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Abstract
Using long-term Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat satellite
observations, the inundation changes of Tonle Sap Lake between 1988 and 2018 were investigated.
The results show that the inundation area was stable before 2000, followed by a significant
shrinking trend between 2000 and 2018. Quantitative remote sensing retrievals for concentrations
of the total suspended sediments (TSS) also demonstrate an evident increasing trend
(7.92 mg l−1 yr−1) since 2000. A strong correlation (R2 = 0.67) was found between the annual
mean inundation area and concurrent precipitation in a region located in the lower basin of the
Mekong River (mostly outside the drainage basin of Tonle Sap Lake). A multiple general linear
model (GLM) regression further pointed to the precipitation variation as a major contributor
(76.1%) to the interannual fluctuation of the inundation area, while the dams constructed in
China only contributed to 6.9%. The limited impacts of Chinese dams on the inundation area of
the lake could be revealed through the limited fraction of water discharge from the Mekong River
within China (∼17%). The analysis also found significant impacts of inundation changes on the
recent lake turbidity increase in the dry seasons. We clearly revealed that the contribution of dam
construction in China to the recent lake shrinkage was insignificant when compared with the
impacts of the precipitation decrease. The results of this study provide important scientific
evidence for settling water volume-related transboundary disputes regarding the control of the
inundation area and water turbidity of Tonle Sap Lake.

1. Introduction

Lakes provide us with water supplies for human con-
sumption and socioeconomic development. Thus,
their healthy ecological functions are critical for
the sustainability of regional ecosystems (Pereira
et al 2010, Boretti and Rosa 2019). Influenced by
both human activities and global climate changes,
numerous lakes worldwide have experienced signi-
ficant changes in terms of size, morphology, mar-
ginal wetlands, water quality, etc (Foley et al 2005,
Elimelech and Phillip 2011, Feng et al 2013, Liu
et al 2013). Accompanied by these changes are vari-
ous types of ecological and environmental prob-
lems, such as droughts/floods, eutrophication, biod-
iversity decreases and wetland degradation among

many others (Piao et al 2010, Creed et al 2017, Shi
et al 2019, Qin et al 2020). Here, we would like to
focus on changes over the last decades in the largest
lake in Southeast Asia, Tonle Sap Lake.

Tonle Sap Lake is located in Cambodia in the
lower basin of the Mekong River, a transboundary
river that drains and crosses six countries: China,
Myanmar, Laos, Thailand, Cambodia and Vietnam
(see figure 1). The water flow direction between Tonle
Sap Lake and the Mekong River can reverse between
the dry and wet seasons, thus forming an annual
flood pulse and favoring the productivity of the river-
lake ecosystem (Frappart et al 2006, Dang et al 2016,
Tangdamrongsub et al 2016). Indeed, the annually
occurred flood pulse have commonly been considered
the most important factor in maintaining the high
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Figure 1. Hydrological map of Tonle Sap Lake, the Mekong
River and their drainage basins. The locations of the
hydrological and meteorological stations on the Mekong
River are annotated.

productivity of Tonle Sap Lake, where the biomass
accounts for half of that of the entire Mekong River
Basin (Lamberts 2006, Kummu et al 2010, Piman et al
2013).

The Tonle Sap Lake is facing several threats from
both global warming-associated climate changes
(Arias et al 2012; Nuorteva et al 2010, Lauri et al
2012, Oeurng et al 2019) and population increase-
associated excessive human activities (Gabriel
Lamug-Nañawa 2011, Kuenzer 2014, Lu et al 2014).
Currently, one of the most concerning issues for
Tonle Sap Lake (and even the Mekong River) appears
to be hydrological alterations ( dam construction
and reservoir impoundment) in the upstream of the
Mekong River (Arias et al 2012; Cochrane et al 2014,
Dang et al 2016, Pokhrel et al 2018, Binh et al 2020),
where the river flow dominates the water storage
in Tonle Sap Lake (Lauri et al 2012, Kummu et al
2014, Ji et al 2018). This issue is particularly import-
ant because diverging opinions on the impacts of
upstream dams may potentially lead to serious inter-
national disputes due to the transboundary nature
of the Mekong River (Zhao et al Arias et al 2012,
Kuenzer et al 2012, Lu et al 2014).

