
1. Introduction
Lancang-Mekong River, one of the important transboundary rivers in the world, originates from Qing-
hai-Tibet Plateau and finally flows into the South China Sea through six riparian countries. Benefiting from 
the abundant water resources and annual flood pulse, the basin of the river (i.e., Lancang-Mekong River 
Basin, LMRB) breeds the largest wetland (Tonle Sap Lake, TSL) in Southeast Asia (Hoang et al., 2019), the 
third largest delta in the world (i.e., Mekong Delta, MDA) and the world's second richest basin in biodiver-
sity (Anthony et al., 2015). A unique flow reversal between the TSL and Mekong River, developed by the 
seasonal flood pulse, brings timely water and nutrient-rich sediments to the TSL, supporting the TSL as 
the world's largest and most productive freshwater fishery (Pokhrel, Shin, et al., 2018). Such flow reversal 
and flood pulse in the Mekong River also provide water and nutrients for flood-recession agriculture in the 
MDA, which contributes to 90% of the Vietnam's rice production and makes this country the second most 
important rice exporters (Anthony et al., 2015; Pokhrel, Shin, et al., 2018). Nevertheless, the flood pulse 
makes the basin a flood-prone zone with the world highest flood-induced mortalities, especially for Mekong 
River Basin (MRB, excluding the Lancang River Basin in China) (e.g., Chen et al., 2020; Hu et al., 2018), 
where large floodplains are flooded annually during the flood season (Hoang et al., 2019). Moreover, this 
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basin has experienced climate change, population increase, sea level rise, and intensified anthropogenic 
activities (e.g., dam construction) over the last decades (e.g., Hoang et al., 2019; Triet et al., 2020; Wang 
et al., 2017). It is expected that these threats will continuously challenge this basin, which can potentially 
lead to more frequent floods and thus greater flood risk in the future (e.g., Pokhrel, Burbano, et al., 2018). It 
is therefore crucial to better understand the changing flood dynamics of the basin.

Numerous methods have been used to study floods in the LMRB, for example, in-situ observation (e.g., 
Delgado et al., 2010), remote sensing (e.g., Boergens et al., 2019), and model simulation (e.g., Pokhrel, Shin, 
et al., 2018). However, the in-situ observations on the one hand are scarce and difficult to access in the ripar-
ian countries or organizations, especially for discharge data, even though the water level data have become 
relatively abundant from public websites in recent years. On the other hand, only limited information for 
floods can be revealed across a spatial scale because of the uneven distribution and low density of stations 
in the basin. Due to the cloud cover during rainy days (e.g., Ji et al., 2018), dense vegetation (e.g., Shin 
et al., 2020), and satellite repeat cycle (e.g., Boergens et al., 2019), remote sensing data from optical sensors 
(e.g., Landsat) or Radar (e.g., Sentinel) either underestimates flooded areas or entirely misses the flood 
events. Often, areas that are flooded are even excluded because of the limitations in water body identifica-
tion algorithms or quality in remote sensing images (e.g., Lu et al., 2016). Moreover, both in-situ observation 
and remote sensing can only provide data within the observation period. This means flood forecasting and 
its historical reconstruction are essentially impossible by directly using these methods. Model simulations 
can fill these gaps by providing basin-wide discharges and water levels at the local scale, and spatially ex-
plicit inundation patterns at the regional scale. In-situ observation and remote sensing data can be used for 
model calibration and validation, where the missing values in the data are allowed and have less impact on 
the final results.

Traditionally, the hydrological models with different processes (i.e., infiltration, runoff, and flow routing) 
considered are used to model floods over large domains, such as XinAnJiang model (XAJ, Zhao et al., 1980), 
Variably Infiltration Capacity model (VIC, Liang et al., 1994), Distributed Biosphere-Hydrological model 
(DBH, Tang, 2006). Good performances of river discharge can be provided by these models, but these are 
still not ideal tools to study floods because discharge alone does not provide a complete understanding 
of flood dynamics, especially for the low-lying regions like MDA in the lower MRB. It is crucial to simu-
late water levels and inundation patterns using a hydrodynamic module where the backwater effect and 
channel bifurcation can be included (Yamazaki, Sato, et al., 2014). This hydrodynamic module explicitly 
represents flood dynamics by solving different forms of Saint-Venant equations, such as the kinematic wave 
that cannot account for backwater effect (e.g., Wu et al., 2014), diffusive wave (e.g., Yamazaki et al., 2011), 
and local-inertial wave (e.g., Yamazaki et al., 2013). The spatial inundation map that truly reflects floods 
can therefore be easily derived and compared with remote sensing data directly and conveniently. However, 
the hydrodynamic module is hard to change the total amount of water that routes to the outlet. Instead, it 
can only change the temporal distribution of discharge at the outlet with the given total water amount. This 
may greatly restrict the application of the global or regional runoff products, where these products might 
be inconsistent with the observations at a particular river basin or sub-basin. In this condition, instead of 
using the existing runoff products, using the runoffs produced by the hydrological model could be more 
appropriate, where the total water amount at the outlet can be adjusted to match the observed value by 
parameter calibration. Thus, an integrated hydrological-hydrodynamic model is more desirable when the 
accurate flood dynamic simulation is of interest.

Previous studies have demonstrated a large number of successful applications of the hydrological mod-
els in the LMRB (e.g., Lauri et  al.,  2014; Wang et  al.,  2016). In these studies, the daily or monthly dis-
charge series were calibrated and compared with observations, and good results are achieved (e.g., Yun 
et al., 2020). Some studies also turned their views on floods, which treated the flood as the high value parts 
of the whole discharge series (e.g., Wang et al., 2017; Yun et al., 2020). The mean annual maximum flood 
and flood frequency derived from peaks-over-threshold approach based on multi-year or single-year scale 
were commonly analyzed in these studies. To include more hydrological elements (e.g., water level, inun-
dation) and truly reflect the flood regime, a variety of hydrodynamic models were developed. For exam-
ple, the advanced Catchment-Based Marco-scale Floodplain model (CaMa-Flood) developed by Yamazaki 
et al. (2011). Based on these hydrodynamic models, with the help of runoff provided by hydrological model, 
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research was extended to simulate daily water level series, monthly and seasonal inundations (e.g., Pokhrel, 
Shin, et al., 2018; Shin et al., 2020). Moreover, analyses for particular flood event and annual maximum 
inundation area were also conducted (e.g., Try et al., 2018, 2020). The model performances in these studies 
are good not only for discharge, but also for water level and inundation map.

