sectors, and FEW Nexus, see Figure 4-6. Further, SI 243 

of five climate and socio-economic scenarios under food-, energy-, and water-first as well as 244 

all equal conditions during 2020-2050 are shown in Table 2. 245 

 246 

Figure 4 shows rice yield, power generation, and precipitation of five SSP-RCP scenarios from 247 

2020 onwards. On the one hand, the increased yield trends of three rice types in all scenarios 248 

were due to the technical improvement, whose impacts were assumed based on the historical 249 

data. To maintain the yield growth trend is a challenging task, and the Vietnam government 250 

recognizes technical improvement, especially biotechnology, as a decisive strategy to achieve 251 

long-term food security (Thang and Hoa, 2016). On the other hand, yields of all three rice types 252 

were vulnerable to future climate and socio-economic changes, and this finding agrees with the 253 

results found by Thuy and Anh (2015). Specifically, spring rice yields were projected to follow 254 

the historical growth trend with several low yields under SSP1-2.6 and SSP5-8.5 scenarios 255 

(Figure 4a). Future climate and socio-economic development will pose severe impacts on 256 
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autumn rice yields with many extremely low yield events projected by all five scenarios. For 257 

example, the minimum yield, 4.7 ton/ha in SSP1-2.6 in 2023, is as low as the yield of the 2016 258 

drought year, which was 4.6 ton/ha (Figure 4b). Finally, winter rice was projected to have many 259 

extreme yields, especially in the SSP4-6.0 scenario with a maximum value of 7.1 ton/ha and a 260 

minimum value of 4.4 ton/ha (Figure 4c). Note that, the increasing number of low yield events 261 

resulted from water shortage could also trigger conflicts with energy and other water use 262 

sectors during growing seasons. Thus, mitigation strategies for the Nexus instead of a single 263 

sector should be highlighted.  264 

 265 

 266 

Figure 4. The yield of spring (a), autumn (b), and winter (c) rice, power generation (d), and 267 
precipitation (e) in different climate and socio-economic scenarios 268 

Future power generations of five pathways are shown in Figure 4(d). SSP5-8.5 projected the 269 

highest power demand, 215 MWh in 2050 (about 10 times of the generation in 2010), as the 270 

SSP5 is a resource and energy-intensive scenario. SSP1-2.6 is oriented toward a low energy 271 

and resource consumption, and thus provided the lowest projection, which is about 2 times of 272 

the generation in 2010. Power generation of the other three scenarios fell between SSP1-2.6 273 

and SSP5-8.5. The Electricity and Renewable Energy Authority in Vietnam estimated the 274 

national energy consumption will increase by about four times from 2017 to 2050 (EREA and 275 

DEA, 2019), which is in the middle range of the five scenarios in this research. Note that, the 276 

power generated by the coal-fired power plants will increase from 15% in 2010 to 55% in 2030 277 

based on the national estimation of MDP (2020) and Kyushu Electric Power (2015), as MRD 278 

will be Vietnam’s thermal power center and the coal-fired plant is favored by the national 279 

government. The growth of coal-fired power plant generation will inevitably increase water 280 

use for cooling purposes and intensify conflicts with irrigation use during growing seasons. 281 

Figure 4(e) shows the impacts of five scenarios on the precipitation during growing seasons. 282 

SSP1-2.6 projected a decreased trend with minimum precipitation of 1150 mm in 2033. The 283 

other four scenarios projected increased precipitation with several extreme wet years such as 284 

the SSP4-4.6 scenario. In general, future precipitation was estimated to increase, but more 285 
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extreme high and low events were also projected. Therefore, the MRD was assessed to 286 

experience increasing flood risk in the wet season and water shortage during the dry season, 287 

which was also found by other research (Bong et al., 2018; MDP, 2020).  288 

 289 

The total water withdrawal, as well as the rice irrigation and coal-fired power plant withdrawal, 290 

are shown in Figure 5. On the one hand, the growth of power generation and the ratio of the 291 

coal-fired plant (Figure 4d) will result in the increased trends of total water withdrawal (Figure 292 

