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GrabRiver: Graph-Theory-Based River Width
Extraction From Remote Sensing Imagery

Zifeng Wang, Member, IEEE, Jinbao Li, Yi Lin, Ying Meng, and Junguo Liu

Abstract— River width can reveal the water extent and water
flow on the earth’s surface. Remote sensing facilitates river
width extraction at large scales in an automatic way. This
letter proposes a new method named GrabRiver that implements
whole-process automation from image preparation to river width
calculation. It also, for the first time, develops river graph as
the simultaneous river topology for width extraction, combining
river planform morphology and network. Three major steps are
proposed: 1) mapping and connecting rivers. The Multispectral
Water Index (MuWI) is used to produce high-accuracy water
maps from imagery, whereby specialized algorithms are used
to reduce the impacts from nonriver water (lakes, reservoirs,
wetlands) and on-channel objects (bridges, dams, ships) and
to enforce river connectivity; 2) Constructing the river graph.
A connected river map is skeletonized into the graph while
maintaining georeferences as properties of edges and nodes in
the river graph, and it is followed by river graph pruning to
remove false and redundant river tributaries in the topologic
structure; and 3) Measuring river widths. The cross-sectional
measure is conducted on the river-reach (graph edge) basis,
where orthogonals to centerlines are determined by the bounding
geometry. In our experiments, the output results of GrabRiver
are consistent with the reference river widths (R2 = 0.98 in the
mean width validation and R2 = 0.91 in the transient width val-
idation). Despite that GrabRiver is a promising method, random
uncertainty in water mapping is identified as the major source
of width measurement errors. The outputs of GrabRiver will
be applicable in fluvial analysis and satellite-derived discharge
estimates.

Index Terms— Fluvial geomorphology, Google Earth Engine
(GEE), graph theory, river network, river width.
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I. INTRODUCTION

IN RESOLVING the notable problem of the Seven Bridges
of Königsberg, Leonhard Euler established the basis of

graph theory, a foundation of discrete mathematics and com-
puter science [1]. A revisit of the original problem inspired
the possibility of extracting river morphology based on graph
because Euler’s answer builds the land graph while different
land parts are divided by the river system (see Fig. 1).

River width is of high interest among many quantities
of river planform morphology because it is one of the two
fundamental dimensions of river extent (i.e., width and length)
and is one of the principal components of river discharge (i.e.,
width, depth, and velocity). Therefore, river width is associ-
ated with many hydrological, hydraulic, and biogeochemical
processes through river extent, river discharge, or both, such
as floods, ice freeze, sediment transport, and carbon dioxide
emissions [2]–[4]. Specifically, recent advances in satellite-
derived river discharge highlight the importance of river width
measurements [5]–[7].

Graph can be an effective tool for representing complex
river networks (e.g., braided river) [8] and for modeling reach-
level river morphology, as the edge in a graph can naturally
correspond to the river reach in the physical world. Extracting
river width in accordance with river graph can not only
preserve the respective utilities of river width measurement
and river graph representation but also expect collective advan-
tages, such as enhanced river routing.

Several methods have been proposed for river width extrac-
tion by remote sensing [9]–[11]. However, these methods
have tended to associate the measurements with many cross
sections rather than the river system as a whole, which leads
to incomplete topology and thus hinders the possible broader
applicability of river width information. Furthermore, the on-
channel constructions (e.g., dams, bridges, and ships) can
impede the extraction of river connectivity, which is not
explicitly considered in the existing methods of river width
extraction [9]–[11] or even river network extraction [8], [12].

In this regard, this letter aims to present a graph-theory-
based river width extraction from remote sensing imagery
(GrabRiver), a new method and tool that enables simultaneous
extractions of river topology and river width based on graph
theory and maintains the integrity of river connectivity. The
GrabRiver method links with the Google Earth Engine (GEE)
platform [13] for seamless automation of procedures, from
imagery acquisition and preprocessing (e.g., cloud-removal)
to the final extractions of river width.
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Fig. 1. Schematic flowchart of the proposed graph-theory-based river width
extraction inspired by the classic problem.

II. METHODOLOGY

In general, the algorithm used in GrabRiver includes three
major steps: 1) mapping and connecting rivers; 2) constructing
river graph; and 3) measuring river widths. Detailed proce-
dures are shown in Fig. 2, and the associated approaches will
be described in this section. We adopted Sentinel-2 imagery
to implement and validate GrabRiver due to its high spatial
and spectral resolutions.