Multiple techniques have been attempted to
examine the hydrological transitions of Tonle Sap
Lake and the lower Mekong system since the
impoundment of upstream dams in China. Data
from hydrological gauge stations have revealed a
sharp decrease in sediment discharge on the Mekong
River in the past two decades; furthermore, there was

a substantial decline in the annual maximum water
level in Tonle Sap Lake by 0.52 m between the periods
of 1925–1935 and 1996–2002 (Campbell et al 2006).
Various numerical models have also been introduced
to predict such hydrological regime shifts (Hecht et al
2019), and their possible impacts on regional water
quality, habitats, biodiversity have been investigated
(Arias et al 2012; Orr et al 2012). Satellite remote
sensing, with synoptic and large-scale observations,
has also recently been utilized to explore historical
changes in the surface and groundwater of the Tonle
Sap Lake system (Siev et al 2016, Tangdamrongsub
et al 2016, Lin and Qi 2017, Frappart et al 2018, Ji
et al 2018, Wei et al 2018, Chang et al 2020), the
strength of its annual flood pulse (Qu et al 2018),
spatiotemporal distributions of water turbidity (Siev
et al 2018), and the evolution of the Mekong River
Delta (Li et al 2017b).

Because of the considerable efforts in the past,
a consensus among the relevant countries regard-
ing the impacts of dam construction on the down-
stream Mekong River channel, including trapping
downstream sediment discharge (Kuenzer et al 2012,
Wackerman et al 2017), modifying the distribution
of seasonal water discharge (Lauri et al 2012, Piman
et al 2013,Hoang et al 2019), and eroding theMekong
River Delta (Li et al 2017a), could be established.
However, the effect of dam construction upstream of
theMekong River, particularly the completed cascade
dams in China, on the hydrological dynamics of the
Tonle Sap Lake still remains controversial (Bonheur
and Lane 2002, Campbell et al 2006, Kummu and
Sarkkula 2008, Lamberts 2008, Lin andQi 2017, Frap-
part et al 2018). Moreover, how the long term hydro-
logical changes of the Tonle Sap Lake could impact the
water turbidity is also generally unknown (Siev et al
2018, Hoshikawa et al 2019).

Using long-term remote sensing images from sev-
eral satellite missions (e.g. Moderate Resolution Ima-
ging Spectroradiometer (MODIS) and the Landsat
series), the current study was designed to address the
aforementioned research gaps. The main objectives
were as follows: (1) explore inundation and turbid-
ity changes in Tonle Sap Lake in the past three dec-
ades; (2) reveal the major factors contributing to the
recent lake changes; and (3) determine the linkage
between inundation and water turbidity for the lake
and discuss the future implications of the historical
changes. The datasets and methods used in this study
are detailed in supporting materials.

2. Results

2.1. Three decades of inundation changes
The long-term monthly mean inundation areas of
Tonle Sap Lake determined from both Landsat (red)
and MODIS (black) are demonstrated in figure 2(a),
and the monthly mean climatological inundation
areas (i.e. multiyear monthly mean) derived using
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Figure 2. (a) Long-term monthly mean inundation area of Tonle Sap Lake between 1988 and 2018 obtained using the MODIS
and Landsat observations (detailed methods see supporting materials). The multiyear monthly mean values derived from the
MODIS-extracted results are also plotted. Note that the area of flooded forest associated with Tonle Sap Lake was excluded due to
the limitation of optical remote sensing technique. (b) Long-term monthly inundation anomalies were estimated as deviations
from the multiyear monthly mean. The interannual trends (fitting line) during different periods (before and after 2000) and
satellite missions (red for Landsat and black for MODIS, respectively) are also demonstrated. Note that, sensitivity analysis
performed with other start years (e.g. 2001 and 2003) to conduct the trend analysis resulted in very similar fitting lines.

MODIS data are annotated with green dashed lines
(temporal distribution of the used images refers to
figure S1 (stacks.iop.org/ERL/15/0940a1/mmedia)).
When inundation in the current month was smal-
ler than the monthly climatology, the corresponding
point would fall below the green line and vice versa.
Monthly anomalies, estimated as the deviation from
monthly climatologies (in percent), reveal the inund-
ation trends in the past three decades, as shown in fig-
ure 2(b). Note that the areas of flooded forest asso-
ciated with Tonle Sap Lake were excluded due to the
incapability of optical remote sensing technique in
penetrating vegetation canopy.