5a). The average value of total water withdrawal in 2050 (11412 MCM) will increase by 40% 293 

of the 2016 drought year withdrawal (8020 MCM) and will be more than 3 times higher than 294 

the average withdrawal (3225 MCM) during the 1995-2010 period. On the other hand, climate 295 

change will result in increased growing season precipitation, which might reduce the irrigation 296 

water demand in wet years and provided more available water to make the expansion of coal-297 

fired plants available (Figure 5b). However, the high cooling water demand in dry years could 298 

also trigger conflicts between the food and energy sectors. The once-through cooling method 299 

was assumed for all existing and planned plants in the MRD in this research, and the water use 300 

efficiency (149 m3/MWh) estimated according to Kyushu Electric Power (2015) is higher than 301 

the middle-level efficiency (138 m3/MWh) of coal-fired plants adopting once-through method 302 

(Davies et al., 2013). Therefore, water-saving technologies such as air cooling and the use of 303 

non-surface water instead of the once-through method are suggested for the new thermal power 304 

plants to mitigate the impacts of climate change and socio-economic development on the Nexus 305 

system. However, the adoption of these technologies could be limited by high cost and the 306 

geographic availability to access to the water sources, which are the main trade-offs of the coal-307 

fired power plants (Zhang et al., 2017).  308 

 309 

 310 
Figure 5. Water withdrawal of the MRD (a) and rice and coal-fired plant withdrawal (b) 311 

 312 
Figure 6 shows the rice yield, coal-fired power generation, and water withdrawal (Figure 6a) 313 

as well as the trend lines between each of the two FEW resources (Figure 6b, c, d) under five 314 

climate change and socio-economic scenarios in the MRD. The clear trends in the three-315 

dimensional relationship (Figure 6a) of the five scenarios revealed a strong connection among 316 

food, energy, and water systems in the MRD. Figure 6b demonstrates a clear linear trend 317 

between coal-fired power generation and water withdrawal under five scenarios. This trend 318 

represents that water is a constraint of the coal-fired power plants, and water withdrawal is also 319 

affected by the amount of power generated by coal-fired plants.  Such a strong connection 320 

between the water and energy sector also implies the possible pressure on the local water 321 

system due to power plant development, which has already received quite a lot of concerns 322 

(MDP, 2020). When the withdrawal was lower than 8000 MCM, rice yield increased with 323 

water withdrawal (Figure 6c), which reveals that the rice cultivation in the MRD heavily relies 324 

on irrigation (MRC, 2018), and the rice yield is quite vulnerable to water availability (Figure 325 
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4). However, yield seldom increased when the water withdrawal was higher than 8000 MCM 326 

as the energy generation accounted for most of the water withdrawal especially under SSP5-327 

8.5 and SSP4-6.0 scenarios (Figure 6b). The relationship between the food and energy sector 328 

is relatively weak. The linear trend shown in Figure 6d was due to the water availability which 329 

both increase rice yield and coal-fired plant generation. Therefore, water plays a key role in the 330 

FEW Nexus as it connects both the food and energy sectors in the MRD.  331 

 332 

 333 
Figure 6. FEW nexus (a), food-energy (b), food-water (c), and energy-water (d) relationship in 334 

the MRD 335 
 336 

Table 2 showcases the SI of five climate and socio-economic scenarios under food-, energy-, 337 

and water-first as well as all equal conditions during the 2020-2050 period. Note that: values 338 

in the brakes are absolute changes relative to the average SI of each condition. SSP1-2.6, which 339 

has a sustainable and low future forcing pathway, had the highest SI values under all conditions 340 

followed by SSP3-7.0. SSP5-8.5 had the lowest SI value due to its high consumption of water 341 

and energy resources. SSP4-6.0 and SSP2-4.5 scenarios were in the middle range of SI among 342 

five scenarios, and thus are commonly recognized as the “middle of the road”. In summary, 343 

the scenario ranking based on SI is clear, straightforward, and agrees with the categorizations 344 

of the SSP-RCP scenarios according to O’Neill et al. (2016). The SI changes under the 345 

following conditions revealed that climate change and socio-economic development both will 346 

affect regional sustainability through the Nexus system significantly. Specifically, the absolute 347 

changes in the food-first condition were lower than the other three conditions followed by the 348 

all-equal condition. The energy- and water-first conditions were quite similar and were the 349 

highest in terms of SI changes. Thus, the energy and water sectors will be more vulnerable to 350 

climate change and socio-economic development than the food sector, and the future resources 351 

management should more focus on the national energy plan and water availability in the MRD.  352 