A. Mapping and Connecting Rivers

Water pixels are first identified from multispectral imagery.
To avoid cloud contaminations, scene-wise and pixel-wise
quality controls are applied in the image selection. Only scenes
with less than 10% cloud cover percentage are selected, while
both opaque and cirrus cloud pixels are excluded using the
QA60 band of Sentinel-2 [14] as the mask. Water pixels are
then identified through the calculation of the Multi-spectral
Water Index (MuWI) [15] as in (1), which can deliver the
native 10-m water response map based on the Sentinel-2 bands
of multiple resolutions (10-m, 20-m, 60-m) [see Fig. 2(b)].

MuWI = −4ND2,3 + 2ND3,8 + 2ND3,12 − ND3,11

= −4 × ρblue − ρgreen

ρblue + ρgreen
+ 2 × ρgreen − ρNIR

ρgreen + ρNIR

+ 2 × ρgreen − ρSWIR2

ρgreen + ρSWIR2
− ρgreen − ρSWIR1

ρgreen + ρSWIR1
(1)

where NDi, j denotes the normalized difference of two
bands where subscripts i , j represent the band numbers
on Sentinel-2; ρ denotes the reflectance value where the
subscript represents the band name. Compared with previous
water indexes, MuWI can effectively improve the low-albedo
identification that is often confused with shadows (from
terrain, built-up, and cloud) and asphalt roads [15], [16].

After calculating the MuWI, the histogram-based Otsu’s
algorithm is used to automatically determine the MuWI thresh-
old for classifying water and nonwater pixels. As shown
in Fig. 2(c), the determined binary water map contains nonriver
water pixels, such as wetlands, lakes and reservoirs, and
independent channels that are not connected to the river sys-
tem. The GrabRiver filters out those nonriver water pixels by

detecting the connected components in the water map and then
applying the size filter. A default ∼2.0 km2 (20 000 Sentinel-
2 pixels) is set as the threshold for the size filter and can be
customized in the tool, which means a single connected water
body smaller than ∼2.0 km2 will be excluded.

The filtered channel map [see Fig. 2(d)] is converted to
the river map [see Fig. 2(e)] by removing the small islands
because the islands of relatively small areas contribute to the
unnecessarily excessive topological complexity and computa-
tions in the extraction [9], [10]. Islands with areas smaller than
∼0.6 km2 (6000 pixels) are removed and the threshold can be
customized for other applications.

To enforce the connectivity in the river map, morphological
transformations are applied to connect river pixels impacted by
the on-channel objects, such as dams, bridges, and ships. The
closing operation is first performed with a 5 × 5 size kernel,
which aims to fill in gaps inside the water body. A dilation
followed by thinning is subsequently applied to connect the
adjacent water bodies that are partly or entirely broken by
the on-channel objects [see Fig. 2(e) and (f)]. GrabRiver
implements the image selection and MuWI calculation through
GEE air position indicator (API) [13], and thus the input image
can be acquired directly from the data catalog on the cloud
platform.

B. Constructing River Graph

The graph is built upon the one-pixel wide river centerlines
with connectivity maintained. A specialized algorithm of con-
nectivity enforcing has been devised for the river map, so that
the connected river centerlines can be directly extracted. The
centerlines are extracted using the skeletonization (or thinning)
algorithm [17] [see Fig. 2(h)]. A prerequisite processing—
distance transform—is illustrated in Fig. 2(g) that computes
the distance of the river pixel to the nearest nonriver pixel.
The binary pixel-wise topology in the river centerlines is then
transformed into the network topology in the form of graph
[see Fig. 2(i)]. The node in the river graph represents the
river confluence, while the edge in the river graph repre-
sents the river reach without any tributary. The multigraph,
which permits multiple edges between two nodes (parallel
edges), is used to adapt to the rejoined braided river channels,
as shown in the example case. The constructed river graph
stores the geographic coordinates corresponding to the nodes
and edges as their properties, so that the river graph can be
easily mapped to the geographic spaces. Meanwhile, the length
of the edge (river reach) can be calculated (as the edge weight)
based on those geographic coordinates for further network or
graph analysis.