However, few studies have investigated the model capacity to simulate floods over the entire basin, es-
pecially through an integrated hydrological hydrodynamic model. Floods including event, characteristic, 
and extreme for discharge and water level at daily scale are not fully explored in these studies, so does the 
daily spatial inundation map. These are actually very important for flood projection using climate model 
and flood forecasting using meteorological numerical model. Further, the current hydrodynamic module 
has not considered the regional parameterization which could also be important for flood performance. 
Studies have indicated that the use of identical parameters for the entire basin is problematic (e.g., Mateo 
et al., 2014; Yamazaki et al., 2011), which can be attributed to the unique geomorphology and hydraulics 
of the basin and its sub-basins (Brinkerhoff et al., 2020). Accurate flood simulations thus require regional 
parameterization. Moreover, daily flood projection or forecasting often ignores reservoir regulation due to 
the difficulty in deriving the operation rules. In the LMRB, river discharge has been heavily affected by 
human activity after 2007 because of the constructions of a large number of dams in recent years (e.g., 
Lauri et al., 2012; Yun et al., 2020), which also has impacts on flood simulation without considering the 
reservoir regulation in the hydrodynamic module. Therefore, it is crucial to investigate this impact on flood 
performance.

In this study, our goal is to simulate the daily floods using the improved hydrological-hydrodynamic model 
(i.e., VIC and CaMa-Flood, the scheme refers to Lu et al., 2016 or Wei et al., 2020) that considers a regional 
parameterization in the hydrodynamic module. The flood event, characteristic, extreme and inundation 
map were extracted from the improved model and compared with the collected observed daily discharge, 
water level and remote sensing image. The impacts of using the basin-wide identical parameters in the 
hydrodynamic module (i.e., basin-wide parameterization) and without considering reservoir regulation 
scheme (i.e., ignoring reservoir regulation) on flood simulation were also separately discussed. This study 
can improve our ability to simulate floods, benefit the modeling community to advance the flood monitor-
ing and forecasting capabilities, and help with managing flood risk.

2. Data and Methods
2.1. Model Description

The VIC model was used to provide daily surface and subsurface runoffs. It is a physically based large-
scale model (Liang et al., 1994, 1996), which considers vegetation and topography at sub-grid and calcu-
lates energy and water budgets at daily or sub-daily scale. Snow melt and frozen soil physical processes 
are both considered, hence it is suitable for the application in the LMRB (Figure 1). With prescribed soil, 
vegetation, snow band data, and meteorological forcings (precipitation, temperature and wind speed), the 
model produces runoff among other surface hydrological fluxes. Usually, a river routing module called the 
Rout (Lohmann et al., 1996) or Routing Application for Parallel Computation of Discharge (RAPID; David 
et al., 2011) is integrated with VIC to provide discharge simulation, and has been widely used in regional 
and global studies (e.g., Lin et al., 2019; Zhao et al., 2019). Noting that the impact of glacier in the basin is 
very limited (Zhao et al., 2019). Thus, the VIC version 4.20d without considering the glacier module was 
used.

CaMa-Flood (Yamazaki et al., 2011, 2013), a global river hydrodynamic routing model, was used to route 
the runoff produced by VIC. It explicitly parameterizes the topography of sub-grid scale, and can simulate 
water level and flood inundation depth that are not typically simulated by river routing modules used in 
hydrological models such as VIC. A one-dimensional local inertial equation that can quantify the backwater 
effect was included in the model. Considering the divergent river channel systems in the lower basins, a 
bifurcation scheme was implemented in the CaMa-Flood model by Yamazaki, Sato, et al. (2014). A global 
width database for large rivers (Yamazaki, O'Loughlin, et al., 2014) was also coupled into the model to rep-
resent the river width, while the width of small river (i.e., less than 300 meters) and rive depth were calcu-
lated using the runoff related empirical equations (see Yamazaki et al., 2011). 500 meters spatial inundation 
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map could be obtained using the water level data and Digital Elevation Model (DEM). In this study, the 
CaMa-Flood version 3.6.2 was used with the consideration of backwater effect and channel bifurcation.

2.2. Data Description

The daily meteorological data during 1961–2015 were obtained from CN05.1 (Wu & Gao,  2013), Asian 
Precipitation-Highly Resolved Observational Data Integration Toward the Evaluation of Water Resource 
(APHRODITE, Yatagai et al., 2009, 2012) and Princeton hydrological data set (Sheffield et al., 2006). The 
forcings in the Lancang River basin were provided by CN05.1, while APHRODITE provided precipitation 
and Princeton dataset provided temperature and wind speed in the MRB. These data were interpolated 
into 0.25° using the nearest neighbor method. Soil, vegetation and snow band data that are necessary for 
VIC model were obtained from the sources described in Zhao et al. (2019). Nineteen hydrological stations 
were considered mainly for calibration (Figure 1), some of which were selected for validation and analy-
sis. Daily discharge and water level data for these stations were mainly collected from Henck et al. (2011), 
Mohammed et al. (2018), Annual Hydrological Reports of China, and Mekong River Commission (MRC). 
In addition, the daily 500m water body maps based on the Moderate Resolution Imaging Spectrometer 
(MODIS) during 2001–2015 were obtained from Ji et al. (2018). This dataset can reveal flood inundation, 
and hereafter is referred to as MODIS. To better simulate the flow reversal into TSL, a digital bathymetric 
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Figure 1. Overview of Lancang-Mekong River Basin (LMRB, a) and hydrological station distributions in partial areas (b, c). Area 1 (b) is mainly controlled by 
elevation with small portions affected by backwater, while Area 2 (c) is mainly controlled by water level with most areas affected by backwater.
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model of TSL collected from Kummu et al. (2014) was integrated into CaMa-Flood model mainly using the 
method described in Yamazaki et al. (2009).