The inundation area of Tonle Sap Lake fluctuated
rapidly in the observed period and ranged between
3599.8 km2 in October 2001 and 2304 km2 in March
2013. Significant inundation seasonality was also
revealed, whichwas primarily due to seasonal changes
in regional precipitation and river-lake water inter-
actions (Gasith and Resh 1999, Frappart et al 2018).
Together with substantial seasonal cycles, noticeable
lake shrinkage was demonstrated in recent years. The
lake area remained at stable levels ( monthly anom-
aly <5%) before 2000 with an insignificant increas-
ing trend between 1988 and 2000 when only Landsat
observations were available. In contrast, significantly

decreased inundation was found in most years in the
recent two decades (see figures 2(a) and (b)), and the
decreasing patterns from 2000 to 2018 were similar
between the MODIS and Landsat observations des-
pite substantial differences in their data availabilities.

The recent shrinking trend for Tonle Sap Lake was
further revealed via consistent decreasing tendencies
in the annual mean (8.22 km2 yr−1, P < 0.05), annual
minimum (5.93 km2 yr−1, P < 0.05) and annualmax-
imum (17.82 km2 yr−1, P < 0.05) areas (see figure
S2), which were derived with the MODIS-extracted
inundation results between 2000 and 2018 (Landsat
data is insufficient to derive annualmean conditions).
In addition, a non-significant decreasing trend for the
lake area was also indicated by diminished values in
the annual maximum andminimum ratio (P > 0.05),
suggesting a possible reduced strength of the dry/wet
season flood pulse in the MODIS observational era
(see figure S2(d)).

2.2. Long-term variability in the TSS
concentrations
The annual mean TSS maps and values of Tonle Sap
Lake from 2000 to 2018 are illustrated in figures 3 and
S3, respectively. A statistically significant increasing
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Figure 3. TSS concentration of Tonle Sap Lake from 2000 to 2018. The last panel shows the change rate for the annual mean TSS
concentration at each location in Tonle Sap Lake between 2000 and 2018.

trend between 2000 and 2018 could be found for
the annual mean TSS concentration of the entire
lake (see figure S3(a), 7.92 mg l−1 yr−1, P < 0.05).
In terms of seasonal patterns, when significant TSS
increasing trends occurred in quarters 1 & 4, non-
significant trends were found in quarters 2 & 3
(figures. S3(b)–(e)). Moreover, the TSS concentra-
tions showed remarkable spatial heterogeneity. For
example, higher values (sediment plume) in the riv-
erine estuaries in the southeastern, northwestern and
northern parts of the lake were found in most of
the years. The spatial heterogeneities of the annual
TSS maps should be partially due to the signific-
ant seasonal TSS dynamics. The annual mean TSS
concentration of the entire lake was generally below
100 mg l−1 (bluish to greenish) before 2004, and the
values were mostly above 100 mg l−1 in most of the
later years, leading toTSS increase in almost every loc-
ation of the lake (see the last panel of figure 3).

2.3. Forces driving the recent lake shrinkage
Three decades of inundation changes for Tonle Sap
Lake were documented using satellite observations
between 1988 and 2018, and a significant shrink-
ing trend was found in the last two decades. The
fluctuation patterns (e.g. large inundations in 2000
and 2001, and dry conditions in 2010 and 2015)

of the inundation area, the diminished strength of
the dry/wet flood pulse, and the decreasing trend
were consistent with the findings of various previous
studies, which were based on different types of long
term remote sensing techniques, including optical
(e.g. MODIS), radar altimetry, Synthetic Aperture
Radar, and gravity (.GRACE) (Tangdamrongsub et al
2016, Lin and Qi 2017, Frappart et al 2018, Ji et al
2018, Chang et al 2020). To determine the potential
factors driving the recent lake shrinkage, three para-
meters contributing to the water budget of Tonle Sap
Lake were examined, including the discharge of the
Mekong River (upstream Tonle Sap Lake) as well as
the precipitation and ET within the drainage basin of
Tonle Sap Lake.