However, as the skeletonization algorithm is designed for
general image processing rather than river-specialized pur-
poses, false or unfavorable tributaries may be generated. Such
flaw propagates to the construction of river graph, resulting
in unrealistic river representation with too many nodes and
edges. To address the issue, the initial river graph is pruned
to remove false tributaries. River graph pruning is performed
according to 1) the degree of the nodes and 2) the length of
the edges. If any degree of the two nodes on an edge equals
1 and the edge is a short tributary, this edge and the end
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Fig. 2. Detailed steps to extract river width from remote sensing imagery. (a) Satellite imagery. (b) MuWI water probability map. (c) Binary water map.
(d) Channel map. (e) River map. (f) River map with enforced connectivity. (g) Map of the distance to the nearest land. (h) Initial river centerlines. (i) Initial
river graph. (j) Pruned river graph. (k) Pruned river graph mapped back to geographic space with cross sections. (l) River graph with width measurements.

node (degree = 1) will be removed from the graph. A short
tributary is identified by either of the following two criteria:
1) the length of the edge is less than a user-defined threshold
(default = 50 pixels) and 2) the relative length of the edge to
the maximum river distance (to land) on the edge is less than
2.5. The absolute length criterion can eliminate the ends of
small-order streams in the graph. The relative length criterion
can remove false tributaries in a wide river channel. After
pruning the edges and their associated end nodes, the degree
of each node in the river graph is recalculated. Some newly
formed middle nodes (degree = 2) are subsequently removed,
and their two neighboring nodes are connected directly. River
graph pruning can be performed by iterations until satisfactory
simplification. Fig. 2(j) shows the pruned river graph after one
iteration where the number of nodes decreased from 46 to
24 and the number of edges decreased from 47 to 25. The
pruned river graph is mapped back to the geographic space as
in Fig. 2(k).

C. Measuring River Widths

River widths are measured at cross sections that are set
in accordance with the edges (river reaches) in the river
graph. For each edge, it first acts as the river centerlines to
generate the cross sections that are orthogonal to their local
river centerline direction. To identify the orthogonal angle,
bounding geometry instead of two end pixels is used (see
Fig. 3). When identifying the orthogonal angle of a centerline
pixel, a number of forward-adjacent and backward-adjacent
centerline pixels are selected (by default, four forward and
four backward pixels). The algorithm calculates a possibly

Fig. 3. Schematic determination of the orthogonal angle to the centerline
pixels by the bounding geometry.

rotated rectangle of the minimum area that encloses all
the selected pixels, that is, the bounding geometry. The
orthogonal angle of a centerline pixel is proximate to the
width side angle of the bounding geometry. Compared with
the orthogonal identification approach based on only two end
pixels, the bounding geometry approach can be more robust to
extreme cases, such as the S-shaped centerline. The orthogonal
change between the adjacent centerline pixels can be smoother
as more pixels are taken into account for angle calculation.

After orthogonal angle identification, the orthogonal line
(cross section) extends from the centerline pixel to the two
river banks. The initial cross section is as long as 3.6 times the
distance to land at the centerline pixel location. The river width
measurement, thus, becomes the shortening of the initial cross
section. The initial cross section keeps shortened by 1 pixel at
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a time until both ends touch the water extent identified in the
previous step. The Euclidean distance between the two end
pixels on the cross section under a projection is assigned as
the river width at the centerline location.

The sampling density of the cross sections, as well as
of the river widths, can be modified in the tool to reduce
computations. For example, the sampling interval in Fig. 2(k)
is proportional to the distance to land at the centerline location.
Invalid width measurements are finally detected based on
whether or not any end of the cross section is within the water
rather than on the water–bank interface. Such invalid width
measurements are often located near the node (confluence).
Since the measurement is performed per edge, the widths and
the cross sections can be stored in the edge, contributing as
quantities of the river graph [see Fig. 2(l)].

III. RESULTS AND DISCUSSION

To demonstrate the efficiency and accuracy of GrabRiver,
we implement and validate the river width measurements over
the Mekong River and Mississippi River. The Mekong River
case (sample size n = 77) is used to test the mean river width
measurement compared with the manually measured values on
the high-resolution Bing Aerial imagery. The Mississippi River
case (sample size n = 114) is used to test the same-day river
width measurements compared with the in situ measurements
by the United States Geological Survey (USGS). The mean
river width is more commonly used in spatial pattern analysis,
such as river extent mapping. The same-day width intends to
capture the transient status of a river and is often used for tasks
sensitive to temporal variations, such as discharge derivation.
GrabRiver successfully produces width measurements of sat-
isfactory accuracies in the two general uses.

Fig. 4(a) presents the mean width measurements in the
Mekong River basin. The composite Sentinel-2 images with
50% percentile [16] are used as the input data. The mean river
widths derived from Sentinel-2 are highly consistent with the
reference widths from high-resolution imagery (R2 = 0.98,
mean bias = −17.16 m, mean absolute error = 26.05 m,
and root-mean-square error = 47.3 m). As the reference
width finds its derived counterpart by joining the closest
cross section rather than cross section with the exact same
coordinates, the location discrepancy can contribute to the
mismatch between the derived and reference mean widths.
A closer examination of the suspicious outlier (the rightmost
point) identifies its location in the estuary where parallel
channels are common and close to the measured river channel
due to low relief. The large error at this point is because one
end of the cross section is falsely calculated in the near parallel
channel rather than in the measured channel. Although this
kind of impact from the parallel channel is uncommon in
most basin areas, it can suggest a smaller length of initial
cross section (3.6 times of distance to land in this case)
or an alternative width-measuring approach starting from the
centerline (current approach starts from the ends).