2.3. Model Calibration

In CaMa-Flood only the basin-wide identical parameters can be calibrated, which may be not realistic due 
to the unique geomorphology and hydraulics (Brinkerhoff et al., 2020), Therefore, a regional parameteri-
zation calibration scheme, backward-compatible with basin-wide parameterization, was carried out in this 
study to enhance the physical representations of the hydrodynamic module in the sub-basins. This calibra-
tion scheme divides the basin into several independent sub-basins (Figure 2a), with each sub-basin charac-
terized by identical parameters, and is detailed in Appendix A.

The spin-up period for both models was from 1961 to 1966, and the calibration and validation periods for 
VIC model were 1967–1991, 1992–2007, respectively. Period after 2007 were not selected because of the dam 
effect on the flow regimes (e.g., Hecht et al., 2019; Shin et al., 2020; Yun et al., 2020). The related main mod-
el parameters used for VIC can be found in Zhao et al. (2019) and Yun et al. (2020). The entire 1967–2007 
period was used for the calibration of CaMa-Flood hydrodynamic parameters. Two manning coefficients 
for river and floodplain (i.e., nr, nf), and six coefficients for river width (i.e., power function constant and 
exponent WC, WP, and the minimum river width WIN) and river depth (i.e., power function constant and 
exponent HC, HP, and minimum river depth HMIN) empirical equations were used. The final calibrated 
manning coefficients, river width and depth for both regional and basin-wide parameterizations are illus-
trated in Figures 2b–2g.
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Figure 2. The sub-basins used for regional parameterization (pRegion, a), manning coefficients differences between the pRegion and basin-wide 
parameterization (pBasin) for river (nr, b) and floodplain (nf, c), river width (d) and depth (f) as well as their differences (e, g) between the pRegion and pBasin. 
The stations used for calibrations were also marked in (a). The nr, nf were finally determined as 0.022, 0.10 m−1/3/s for pBasin, respectively.
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2.4. Flood Extraction and Assessment

Following the method proposed by the Water Resources Council of the 
United States (USWRC, 1976), a series of events independent of each other 
were extracted from the daily discharge series (also see Lang et al., 1999). 
To filter the small fluctuation that is indeed not the flood, the flood events 
(i.e., flood discharge events) were selected by simply requiring that the 
maximum peak of the event exceeded the long-term average of the dis-
charge. Each simulated flood event corresponding to the observed one 
was extracted using the same time series. This was also extended to water 
level time series (i.e., extracting flood water level events). Four time se-
ries could therefore be obtained for one flood event (i.e., simulated wa-
ter level and discharge, observed water level and discharge). Four flood 
characteristics including peak discharge, peak water level, peak time, and 
flood volume for each flood event were used. The peak discharge (water 
level) was defined as the maximum discharge (water level) of this flood 
event, while the time the maximum discharge occurs was considered as 
the peak time. The total water amount for the flood event was defined 
as the flood volume. Annual extremes were also calculated to assess the 
model capacity in simulating flood extremes. Four indices including an-

nual maximum flood peak (AMFP), annual maximum water level (AMWL) and annual maximum flood 
volumes in three days (AM3DV) and seven days (AM7DV) were selected. The AMFP (AMWL) for a given 
year was the maximum discharge (water level) of the selected year, and the AM3DV (AM7DV) for a given 
year was defined as the maximum cumulative discharge for three (seven) consecutive days of the selected 
year. Since less information was revealed for how depth of water could be identified by MODIS, to maxi-
mally match the MODIS water body, the floodplain was assumed to be inundated when the flood depth is 
higher than 0.1 meters, while the river channel was considered to be always inundated.

The indices used to evaluate flood event, characteristic and annual extreme are Nash-Sutcliffe efficiency 
coefficient (NSE), Person correlation coefficient (R) and relative error (RE) (e.g., Wang et al., 2016; Zhao 
et al., 2019). Since the MODIS data do not detect all the water bodies, the probability of detection (POD), 
based on Wu, Adler, et al. (2012), was adopted to estimate the model inundation simulation capacity. POD 
was defined as the ratio of simultaneous inundation occurrence frequency (i.e., the number of inundation 
days) occurred for both model and MODIS to the inundation occurrence frequency occurred for MODIS. 
Hydrological stations on the Mekong River in the Area 1 (Figure 1b) with long records were used for water 
level and discharge evaluation, where the stations in the Lancang River Basin were not used because of 
the short daily records collected and large numbers of missing value. The stations in the Area 2 (Figure 1c) 
excluding NL were not used due to the short discharge records. Two stations (CS and ST) located on the 
northern and southern part of the MRB were used to analyze the impacts of basin-wide parameterization 
and ignoring the reservoir regulation. The NL station located in the MDA, witnessing frequent flood back-
watering between the TSL and Mekong River, was selected to calibrate the basin-wide identical parameters 
in the hydrodynamic module using the same runoff input as in the regional parameterization scheme. For 
inundation evaluation, only rainy seasons from May to November were considered. The base study period 
used to evaluate daily flood simulations for regional parameterization and discuss the impact of basin-wide 
parameterization was 1967–2007, which was extended to 2008–2015 to further discuss the impact of ignor-
ing reservoir regulation.

3. Results
3.1. Model Validation

The performances for daily discharge and water level at selected stations are listed in Table 1, and some rep-
resentative seasonal hydrographs are shown in Figure 3. It can be seen the REs for discharge and water level 
of all listed stations are within the range of 10% (Table 1). Most stations underestimate the total discharge 
amount, especially in the middle and lower reaches of MRB (i.e., NP, MD, ..., KC). This may be caused by the 
precipitation underestimation in the APHRODITE data set (refer to Figure 4 in Lauri et al., 2014). The NSEs 
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Station Period

Discharge Water level

NSE RE R NSE RE R

CS 1967–2005 0.92 −0.00 0.96 0.90 - 0.95

LP 1967–2007 0.94 0.02 0.97 0.96 - 0.98

VT 1967–2007 0.94 0.01 0.97 0.95 - 0.98

NP 1967–2007 0.91 −0.08 0.97 0.97 - 0.98

MD 1967–2007 0.93 −0.05 0.97 0.96 - 0.98

PK 1967–2007 0.94 −0.02 0.98 0.95 - 0.98

ST 1967–2007 0.92 −0.04 0.97 0.95 - 0.98

KC 1967–2002 0.91 −0.09 0.97 0.96 - 0.98

NL 1967–2002 0.95 0.05 0.98 0.95 - 0.97

Note. NSE, R and RE are Nash-Sutcliffe efficiency coefficient, Person 
correlation coefficient, relative error respectively.