The R2 value between the annual mean inunda-
tion and annual mean precipitation within the drain-
age basin of Tonle Sap Lake was 0.28 (P < 0.05) (fig-
ure S4(a)). In contrast, a non-significant relationship
between the annual mean inundation and ET was
found (R2 = 0.08, P > 0.05) (figure S4(b)). Regarding
long-term changes, both the annual mean precipita-
tion and ET throughout the Tonle Sap Lake’s drainage
basin demonstrated non-significant increasing trends
from 2000 to 2016 or 1988 to 2016 (figures S4(c)
and (d)). A correlation analysis between the annual
mean inundation and concurrent runoff collected at
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Figure 4. (a) Long term (i.e. 1988–2016) mean ratios of the annual total discharges between six upstream stations (S2 to S7) and
the most downstream station (S1), and the error bars represent standard deviations within this period. The ratio between S7
(Chinese Border) and S1 was 0.17± 0.03. (b) Long-term changes in the number of dams, active reservoir storage and
accumulated installed capacity (AIC) of hydropower electricity generation. The data were obtained and recompiled from
WLE-Mekong (2017) and MRC (2015).

the seven hydrological stations in the Mekong River
was conducted (see table S1). In general, the closer
the proximity of a hydrological station to the lake,
the better the expected correlation. For example, the
best correlation (R2 = 0.84) was found for station
S1 (Kratie) that was nearest to the confluence point
of the Tonle Sap River and Mekong River. Indeed,
the runoff at Station S1 also demonstrated statistic-
ally significant decreasing trend (see figure S5). Such
trend appears different from that were found by Lu
and Siew (2006) and Park et al (2020), due primarily
to the disparities in observed time period. In contrast,
low correlations (R2 <0.5)were recordedwith the sta-
tions that were >1000 km away, where the decreasing
trends of runoff were also less significant than that of
at station S1.

The above analysis revealed that changes of dis-
charge from the Mekong River were likely the major
contributor to the recent lake shrinkage rather than
the precipitation and ET within the lake drainage
basin. This finding is consistent with the results of
several previous studies (Kummu and Sarkkula 2008,
Kummu et al 2014), and the dominant role of the
Mekong River on the area of Tonle Sap Lake was
further demonstrated in our study. Thus, a question
that follows is whether the upstream dam impound-
ment in China is the main contributor for the runoff
dynamics at the Mekong River and whether this con-
tribution has further influenced the lake area in recent
years.

To answer this question, we first estimated the
contributions of the surface runoff accumulated
in different upstream locations to the downstream
Mekong-Tonle Sap region (see figure 4(a)). Clearly,
the mean ratio of the total discharge between six
upstream stations (e.g. S2 to S7) and S1 decreaseswith
increasing distance to S1. Particularly, the mean ratio

between S7 (Chinese Border) and S1 was 0.17± 0.03
during the period of 1988–2016, indicating that
the total runoff of the Mekong River within China
accounts for ∼17% of that upstream the confluence
point of the Mekong and Tonle Sap rivers. Therefore,
the dam construction-associated modulations of the
limited portion of water resources within China (a
maximum of ∼17% of the upstream Mekong River)
were unlikely to cause dramatic inundation variations
in the downstream Tonle Sap Lake (see figure 2),
even if the runoff of Mekong River within China
showed certain correlation (R2 = 0.51, see table S1)
with the area of Tonle Sap Lake. Long-term changes
in the number of dams, active reservoir storage and
accumulated installed hydropower electricity gener-
ation capacity are plotted in figure 4(b). The three
types of data increased since the 1980s, and the num-
bers surged in the most recent decades. However,
these monotonously increasing trends were differ-
ent from those of the fluctuation patterns in inund-
ation area (see figures 2 & S2). Moreover, the reduced
annual inundationminima appeared to contrast with
the expectations of many previous studies, which
assumed that the water control of upstream reservoirs
in the dry seasons could increase the water level of
the Mekong River downstream and thus impede the
lake-river water flow (Kummu andVaris 2007, Camp-
bell 2009). Therefore, the contribution of dam con-
struction to the recent lake shrinkage, if any, should
be insignificant.