Fig. 4(b) shows the same-day measurements in the Missis-
sippi River basin. The Sentinel-2-derived river widths are in
general agreement with the in situ measurements (R2 = 0.91,
mean bias = −5.81, mean absolute error = 36.67, and root-

Fig. 4. Validation of (a) mean width extractions in the Mekong River basin
with a map of parallel channel issue and (b) transient width extractions in the
Mississippi River basin with a map of cirrus cloud.

mean-square error = 64.6). Despite the overall high accu-
racy, the same-day measurements on individual images yield
relatively high error variance, particularly against the mean
measurements (see Fig. 4). Broadly speaking, the random
uncertainties in individual images may lead to unexpected
water mapping, which could be the main reason for the high
error variance. In contrast, those random uncertainties can
be minimized in the composite image because the percentile
calculation on a stack of images can largely exclude extremes
[15], [18]. One of the major sources of random uncertainties
is the cloud. For example, on the image over site 5587450
(USGS gauge ID) on May 30, 2020 [annotated in Fig. 4(b)],
a thin, semitransparent cirrus cloud happens to be located
close to the site on the river channel, which contributes to
water mapping omissions and thus an underestimated river
width. Although scene- and pixel-wise cloud removals have
been applied (Section II-A), the state-of-the-art cloud removal
algorithm cannot guarantee each pixel, particularly in the chal-
lenging case of thin cirrus cloud over water [19]. Meanwhile,
it is also observed that snow and ice can induce the false
detection of water bodies, especially from images over the
upper Mississippi. Finally, random uncertainty could also be
caused by the local land:water ratio, as the adopted Otsu’s
thresholding method used to classify water and nonwater
pixels is sensitive to the skewness of the MuWI histogram
where the left-skewed histogram (high land percentage) can
underestimate the threshold [20] and overestimate the water
extent, and vice versa. Therefore, we further constrain Otsu’s
thresholding within the range [0, 0.9].

Table I summarizes the accuracy assessment of GrabRiver
and RivWidth in the case of mean width extraction. Both
the methods deliver similarly high accuracies for all rivers,
while GrabRiver presents marginally better performance
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TABLE I

SUMMARY OF RIVER WIDTH EXTRACTION ACCURACY

for small to middle rivers perhaps because it uses 10-m
Sentinel-2 imagery.

As shown in both the cases, water mapping could be the
primary source of the measurement error in river width. For
more accurate river width extraction, improved water mapping
could be made by more sophisticated thresholding, for exam-
ple, by integrating global and local thresholding, and assessing
other thresholding methods (such as adaptive methods [21]),
using prior information (such as predefined water location
data [22], [23]). Recent progress in deep learning may also
augment water mapping, particularly in extreme situations
[24]. However, some inherent issues from optical imagery can
undermine water mapping, of which the most prominent is
perhaps cloud impact [25]. A possible future improvement is to
fuse synthetic aperture radar (SAR) images for river detection,
as it can penetrate the clouds so that the river width extraction
would be less affected by weather conditions.

Our proposed method is not resolution-dependent, but the
current demonstration on Sentinel-2 with 10-m resolution
could be most useful for stream order 3 or larger rivers.
Despite that we demonstrate GrabRiver on Sentinel-2 imagery,
other remote sensing imagery, such as Landsat and Moderate
Resolution Imaging Spectroradiometer (MODIS), can be used
as the data source. For imagery without all the reflectance
required in (1) (e.g., 4-band aerial imagery), GrabRiver can
be a potential tool only if a MuWI-like water probability map
is calculated.

IV. CONCLUSION

In this letter, we proposed GrabRiver for river width extrac-
tion from remote sensing imagery. The proposed method is the
first of its kind to extract river width based on the river graph
that is simultaneously derived. It combines the strengths of
graph theory with novel approaches of water mapping and
cross-sectional width measurement. The proposed method is
capable of accurately and effectively extracting river widths
based on Sentinel-2 images, in the scenarios of both mean
width extraction and transient width extraction. The integrative
design not only facilitates high accuracy river width extrac-
tion through a high level of process automation from image
preparation to the final calculation but also allows further
investigation of river system variations in the Anthropocene.
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