Table 1 
Daily Assessments for Discharge and Water Level
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for both discharge and water level for these stations exceed 0.9. Similarly, the Rs are all more than 0.95. The 
seasonal tendency and magnitude for discharge are well captured by the model in the upper MRB (i.e., CS, 
Figure 3a). However, the magnitudes during the period from July to September are underestimated in the 
middle and lower MRB (i.e., NP and ST, Figures 3b and 3c), even if the high NSEs are kept. The result tends 
to be much better when related to the MDA (i.e., NL, Figure 3f). Though slightly smaller NSE is obtained for 
the controlling station of the TSL (i.e., PD, Figure 3e), the tendency and magnitude are still simulated well, 
indicating the inverse flow into the TSL is well detected. In addition, the seasonal hydrographs for water 
level are performed with satisfactory performances both in tendencies and magnitudes.

3.2. Flood Event

The relative indices for flood events extracted from daily discharge and water level series are listed in Ta-
ble 2. Four flood events at selected stations with NSE larger than 0.8 are shown in Figure 4. It can be found 
that the average number for detected flood events is decreased from four per year in the upstream stem 
(i.e., CS) to one in the downstream stem (i.e., NL), which could be attributed to the “planarization” of flood 
process caused by the relatively flat topography in the downstream areas. At selected stations, half of the 
flood discharge events have the NSE exceeding 0.76, and such proportion decreases to 45% when requiring 
NSE over 0.80. Except for CS, the NSEs for flood water level events tend to be slightly higher than those 
for discharge. The Rs for half of the flood events at almost all the stations are larger than 0.95. Except for 
NP and KC, at least 51% of the flood discharge events exhibit an RE less than 10%. This is increased to 66% 
when flood water level events excluding CS are analyzed. The selected flood events shown in Figure 4 fur-
ther reveal that the tendencies are well reproduced, whereas the magnitudes for peak discharge are mostly 
underestimated. Compared to the flood discharge event, the simulated flood water level event matches the 
observed one with a much smaller deviation.

3.3. Flood Characteristic

The flood characteristics including peak discharge, peak water level, peak time and flood volume for each 
flood event were extracted and their assessment indices are illustrated in Table 3. Their comparisons between 
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Figure 3. Observed and simulated seasonal discharge (solid line) and water level (dashed line) hydrographs for six selected stations. The subscripts “d” and 
“w” of NSE represent the average monthly discharge and water level, respectively. Stations illustrated in (a)–(c) and (d)–(f) are located in Area 1 and Area 2, 
respectively.
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the observation and simulation at three stations are shown in Figure 5. The NSEs for peak discharge at all 
the stations excluding KC are larger than 0.70. Almost all the stations underestimate the peak discharge 
with the range from −3% to −20%, especially in the middle and lower MRBs (i.e., from NP to KC). The Rs for 
most of these stations exceed 0.90. Similar results can be found for peak water level, but with much better 
overall performance than peak discharge. The simulated peak time matches well with the observed value 
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station Period num NSEm REm Rm P(NSE>0.8) P(|RE|<0.1) P(R>0.9)

CS 1967–2005 154 0.76(0.64) 0.01(0.02) 0.95(0.94) 0.45(0.37) 0.58(0.50) 0.75(0.69)

LP 1967–2007 138 0.82(0.82) 0.03(0.00) 0.96(0.96) 0.55(0.57) 0.62(0.86) 0.82(0.73)

VT 1967–2007 134 0.81(0.81) 0.02(-0.01) 0.96(0.95) 0.51(0.57) 0.63(0.74) 0.72(0.68)

NP 1973–2007 96 0.86(0.92) −0.04(0.02) 0.98(0.98) 0.64(0.80) 0.43(0.77) 0.89(0.92)

MD 1967–2007 109 0.89(0.91) −0.02(0.01) 0.97(0.98) 0.71(0.72) 0.56(0.79) 0.88(0.90)

PK 1967–2007 106 0.89(0.88) −0.00(0.01) 0.97(0.97) 0.71(0.70) 0.62(0.66) 0.92(0.88)

ST 1967–2007 110 0.84(0.88) −0.02(0.01) 0.96(0.97) 0.59(0.66) 0.51(0.78) 0.81(0.81)

KC 1967–2002 93 0.82(0.87) −0.07(0.01) 0.97(0.98) 0.52(0.67) 0.45(0.72) 0.85(0.91)

NL 1980–2002 25 0.94(0.97) 0.07(0.03) 0.99(0.99) 0.88(0.96) 0.64(0.84) 1.00(1.00)

Note. “num” means the numbers of flood event. The subscript m for NSE, RE and R represents the median value for all 
the extracted flood events. P (NSE>0.8) means the percent satisfying the condition that NSE > 0.8, same as RE and R. 
Values outside the brackets refer to discharges, while those in brackets refer to the water level.

Table 2 
Summary of Performances for Flood Event Simulation

Figure 4. Observed and simulated discharge and water level hydrographs for the selected flood events at four stations. The flood event with Nash-Sutcliffe 
efficiency coefficient exceeding 0.8 for both water level and discharge and the smallest flood duration larger than 30 days was selected.
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Station