 353 
Table 2. Sustainability Index (absolute changes relative to mean SI) during 2020-2050 354 
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 Food-First Energy-First Water-first All-equal 

SSP5-8.5 0.48 (19%) 0.24 (41%) 0.24 (40%) 0.33 (31%) 

SSP4-6.0 0.56 (6%) 0.34 (15%) 0.34 (15%) 0.42 (11%) 

SSP3-7.0 0.65 (11%) 0.49 (22%) 0.49 (22%) 0.55 (17%) 

SSP2-4.5 0.59 (1%) 0.42 (3%) 0.42 (3%) 0.48 (2%) 

SSP1-2.6 0.66 (13%) 0.53 (31%) 0.53 (30%) 0.58 (23%) 

 355 

5. Conclusions  356 

Understanding the future conditions of the FEW Nexus is critical to achieving regional 357 

sustainability, especially for the MRD that experiencing high uncertainties in terms of socio-358 

economic pathways and climate change. This research adopted an integrated management 359 

model to explore climate change and socio-economic development impacts through the FEW 360 

Nexus. Five scenarios of CMIP6 were adopted to quantify the impact on rice yield, energy 361 

generation, water withdrawal, and FEW Nexus. The outputs were further integrated to evaluate 362 

scenarios’ sustainability under various conditions of resource importance. 363 

 364 

Rice yields were estimated to increase if the technical improvement continues in the future, 365 

and the yields were vulnerable to climate changes due to the increasing extreme events such as 366 

floods and droughts. Power generation was projected to increase due to the growth of GDP and 367 

the population of all five scenarios. In 2050, the power generation of SSP5-8.5 will be about 368 

10 times of the 2010’s generation as the scenario is energy and resource-intensive. Water 369 

withdrawal will increase sharply, and the average value of the five scenarios in 2050 was 370 

estimated to increase by 40% of the 2016 drought year withdrawal and is more than 3 times 371 

higher than the average withdrawal during the 1995-2010 period. Climate change will increase 372 

the growing season precipitation and reduce the pressure of irrigation demand during wet years. 373 

This situation might make more water available for the increasing coal-fired plants' water 374 

withdrawal and make it possible to achieve the national energy plan. Therefore, water is the 375 

key resource to achieve sustainable management of regional resources. However, the increased 376 

coal-fired power plants could result in adverse impacts on the environment and water quality, 377 

which were not discussed in this research. There are strong relationships in the food-water and 378 

energy-water Nexus, and water was found as a central resource that connects food and energy 379 

sectors in the FEW Nexus in MRD. Further, climate change and socio-economic development 380 

both affect regional sustainability through Nexus significantly. SSP5-8.5 had a severe impact 381 

due to its high energy and water demand and low crop yield among the five scenarios. SSP1-382 

2.6 and SSP3-7.0 had a relatively low impact with high sustainability index, and SSP2-4.5 and 383 

SSP4-6.0 were between the high and low impact levels.  384 

 385 

A few suggestions were concluded based on the analysis. First, agricultural technology should 386 

be highlighted to maintain the growth of crop yield and achieve food security in the MRD. 387 

Agricultural techniques such as improved sowing method and short duration rice varieties 388 

played a key role in improving the rice yield in the MRD (FAO, 2000). However, future rice 389 

yield was found to be vulnerable to extreme climate events, and the rice planting area can be 390 

threatened by crop diversification, shrimp farming, and urban development (Bong et al., 2018). 391 

Thus, future rice cultivation should continue to rely on technologies to increase unit yield and 392 

reduce resources requirement and conflicts with other sectors. Second, cooling towers or non-393 

surface water are suggested for the new coal-fired plant since these two methods withdraw and 394 

return less amount of surface clean water than the once-through method, and thus can mitigate 395 

potential water conflicts with agriculture and reduce the adverse impact on the environment, 396 
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especially under the water shortage conditions. However, the adoption of these cooling 397 

methods would be expensive and time-consuming (Kablouti, 2015), and access to reclaimed 398 

or groundwater could also be limited by the geographic locations of the plant. Third, scenarios 399 

that consider both climate change and socio-economic development should be used in future 400 

resources management and planning as these two factors are deeply interlinked. Socio-401 

economic activities are the main drivers of climate change which in turn affect future socio-402 

economic development (Van Vuure et al., 2012). Finally, the framework developed in this 403 

research help to gain a comprehensive understanding of the climate and socio-economic impact 404 

on the regional sustainability through FEW Nexus and thus can be used in other river basins 405 

that face similar issues. 406 
 407 
There were also limitations and assumptions adopted in this research. The impact of technology 408 

improvement on crop yield was assumed unchanged during the whole simulation as the 409 

national government has made several plans to maintain the yield growth trend such as 410 