To further examine the possible drivers of the
recent inundation changes, a correlation analysis was
conducted between the annual mean precipitation
at each location in the Mekong River Basin and the
annual mean lake area, and this process was conduc-
ted between 2000 and 2016 due to the availability
of precipitation and MODIS inundation datasets. As
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Figure 5. (a) Coefficient of determinations (R2) between the annual mean precipitation at each location (the pixel size was
0.25◦ × 0.25◦) in the Mekong River Basin and the annual mean inundation area of Tonle Sap Lake between 2000 and 2016, where
a HCZ was found north of the drainage basin of Tonle Sap Lake (encircled with dashed line). (b) Annual mean precipitation
change rate from 2000 to 2016 for each location in the Mekong River Basin; (c) same as (b) but with a time period from 1988 to
2000. The black dots in (a-c) represent pixels with statistically significant (P < 0.05) precipitation trends. (d) Long-term annual
mean precipitation throughout Tonle Sap Lake (P_lake), the Mekong River Basin (P_Mekong) and the HCZ (P_HCZ). A high
correlation (R2 = 0.67, P < 0.05) between the annual P_HCZ and inundation areas was revealed. (e) Long-term patterns and
correlations between annual mean precipitation of the HCZ (P_HCZ) and runoff discharge of Mekong River at S1 (i.e. the closet
station to the confluence point of the Mekong and Tonle Sap rivers, see the location in figure 1).

shown in figure 5(a), a high correlation zone (HCZ)
(encircled with dashed line) was found in the region
north of the drainage basin of Tonle Sap Lake (yellow-
ish to reddish color), and this region represents >50%
of the area of the entire Mekong River Basin. In con-
trast, most of the data within the drainage basin of
this lake showed non-significant correlations. When
the change rate of annualmean precipitation between
2000 and 2016 was estimated (color-coded in fig-
ure 5(b)), the locations with a statistically significant
decreasing trend were primarily located within the
HCZ. Indeed, the interannual changing patterns of

the mean precipitation of the HCZ mimicked those
of the inundation area of Tonle Sap Lake (R2 = 0.67,
P < 0.05) (figures 5(d)), and a similarly higher cor-
relation (R2 = 0.68, P < 0.05) was found between the
annual mean runoff at S1 and the precipitation in the
HCZ (figure 5(e)). Therefore, the recent inundation
shrinkage of Tonle Sap Lake was likely due to the run-
off decline in Mekong River that was caused by the
reduced precipitation in the HCZ. Spatially, the HCZ
is located in lower basin of the Mekong River and
mostly outside the drainage basin of Tonle Sap Lake.
Reports have suggested that reduced precipitation in
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Figure 6. Relationships between the seasonal mean TSS and inundation areas of Tonle Sap Lake. (a-d) Quarters 1–4.

the Mekong River Basin in recent years could be well
explained by the combined effects of the El Niño/La
Niña events and the Indian andWesternNorth Pacific
Monsoons (Frappart et al 2018), suggesting that the
decreased runoff from theMekong River was primar-
ily caused by climate change rather than human per-
turbations. In contrast, the precipitation trend for
most Mekong River Basin between 1988 and 2000
was non-significant (figure 5(c)), which could also
partially explain the stabilized inundation during this
period (see figure 2).

A multiple GLM regression (Tao et al 2015) was
conducted to further quantify the relative contribu-
tions of the three aforementioned potential factors
on the interannual inundation changes of Tonle Sap
Lake, including the precipitation of the HCZ (fig-
ure 5(a)), the number of dams (figure 4(b)), and the
ET of the drainage basin of the lake (figure S4(b)).
Numerically, the relative contributions were 76.1%
for the precipitation of the HCZ, 6.9% for the num-
ber of dams and 2.0% for the ET. These results clearly
illustrate that precipitation changes in the HCZ are
the predominant contributor towards the interannual
lake inundation dynamics.