Peak discharge Peak water level Peak time Flood volume

NSE RE R NSE RE R NSE RE R NSE RE R

CS 0.74 −0.08 0.90 0.76 −0.04 0.88 0.99 −0.00 1.00 0.97 −0.00 0.99

LP 0.83 −0.03 0.92 0.86 −0.02 0.93 0.99 −0.00 0.99 0.98 0.02 0.99

VT 0.85 −0.04 0.93 0.84 −0.02 0.93 0.98 −0.01 0.99 0.98 0.01 0.99

NP 0.70 −0.11 0.89 0.86 −0.03 0.94 0.98 0.01 0.99 0.92 −0.07 0.98

MD 0.75 −0.12 0.93 0.85 −0.05 0.94 0.98 0.01 0.99 0.96 −0.05 0.99

PK 0.75 −0.14 0.94 0.82 −0.07 0.95 0.97 0.00 0.98 0.98 −0.02 0.99

ST 0.77 −0.10 0.90 0.72 0.02 0.91 0.96 −0.01 0.98 0.95 −0.04 0.98

KC 0.57 −0.20 0.93 0.83 −0.04 0.94 0.96 0.00 0.98 0.93 −0.10 0.98

NL 0.81 0.03 0.93 0.88 −0.00 0.94 0.58 0.05 0.92 0.92 0.06 0.97

Table 3 
Summary of Characteristics for Flood Events

Figure 5. Observed and simulated flood characteristics comparisons at three selected stations. Panels from left to right are the peak discharge, peak water 
level, flood volume, and peak time occurring the peak discharge. Doy is the day of the year. The dash line is the curve fitting line between the observation and 
simulation.
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in the MRB with both NSE and R exceeding 0.95 and RE lower than 1%. Due to the backwater effect at NL, 
the peak time is overall overestimated and the NSE reduces to be lower than 0.60. Nevertheless, the flood 
volume at this station is well produced with both NSE and R larger than 0.92. The NSEs and Rs for flood 
volume at stations in the MRB (i.e., CS, …, KC) are all greater than 0.90, followed by less than 10% REs being 
found. This is a little worse than those of peak time. Noting that the flood volumes at stations in the middle 
and lower MRB are also underestimated over 5%, but the extent is less than peak discharge. These results 
can be further confirmed in Figure 5. The peak time and flood volume between the simulation and obser-
vation at selected stations are basically close to the 1:1 line, meaning these two variables are well captured.

3.4. Flood Extreme

The AMFP, AMWL, AM3DV, AM7DV were assessed and are shown in Table 4. Figure 6 shows these annual 
flood extremes series varying with time at three selected stations. It can be found from Table 4 that these an-
nual extremes are generally underestimated, especially in the middle and lower reaches of MRB as well as 
MDA. This could be largely attributed to the underestimation of the rainfall amount in APHRODITE data 
in these areas, where the precipitation plays a dominant role in modulating flood (e.g., Delgado et al., 2012). 
Such underestimations are also systematical for AMFP, AM3DV and AM7DV (Figure 6). The NSEs for these 
flood extremes are less than 0.5 or even negative. The simulation for AMWL is found to be slightly better 
with less underestimation. Compared to the results of flood characteristics (i.e., Table 3), those of the annu-
al extremes are worse not only in terms of NSE but also in terms of RE and R, especially for the stations in 
the upper MRB (i.e., CS, LP). Nevertheless, the tendencies are relatively good with Rs large than 0.7 at all 
the stations. Noting that the differences for AMFP, AM3DV and AM7DV continue to enlarge year by year 
since 1995 at NP station. This is likely caused by the underestimation of heavy storms, and warrants further 
investigation.

3.5. Flood Inundation

The spatial distribution of POD was obtained and is shown in Figure 7a. Two spatial inundation distribution 
maps during 2001 and 2002 (two severe flood years during 2001–2007), and their zoomed-in views are also 
illustrated in Figures 7b–7o. The results show that the most frequently flooded areas are mainly located 
in the TSL and MDA, followed by the Mun-Chi River Basin (MuRB) in eastern Thailand and Songkhram 
River Basin (SoRB) at upstream of the NP station (Figure 7a). The flooded areas detected by MODIS are 
well captured by the model, especially in the lower MRB, TSL and MDA. While the flooded areas in the 
MuRB and SoRB are basically captured, but with less spatial extent (Figure 7a). On average, 49.4% of the 
inundation occurrence frequency found by MODIS can be detected by the model. The undetected areas are 

WANG ET AL.

10.1029/2021WR029734

10 of 20

Station

AMFP AMWL AM3DV AM7DV

NSE RE R NSE RE R NSE RE R NSE RE R

CS −0.01 −0.17 0.76 0.29 −0.07 0.72 0.15 −0.15 0.78 0.30 −0.13 0.80

LP 0.45 −0.08 0.76 0.54 −0.04 0.80 0.53 −0.08 0.81 0.61 −0.08 0.86

VT 0.42 −0.09 0.79 0.39 −0.00 0.80 0.46 −0.09 0.81 0.50 −0.09 0.85

NP 0.06 −0.13 0.70 0.61 −0.02 0.84 0.05 −0.14 0.70 0.04 −0.14 0.70

MD −0.18 −0.15 0.76 0.27 −0.07 0.81 −0.20 −0.15 0.75 −0.18 −0.16 0.75

PK −0.08 −0.15 0.84 −0.00 −0.09 0.87 −0.05 −0.15 0.83 −0.02 −0.14 0.83

ST 0.19 −0.10 0.76 −0.41 0.06 0.81 0.18 −0.12 0.79 0.09 −0.14 0.81

KC −1.28 −0.20 0.81 0.21 −0.03 0.83 −1.23 −0.20 0.81 −1.15 −0.20 0.82

NL 0.71 0.04 0.88 0.80 0.01 0.90 0.70 0.04 0.88 0.69 0.04 0.88

Note. AMFP and AMWL are separately the annual maximum discharge and annual maximum water level. AM3DV 
and M7DV are the annual maximum flood volumes in three days and seven days, respectively.

Table 4 
Summary of Performances for Annual Flood Extremes
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not only attributed to the inaccurate topography and ignoring tidal effect (Pokhrel, Shin, et al., 2018), but 
also attributed to the underestimation of water level (e.g., Figure 3b) and exclusion of small water bodies 
in the CaMa-Flood river map (e.g., Thailand parts in Figure 7a). If these factors are excluded (i.e., ignoring 
the zero-value of POD), then about 86.8% of the MODIS inundation occurrence frequency can be obtained 
using the model. This means the water body area detected by MODIS can be captured by the model at 
least once in all rainy seasons. The comparisons of the inundation maps further reveal that the simulated 
flood inundations perform well in the TSL, MDA, and MuRB, especially in the TSL (Figures 7b and 7c). 
The overestimation occurs in the MDA (Figures 7h, 7i, 7m and 7o), whereas the underestimation occurs in 
the MuRB (Figures 7f and 7k). This potentially suggests that the DEM with high accuracy or better model 
simulation capacity is required. Noting that the northwestern part of the area b-b in Figure 7b (also see 
Figures 7g and 7l), which is a wetland (Jun et al., 2014), is missed by MODIS (Figures 7d and 7i). This could 
indicate the water identification algorithm remains to be improved.