Agriculture 4.0, which focuses on incentives and policies for agriculture R&D (MOET, 2017). 411 

Cooling water use efficiency was constant during the simulated period as changing of cooling 412 

method is expensive and time-consuming. Cooling water sources were assumed as surface 413 

water instead of seawater to explore the worst scenario impact on Nexus. The adoption of SI 414 

can only enable ranking among scenarios instead of comparison among different years. 415 

However, the integration of water, energy, and food resources using weighting factors provide 416 

a clear and comprehensive understanding of climate change and socio-economic development 417 

on regional sustainability. Thus, the results can be further used as an introductory phase to 418 

support policy prioritization for regional resources management and planning.   419 

 420 
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Description of Model Structures 

The structure of the modified IWRM-based model for MRD is shown in Figure S1. A detailed description 

of each sector in terms of key variables and equations, interactions, and assumptions are discussed below.  

 
Figure S1. The modified basic structure of the integrated water management model used for MRD 

with bolded key variables and scenarios impact in red arrows. 

 

The food sector simulates rice yield and irrigation water withdrawal. Rice yield is calculated based on 

Equation (1, Doorenbos and Kassam, 1979) which is adopted by several crop models such as 

CROPWAT (Steduto et al., 2012) and CliCrop (Fant et al., 2012). Soil moisture is the main factor 

that affects yield in this research, and it increases with irrigation and precipitation while decreases 

through actual evapotranspiration. Irrigation withdrawal is the minimum of irrigation water allocation 

and demand, which is determined from irrigation efficiency, net irrigation requirement, and rice area. 

Net irrigation requirement is the difference between potential evapotranspiration and precipitation, 
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which is affected by RCP-SSP scenarios. Rice area is assumed to expand with the changing rate of 

population from RCP-SSP scenarios.  

 

1 −
𝑌𝑎
𝑌𝑚

= 𝑘𝑦(1 −
𝐸𝑇𝑎
𝐸𝑇𝑐

) (S1) 

 

Where Ya and Ym are simulated and maximum yield, ETa and ETc are actual and 

potential evapotranspiration, ky is a crop-specific yield response factor.  

The energy sector simulates thermal power generation based on water use efficiency and thermal plant 

water withdrawal, which is the minimum of plant water demand and allocation. Water demand for the 

thermal power plants is calculated based on water use efficiency and thermal power demand that is 

driven by total power demand and thermal power shares. The power demand increases over time 

represented by the “annual demand change rate”, which is assumed to equal to the GDP change rate of 

RCP-SSP scenarios after 2020.  

 

The water sector simulates total water withdrawal by integrating irrigation and thermal plant 

withdrawals. Further, basin available water, which is affected by RCP-SSP scenarios, is allocated to 

food and energy sectors based on their water demands. The water competition between food and energy 

sectors happens when their demands cannot be fully satisfied with available water.  

 

Extreme-condition Tests and Sensitivity Analysis  

Extreme-conditions tests evaluated model response to significant input changes. For example, future 

precipitation was set as only 50% of historical values as a low input to the model. As expected, 

irrigation withdrawal increased sharply from an average of 4000 MCM in 1995-2020 to 13000 MCM 

in 2020-2050. Further, a sensitivity analysis was also used to investigate model responsiveness to 

important uncertainties of model equations and parameters. For example, irrigation efficiency and 

thermal plant water use efficiency were varied both within a range of -20% to 20% from a base value 

of 0.6 and 150 respectively (Figure S2a and S2b). The total water withdrawal ranges resulted from 

these two test ranges are shown in Figure S2c and S2d with four confidence ranges from 50% to 100%, 

and reveal that the total water withdrawal is more sensitive to thermal plant water use efficiency than 

to irrigation efficiency. The reason is the future thermal plant water withdrawal will be much higher 

than the irrigation water withdrawal due to the 14 new coal-fired plants in the MRD.  

 



3 

 

 

Figure S2. Model Sensitivity Analysis 
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