3. Discussion

3.1. Impacts of inundation shrinkage on water
turbidity
Without significant disturbance via human activit-
ies (such as sand dredging), the turbidity of Tonle
Sap Lake may be primarily controlled by two factors:
(1) sediment resuspension driven by external (i.e.
wind within the lake and sediment discharge within
the lake basin) or internal forces ( hydrodynamics)

(Hoshikawa et al 2019) and (2) sediment exchanges
between Tonle Sap Lake and the Mekong River. How-
ever, as demonstrated by numerous previous studies
(Kummu and Varis 2007, Li et al 2017b), the sedi-
ment discharge of the Mekong River has reportedly
declined in recent years; therefore, this sediment dis-
charge likely did not contribute to the increasing
trends in TSS in Tonle Sap Lake. Similarly, the cor-
relation analysis revealed nonsignificant relationship
between the annual mean TSS and wind speed (see
figure S6(a)). Since precipitation often showhigh cor-
relations with riverine sediment load, precipitation
within the drainage basin of Tonle Sap Lake has been
used as the surrogate for riverine sediment discharge
to examine its impacts on lacustrine TSS. As indicated
in figure S6(b), annual mean TSS also showed non-
significant relationships with precipitation within the
lake’s drainage basin. Therefore, the recent increase in
water turbidity as observed by satellite retrievals, was
likely due to hydrodynamic changes associated with
lake shrinkage. Specifically, the impacts may poten-
tially be attributed to the fact that the decreased water
depth could result in higher chances of sediment
resuspension from the bottom, even when external
forces are stable. Indeed, the validity of this hypothesis
could be at least partially confirmed by the statistic-
ally significant correlations between the annual TSS
concentration and inundation area in two quarters
(R2 = 0.41 for quarter 1 and R2 = 0.49 for quarter 4,
bothwith P< 0.05, see figures 6(a) and (d)). Such cor-
relations were also consistent to the results of Hoshi-
kawa et al (2019), where constant significant relation-
ships were found between water depth and TSS in
dry seasons. Therefore, an increase of sediment resus-
pension (either through wind or gravity flow) was
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associated with the inundation shrinkage (i.e. water
depth decline) and thus caused the recently increased
water turbidity in Tonle Sap Lake (Siev et al 2018).
In contrast, the non-significant TSS trend and TSS-
inundation correlations in quarters 2 and 3 were due
to the reversed flow of the Mekong River to Tonle
Sap Lake during these wet seasons (figures 6(b) and
(c)). Specifically, the annualmean sediment flux from
the Tonle Sap River to the lake varies between 5.1
Mt year−1 (Kummu et al 2008) and 6.4 Mt year−1

(Koehnken 2012), and the annual mean sediment
discharge from the lake to the river ranges between
1.4 Mt year−1 (Kummu et al 2008) to 1.5 Mt year−1

(Koehnken 2012). As such, the turbidity of the lake
could be considerably impacted by the sediment-rich
reversal flows from the Mekong River, which over-
whelm the inundation shrinkage associated impacts
in wet seasons. Note that, the changes in grain size of
sediment ( due to dam construction or other factors)
and thus the water turbidity in the Mekong River
has not been considered here (Hackney et al 2020).
Nevertheless, the determination of the responsible
mechanisms and quantification of their exact contri-
butions require further physical modeling and addi-
tional in situ hydrological measurements.

3.2. Limitations and implications
Water area extraction is theoretically a straightfor-
ward task when using remote sensing techniques
due to the strong absorption of water molecules
(Jensen 2006, Hou et al 2017). Large signal contrasts
are expected between land and water, and a simple
threshold for single band or spectral indices (e.g.
NDVI and NDWI) could be used to separate land
and water (Mcfeeters 1996). However, this task is not
trivial for delineating the surface area in long-term
images. The threshold for a single band or band com-
binations, could differ considerably due to disparities
between different images regarding the illumination
conditions and observational geometries and residual
errors from the atmospheric correction process, water
turbidity, etc. Therefore, the optical threshold for
each individual image was selected to obtain the best
possible land/water classifications. The comparison
between concurrent inundation areas extracted from
MODIS and Landsat imagery demonstrated favorable
consistency between the two independent observa-
tions (R2 = 0.84, p < 0.01), indicating the validity of
the derived area for Tonle Sap Lakewithmoderate res-
olution MODIS images (see figure S7(a)).