4. Discussion
4.1. Impact of Basin-Wide Parameterization

As the original CaMa-Flood uses the basin-wide parameterization (pBasin), comparisons between the two 
parameterizations (i.e., regional and basin-wide) are necessary. The results are shown in Figures 8 and 9. 
Compared to the results based on regional parameterization (pRegion), the mean annual water level at NL 
for pBasin is increased by 1.96 meters, while those at ST and CS are increased by 14.71 and 0.39 meters, 
respectively. The seasonal performances of discharge and water level at NL, CS, ST between the two pa-
rameterizations are similar (Figures 3 and 8). The daily discharge (water level) at NL for pBasin is also well 
produced with NSE, RE and R separately equaling to 0.95 (0.92), 0.01(0.00) and 0.97(0.96). Though the NSE 
of 0.93 for daily discharge at ST is much better than that of pRegion, the NSE for daily water level is reduced 
to 0.85. It turns to be much worse at CS, where NSEs for discharge and water level are separately decreased 
to 0.74 and 0.75 when compared with those of pRegion. The Rs at CS are also reduced to 0.87 for both daily 
water level and discharge. For pBasin, the NSEs for half of the flood water level events at ST are over 0.62. 
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Figure 6. Comparisons of annual maximum flood peak, annual maximum water level and annual maximum flood volumes in three days and seven days 
between the observation and simulation at three stations. The left, middle and rights panels are for CS, NP, ST, respectively.
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The portion for flood water level events is decreased to 28% when NSE exceeding 0.8 is required. The medi-
an NSE for flood discharge (water level) events is even no more than 0.01 (−0.04) at CS for pBasin. No more 
than 7% (12%) of water level or discharge event have NSE (R) over 0.80 (0.90).

Also, compared with pRegion, the underestimation for peak discharge turns to be larger at ST, with RE 
increased from 10% to 16% (Table 3 and Figure 8e). The overestimation occurs at CS, with RE no less than 
27% for peak discharge and no less than 14% for peak water level (Figures 8a and 8b). The other indices 
including NSE and R also show poorer performances, especially for CS. At CS, the NSE for peak discharge is 
decreased to 0.19, while that for peak water level is decreased to 0.34 (Table 3 and Figures 8a and 8b). Nev-
ertheless, the peak time and flood volume show high consistence between the pRegion and pBasin (Table 3 
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Figure 7. Spatial distribution of the probability of detection for rainy season inundation during 2001–2007 (a), two spatial inundation maps derived from 
CaMa-Flood (b, c) and MODIS (d, e), and their corresponding enlarged views (f–o). The dates with the maximum flooded area detected by Moderate Resolution 
Imaging Spectrometer (MODIS) in 2001 (d) and 2002 (e) were used for illustration. The black line as the background in (b–o) is the main river channel or 
reservoir, while the white background within the basin in (a–o) is the area with no inundation. The middle (f)–(i) and bottom (k–o) panels are for CaMa-Flood 
and MODIS, respectively.
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and Figures 8c, 8d, 8g, 8h). Similar results can also be detected for flood extremes, where the underestima-
tion for AMFP is larger than pRegion with RE increased to 17% at ST. The overestimations occur for AMFP, 
AMWL and AM3DV at CS with RE being 16%, 7%, and 8%, respectively. The NSEs at ST and CS for AMFP 
and AMWL are all becoming negative. The flood inundation maps at two selected dates (Figures 9a and 9b) 
also capture the flood dynamics for pBasin when compared to MODIS (Figures 7c and 7e), but with more 
flooded areas near the lower MRB and MDA (Figures 9c and 9d). More water concentrates on the main river 
channels and tributaries of lower MRB, which exceeds the storage capacity of channels. Noting that the 
decrease of inundation depth occurs on the tributaries far from the main streams in the upper and middle 
MRB (Figures 9c and 9d), which can be attributed to the water in these areas to fulfill the concentrated wa-
ter occurring in the lower basin. The total inundation area for pBasin increases by 22.6% during 2001–2007 
when compared with pRegion (Figure 8l).

4.2. Impact of Ignoring the Reservoir Regulation

Many dams have been constructed in the last several decades and the river discharge began to be heavily 
affected after 2007 because of the reservoir regulation. Thus, the predictability of the model that is cali-
brated and validated in 1967–2007 was expected to be degraded after 2007. To address this issue, the flood 
simulation was extended to the period of 2008–2015 using the same model and regional parameterization 
in the hydrodynamic model as those during 1967–2007. The results are shown in Figure 10 and 11. Lower 
observed discharge in the rainy season and higher observed discharge in the dry season are found at CS 
(Figures 3a and 10i), while such result is not obvious at ST. The NSEs for both daily discharge and water 
level are low at CS with the values less than 0.23. The water level was also underestimated by 11%. Whereas 
the NSEs at ST for both daily water level and discharge are slightly decreased with both values being 0.89. 
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Figure 8. Comparisons of flood characteristics between the observation (bottom axis) and simulation (left axis) at two stations (a–h), the seasonal hydrographs 
(i–k) of discharge and water level, and annually average rainy season inundation area (l). Inundation areas for pRegion, pBasin and MODIS were all calculated. 
Here, river with the flood depth over the bank at least 0.1 m is added to the simulated inundation area.
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Overestimations occur for discharge and water level with REs separately being about 8% and 1%. Good 
correlation relation between the simulated and observed discharges (water levels) is preserved at ST. The 
median NSE value for the extracted flood discharge (water level) events is −0.23 (−1.28) at CS, while that is 
0.76(0.77) at ST. Almost all the flood events at CS have NSE less than 0.80, whereas about 39% of those at ST 
have NSE over 0.80. This indicates that ignoring reservoir regulation deteriorates the flood event simulation 
with different degrees.

