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Abstract
The jump points detection is critical to the understanding of hydrologic variability, especially in investigating the

anthropogenic effects. Conventional methods are mainly statistical and cannot directly reflect the jump change degrees.

This article proposes a moving correlation coefficient-based detection (MCCD) method for the detection of jump points

(JPs) in hydroclimate data. The correlation coefficient (CC) between the potential jump component and the original data is

calculated, and the CC series is realized by moving from the starting to the ending points of the original time series. Bigger

CC value reflects higher jump degree; the position with the biggest absolute CC value is the JP that is the most expected. Its

significance is evaluated by comparing its value with the CC threshold value at the relevant significance level. Monte-Carlo

experimental results verify the MCCD method’s higher efficiency compared with four commonly used conventional

methods. It is especially noteworthy that the results indicate its stable efficiency, even when encountering the influences of

some unfavorable factors. By applying the MCCD method to the Lancang River Basin, the JP of runoff in 2004 is detected

at the Yunjinghong station in the lower reach. It is mainly attributed to the construction and operation of some major water

hydropower projects, while the stable variations of areal precipitation and actual evapotranspiration, as well as the

stable land-cover conditions, contribute little to the abrupt decrease in runoff. The MCCD method can be an effective

alternative for the detection of JPs in hydroclimate data.
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1 Introduction

As an important type of abrupt change, a jump is a phe-

nomenon frequently encountered in hydroclimate studies.

It usually indicates some physical process that causes an

abrupt switch or change from one behavior to another. For

example, the eruptions of El Chichón and Mt. Pinatubo

caused rapid stratospheric warmings over the last decades

(Gagné et al. 2017; Karpechko et al. 2010). Anthropogenic

effects, including land use and cover change, dam con-

structions and hydropower operations, often cause rapid

changes of water levels and streamflow in many rivers

(Cockburn and Garver 2015; Furey et al. 2010; Şen 2017).

The detection of trends and periodicities in hydroclimate

data could misrepresent the true underlying behavior, as the

results would be destroyed by jump points and be appar-

ently contradictory. How to detect the jump points (JPs) is

therefore a critical step as part of analyzing hydroclimate
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variability (Li et al. 2016; Perreault et al. 1999; Yang et al.

2009).

Dozens of methods have been proposed for detecting

JPs in observed hydroclimate data. Based on different

mathematical hypotheses and scopes of application, these

methods can be divided into two types: parametric and

non-parametric tests (Ahmadi et al. 2018; Sang et al. 2012;

Zhang et al. 2013). Some priori distribution information

must first be estimated from the observed data when using

the parametric tests, which limits their application (Kund-

zewicz and Robson 2004). In contrast, non-parametric tests

do not require any priori probability distribution informa-

tion and thus they perform better (Domonkos 2013; Reeves

et al. 2007). A jump point is a part of the overall hydrologic

variability, thus its significance is determined not only by

its own change magnitude, but also by its proportion in the

whole hydroclimate data. Besides, the sample size, dis-

persion degree and other factors would influence the

detection of JPs and the evaluation of their significance

(Montanari 2012; Villarini et al. 2009). Conventional

methods, however, are mainly statistical but can not clarify

these problems, and thus do not contribute to the under-

standing and detection of JPs. They perform differently and

cannot adequately meet practical hydroclimatic needs

(Zhou et al. 2011; Rougé et al. 2013). How to accurately

detect JPs in a hydroclimate data is still a challenge.

Considering that the significance of a jump is mainly

determined by its proportion to a complete data set, the

correlation coefficient (CC) between the jump component

and the original data may be an effective index to quantify

their significance. The correlation coefficient can be

mathematically determined through hypothesis testing and

is easily calculated (Wikle 2003). The objective of this

study is therefore to propose a CC-based method for the

detection of JPs in hydroclimate data. We deduce the

mathematical relationship between the CC and the JPs of a

time series and utilize that relationship in our CC-based

method. We evaluate our method’s performance and

compare it with that of traditional methods for verification.

We then apply this method to investigate the abrupt

changes in the precipitation–runoff processes in the Upper-

Mekong River basin. Our conclusions and recommenda-

tions for further work are presented in the last section.