Another limitation for the optical remote sens-
ing images (such as MODIS and Landsat) is that,
flooded forest associated with Tonle Sap Lake can-
not be captured due to their incapability in pen-
etrating vegetation canopy, and the associated area
could even exceed that of the open water. The-
oretically, L-band SAR images could be used to
detect the inundated areas under vegetation, due

to their strong penetration strength (Martinez and
Le Toan 2007). However, such effort has been pro-
hibited due to the unavailability of L-band data-
sets. For example, historical ALOS-1 PALSAR data
(2006–2011) is restricted for users reside within
the US (https://asf.alaska.edu/restricted-data-access-
request/), while each recent ALOS-2 PALSAR
image (2014-now) costs thousands of US dollars.
The global mosaic PALSAR products provided by
the Japan Aerospace Exploration Agency (JAXA)
(https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_
index.htm#description), although freely accessible,
the one-year time interval makes them impossible to
study dynamic land features. Nevertheless, the inund-
ation area of the flooded forest is expected to highly
correlate with the open water within the lake. This
argument could be supported by the high consistency
between MODIS-based inundation of the lake and
GRACE-measured terrestrial water storage changes
(TWS) within the lake basin (see figure 11 in Tang-
damrongsub et al 2016). Specifically, the TWS vari-
ations observed through GRACE includes all water
components (e.g. surface water, soil moisture, and
groundwater), and with a coarse spatial resolution
of >300 km. Therefore, we believe the inundation
trend derived fromMODIS and Landsat in our study
should be valid.

The MODIS data had a moderate spatial resolu-
tion (250 m), and the area values were systematically
lower than the Landsat values (see figure S7(a)); how-
ever the observation frequency of MODIS allowed
us to capture the short-term inundation dynamics
of Tonle Sap Lake. We acknowledge that one of the
limitations for inundation study of the lake were the
missing data problems for some years (or months) in
the past three decades, particularly before 2000 (see
figure S1), due to the frequent presence of clouds
and long revisiting period of the Landsat observations
(16 d). However, even with the substantial difference
in valid observations, the Landsat-derived decreas-
ing trend after 2000 was almost identical to that of
MODIS. Therefore, the stable inundation before 2000
observed using Landsat imagery is likely to be true.
In short, while Landsat provided the multidecadal
inundation changes for Tonle Sap Lake, the MODIS
observations helped reveal the short-term variabil-
ity and validate the Landsat-based trends. Neverthe-
less, with higher spatial resolutions (tens of meters)
and fairly frequent observations (several days), the
recently launched satellite missions (such as the Sen-
tinel series instruments from the European Space
Agency and theGaofen series of satellites fromChina)
may provide more accurate inundation maps and
long-term trends for Tonle Sap Lake and other global
water bodies in the future. Additionally, the integra-
tion of multi-source satellite missions are also expec-
ted to provide more frequent (up to daily) observa-
tions of this lake (Chang et al 2020).

8

https://asf.alaska.edu/restricted-data-access-request/
https://asf.alaska.edu/restricted-data-access-request/
https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm#description
https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm#description


Environ. Res. Lett. 15 (2020) 0940a1 Y Wang et al

4. Conclusions

The current study clearly reveals that the recent
shrinkage of Tonle Sap Lake was primarily due to
the precipitation decrease in the upstream Mekong
River, thus providing strong evidence to help end
water volume-associated debates among the coun-
tries in the Mekong River Basin. Moreover, the flood
pulse of Tonle Sap Lake, which is the key factor
determining the high productivity of the lake (Gabriel
Lamug-Nañawa 2011, Kuenzer 2014), has declined in
recent years (Fig. S2d). Therefore, ecosystem mod-
eling is required to investigate whether lake inunda-
tion changes could pose threats to local biodiversity.
Finally, although our analysis demonstrated the dom-
inant role of lake size changes in enhancing lake water
turbidity, considerable efforts (in terms of numer-
ical modeling and in situ observations) are needed
to examine whether the limited effects of dam build-
ing on inundation and water turbidity are similar
or much larger for other water quality paramet-
ers (such as nutrient concentrations) and ecological
functions.

Our study provided an example of how mul-
tiple sources of long-term satellite observations could
be used to monitor the environmental transitions
in a highly dynamic region. Furthermore, the res-
ults provide critical information to address inter-
national disputes. The method used here is easily
extendable to other similar regions worldwide to help
understand climate/human-induced environmental
changes.
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