The peak discharge at CS is overestimated while peak water level is underestimated, with both NSEs nega-
tive (Figures 10a and 10b), worse than those before 2008 (Table 3). At ST, the peak water level and peak dis-
charge are performed slightly poorly, with both REs less than 1% and NSEs over 0.60 (Figures 10e and 10f; 
Table 3). Flood volumes at both CS and ST are overestimated with RE up to 13% at CS (Figures 10c and 10g), 
whereas the corresponding RE value at CS during 1967–2007 is 0% (Table 3). The peak time at two sta-
tions is still well captured by the model (Table 3; Figures 10d and 10h). Compared with the results during 
1967–2007, the impacts of ignoring reservoir regulation on annual extremes after 2007 are further worse. 
The overestimations at CS occur for AMFP (12%), AMWL (6%), AM3DV (17%), and AM7DV (23%), and 
NSEs for these variables are all less than −5. The overestimations also occur for ST but with all REs less 
than 5%. The Rs for these four variables at ST and CS are all decreased with the maximum value being 0.60 
when compared with those during 1967–2007. The detection of flood inundation occurrence frequency is 
similar to that before 2008, with the mean POD of about 0.5 (Figure 11a). If the water body found by MODIS 
can be captured by the model at least once (i.e., within the model capacity), then about 85.9% of MODIS 
inundation occurrence frequency can be obtained using the model. Figure 11 also shows that the spatial 
inundation map is well captured by the model. For example, the flood inundation in the MuRB, which is 
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Figure 9. Spatial inundation maps (a, b) derived from CaMa-Flood with pBasin, and corresponding spatial inundation 
difference maps (c, d) between the pBasin and pRegion. Same dates with Figure 7 were selected.
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thought to be one of the catastrophic floods in Thailand. Note the flooded area occurring upstream of the 
reservoir (Figures 11h and 11m), which is underestimated by the model due to the lack of the reservoir 
regulation scheme.

4.3. Uncertainties and Limitations

Precipitation is one of the main drivers of flood, and can be regarded as the most important uncertain-
ty source of the meteorological inputs, as discussed in previous studies (e.g., Chen et  al.,  2018; Lauri 
et al., 2014; Wang et al., 2016). To decrease the impact caused by precipitation uncertainty, the APHRO-
DITE which has been proved to be one of the best precipitation datasets in MRB hydrological practice (e.g., 
Lauri et al., 2014; Try et al., 2020) was used. Since the available observed precipitation data are relatively 
scarce in the LMRB (Lauri et al., 2012, 2014; Yatagai et al., 2009) and station distribution is uneven (Wang 
et al., 2016), spatiotemporally interpolated precipitation dataset applied in flood simulation requiring high 
accuracy can be still affected. Consequently, it may contribute substantially to the underestimated discharge 
during August and September in the middle and lower MRB (Figures 3b and 3c) and the underestimations 
for flood characteristics and flood extremes (Tables 3 and 4). This indicates the improvement of precipita-
tion quality is essential (e.g., sharing with more observed precipitation data). The topography can also be 
another important uncertainty source in flood simulation and has been specifically explored (e.g., Hawker 
et al., 2018; Minderhoud et al., 2019), which suggests a DEM with high accuracy is necessary. In this study, 
the backwater effects generally exist in the MDA and areas surrounding the TSL, which are partly regulated 
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Figure 10. Comparisons between the observed and simulated flood characteristics (a–h) and seasonal hydrographs of discharge and water level (i–j) during 
2008–2015. The points numbers used for CS and ST are 35 and 23, respectively.
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by the topography. Due to the potential error exists in topography, many flooded areas detected by the 
MODIS image are not captured by the model, especially in the MuRB and northern MDA. The inundation 
in the southern MDA is also found to be larger than that in MODIS (Figures 7b and 7c). Model parameter-
ization and model structure also comprise the uncertainty sources. Because the basin experiences complex 
hydro-climate conditions including the frozen soil and snow in the Lancang River Basin and reversed flow 
in the TSL, calibration at as many representative stations as possible is necessary to enhance the physical 
representation at the sub-basin level. Further, though some flood characteristics at ST remain similar when 
the reservoir regulation is ignored, these flood characteristics at CS are not well produced (Figure 10). Also, 
high water levels and larger flooded areas can be introduced if the basin-wide identical parameters were 
used (Section 4.1).

Because of the intensified human activities (urbanization, deforestation) (e.g., Huong & Pathirana, 2013; 
Kim et al., 2019), the land surface becomes relatively impervious, potentially causing a high flood peak. 
This kind of landcover change is not considered in our model and is worthy of consideration in future 
studies. Further, there has been a recent increase in dam construction in the LMRB to meet the growing 
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Figure 11. Spatial distribution of the rainy season flood inundation probability of detection during 2008–2015 (a), spatial inundation maps derived from CaMa-
Flood (b) and Moderate Resolution Imaging Spectrometer (MODIS) (c) on October 30, 2011, and their corresponding enlarged views (d–m). The date with the 
maximum flooded area detected by MODIS from 2008 to 2015 was used for illustration. The middle (d–h) and bottom (i–m) panels are for CaMa-Flood and 
MODIS, respectively.
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energy needs (Pokhrel, Burbano, et al., 2018; Wang et al., 2017), which is suggested to have altered the flood 
pulse in the main stem (Shin et al., 2020; Yun et al., 2020, Section 4.2). Hence, it is important to consider 
reservoir regulation in the model for a more realistic simulation of flood dynamics. Shin et al. (2020) and 
Dang et al. (2020) have attempted to simulate the dam operation processes, but an extended evaluation on 
floods or developing new reservoir schemes is needed. Noting that flood inundation caused by small floods 
was not assessed due to the topographic issues and limited affected areas, which can be further studied. 
Because of the impacts of clouds and vegetations, uncertainties in water body classification methods, and 
quality in remote sensing images, only POD was used as an indicator of flood inundation. A more compre-
hensive evaluation of flood inundation dynamics could be achieved by using Landsat, Sentinel (e.g., Shin 
et al., 2020) or satellite altimetry (e.g., Boergens et al., 2019) datasets.

5. Summary and Conclusion
This study modeled the daily floods including event, characteristic, and annual extreme as well as flood 
inundation in the LMRB using an improved hydrological-hydrodynamic model that considers the regional 
parameterization in the hydrodynamic model. The impacts of ignoring regional parameterization and miss-
ing reservoir regulation were also discussed.

The daily discharge and water level are well simulated with their REs within 10% and NSEs over 0.90 at 
selected stations. Their seasonal magnitudes and tendencies are also reproduced by the model reasonably 
well. The flood event numbers decrease from four per year in the upper MRB to one in the lower basin. In 
most MRB stations, half of the flood events have NSE exceeding 0.76, where the performance for water level 
tends to be slightly better.

The results of flood characteristics reveal that the NSEs for peak discharge and peak water level are larger 
than 0.74 at most stations. Both variables are underestimated with over 10% RE reached by peak discharge. 
The simulated peak time and flood volume match well with the observed values, with less than 10% RE 
found. However, the results tend to be worse when annual extremes are analyzed. The AMFP, AMWL, AM-
3DV and AM7DV are generally underestimated with NSE less than 0.5 or even negative. The REs for AMFP 
and AMWL is worse but still within 20%.

The flooded areas frequently occurred are mainly distributed in the TSL, MDA, and MuRB. On average 
49.4% of the MODIS daily water occurrence frequency can be captured by the model, and this proportion 
can be raised to 86.8% when MODIS water occurrence can be detected at least once in all rainy seasons. 
The spatial inundation map can be primarily captured by the model with overestimation in the MDA and 
underestimation in the MuRB.

Compared with those of regional parameterization, systematically higher water levels can be introduced for 
basin-wide parameterization. Though similar seasonal tendencies and magnitudes for both discharge and 
water level are found, their daily performances tend to be poorer. The simulations for flood event, charac-
teristic, and extreme are therefore mainly deteriorated with lower NSE. Overestimation is found for peak 
discharge (27%) and peak water level (14%), while the peak time and flood volume are less impacted. The 
total inundation area is increased by 22.6% during 2001–2007 for basin-wide parameterization.

Compared with the results before 2008, the daily discharge and water level during 2008–2015 have lower 
NSEs at both the upper and lower stations, with daily water level underestimated by 11% reached at the 
upper station. The flood event, characteristic, and extreme are primarily deteriorated, with their NSEs less 
than −5 and REs up to 23% found at the upper station. The simulation for peak time is less impacted and 
similar POD can be found if the reservoir regulation scheme is not considered in the model.

Appendix A: Regional Parameterization Calibration
This calibration scheme divides the basin into several independent sub-basins based on the locations of 
the hydrological station and flow direction, with each sub-basin characterized by identical parameters and 
corresponding to a station as much as possible. Noting that not all the water flow distributed on the left and 
right sides of MDA directly flow into the river reaches owning the available in-situ stations (Figure 1c, near 
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the estuaries), two areas located at the two sides were added as the sub-basins, hence 21 sub-basins in total 
were identified for this calibration scheme (Figure 2a). The remaining grids located on the boundary of 
the basin, not belonging to any of the above sub-basins, were allocated to the last sub-basin (i.e., sub-basin 
21). Such allocation did not have much impact on the results. If the regional parameterization calibration 
scheme was used to calibrate the basin-wide identical parameters, then the entire basin was treated as a 
whole.

The hierarchical upstream-downstream calibration strategy used by Wu, Kimball, et al. (2012) was adopted 
to calibrate the model parameters from upstream to downstream for both VIC and CaMa-Flood with the 
regional parameterization calibration scheme (i.e., improved CaMa-Flood). The calibration processes were 
done manually by trial and error, with the direction of the parameter adjustment following the parameter 
sensitivity description in studies such as Nijssen et al. (1997), Zhang et al. (2014) and Yamazaki et al. (2011). 
Two steps were designed to conduct the calibration: The first step is the calibration in the Area 1 with little 
backwater effect (Figure 1), followed by that in the Area 2 with backwater effect (i.e., the second step).

In the Area 1 with 12 sub-basins, to decrease the time consuming of running CaMa-Flood and avoid the 
impact of parameters for CaMa-Flood on discharge, the Rout integrated with VIC was used to calibrate the 
parameters for VIC, with the aim to minimize the difference between the simulated and observed seasonal 
discharge hydrographs. Then the runoff was input to the improved CaMa-Flood to calibrate the parameters 
for CaMa-Flood, with the aim to minimize the difference between the simulated and observed seasonal 
water level hydrographs while also ensure that the performance of seasonal discharge hydrographs did not 
drop too much. Usually, the seasonal discharge hydrographs can be well kept when minimizing the water 
level difference.

While in the Area 2, the parameters separately for VIC and improved CaMa-Flood in the nine sub-basins 
were calibrated mutually due to the backwater effect and river channel bifurcation in the TSL and MDA. 
A preferred aim to minimize the difference between the simulated and observed seasonal water level hy-
drographs while also improve the performance of seasonal discharge hydrographs as much as possible was 
used for both VIC and CaMa-Flood calibrations. The initial parameters for VIC in these nine sub-basins 
used those of sub-basin controlled by KC (Figure 1b). Then the model parameters for improved CaMa-Flood 
were calibrated at nine sub-basins one by one. This process was repeated until marginal improvement (or 
relatively good result) was achieved. After this, the VIC model parameters were adjusted at these sub-basins 
using the same strategy as the improved CaMa-Flood. Such calibrations for the improved CaMa-Flood and 
VIC as described above were repeated until relatively good results at the calibrated stations were found.

There were two issues should be noted: One was the calibration in the Area 2 could lead to the decline in the 
water level performance in the Area 1 because of the lower boundary change in the local inertial equation 
used in CaMa-Flood. When this happened, the parameters for CaMa-Flood should be re-calibrated slightly 
for the sub-basins near the affected station to keep a relatively steady boundary. The other issue was for 
height datum and DEM error, to make a comparable water level, the simulated water level in this research 
was reduced by the difference of the mean long-term simulated and observed water levels following Shin 
et al. (2020).

Data Availability Statement
The CaMa-Flood can be visited at http://hydro.iis.u-tokyo.ac.jp/∼yamadai/cama-flood/, and VIC model 
source codes can be available from https://vic.readthedocs.io/en/master/. Parts of the discharge data and 
water level data are from the MRC website (https://portal.mrcmekong.org/, last visited on March 15, 2020). 
The postprocessing MODIS water body data from Ji et al. (2018) can be available at http://data.ess.tsinghua.
edu.cn/modis_500_2001_2016_waterbody.html. The APHRODITE data can be downloaded from http://
aphrodite.st.hirosaki-u.ac.jp/download/, and the Princeton hydrological dataset is available at http://hy-
drology.princeton.edu/data/pgf/v3/0.25deg/daily/.
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