2 Moving correlation coefficient detection
method proposed

In order to develop the moving correlation coefficient-

based method for the detection of JPs, the correlation

between the jump component and original data is first

deduced. Based on the principle of linear superposition in

stochastic hydrology (Ding and Deng 1988), if the

hydroclimate time series Xt has a JP, the original series can

be divided into two subseries, with length of n1 (before the

JP) and n2 (after the JP). The jump component can be

described as:

Yt ¼
0; t� n1
q; n1\t� n

�
ð1Þ

where q is the difference of the mean value between the

two subseries.

The residual of the series Xt is noted as St, and

Xt ¼ Yt þ St. The original series Xt can be described as:

Xt ¼
St; t� n1
qþ St; n1\t� n

�
ð2Þ

The mean value of St is noted as S, and that of the jump

component Yt can be expressed as:

�Y ¼ n2q

n
ð3Þ

The mean value of the original series Xt can then be

described as:

�X ¼ n1�Sþ n2ðqþ �SÞ
n

ð4Þ

The correlation coefficient r between the Xt and Yt series

is calculated as (Murphy and Myors 2004):

r ¼
P

XtYt � n �X �YffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
X2
t � n �X2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Y2
t � n�Y2

q ð5Þ

By substituting Eqs. (3) and (4) into Eq. (5), a new

equation of r is described as:

r2 ¼ n1n2q
2

n2r2X
ð6Þ

where r2X ¼ 1
n

P
X2
i � �X2.

The variance of Yt can then be described as:

r2Y ¼
n1 0� n2q

n

� �2þn2 q� n2q
n

� �2
n

¼
n1

n2
2
q2

n2
þ n2

n2
1
q2

n2

n

¼ n1n2q
2

n2

ð7Þ

By substituting Eq. (7) into Eq. (6), r2 can be described

as:

r2 ¼ r2Y
r2X

ð8Þ

The r2Y is determined by the jump component q, and

since Eq. (8) intuitively indicates the positive relationship

between the index r and r2Y , a bigger r value indicates a

more significant jump in the original series Xt.
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Furthermore, From Eq. (2) it is assumed that Yt and St are

independent of each other, so r2X can be expressed as:

r2X¼r2Y þ r2S ð9Þ

The correlation coefficient can be described as:

r2 ¼ r2Y
r2Y þ r2S

¼ 1

1þ r2
S

r2
Y

ð10Þ

Equation (10) shows that when the jump component

occupies a bigger proportion than residual components, the

correlation coefficient r has a larger value. Thus, it can be

an indicator to quantify the JPs significance in hydrocli-

mate time series.

Based on the information conveyed in Eq. (10), we

propose a new method for detecting JPs in hydroclimate

data, the moving correlation coefficient-based detection

(MCCD) method. The seven steps of this this method are

detailed below:

Step 1. Set a starting point k0 k0 [ 1ð Þ and assume it

functions as a JP and then divide the hydroclimate time

series Xtðt ¼ 1; 2; . . .; nÞ into two subseries at that JP so

they can be analyzed;

Step 2. Calculate the mean values of the two subseries

before and after the JP, and obtain the jump component Yt k0
by Eq. (1);

Step 3. Calculate the correlation coefficient rk0 between

the jump component Yt k0 and the original series Xt using

Eq. (5);

Step 4. Set knþ1 ¼ kn þ 1, and repeat steps 2–3 to obtain

the series Yt k1 ; then, find the maximum value rmaxj j in the

series rk;

Step 5. Consider the degree of freedom (DOF) of the

series Xt and the relevant significance level a, and then

determine the threshold ra value with which to assess the

statistical significance of the JP. The present study con-

siders a 5% significance level;

Step 6. Compare rmaxj j with the threshold ra value. If

rmaxj j[ ra, the JP is viewed as significant at significance

level a; otherwise, the JP is not viewed as significant;

Step 7. The first jump component that is the most sig-

nificant can be removed from the original series, and then

new series X0
t ¼ Xt � Yt kmax

obtained. Steps 1–6 may be

repeated to identify more significant JPs if they are existing

until all JPs are identified.

The procedure of the MCCD method is presented in

Fig. 1. It should be noticed that that if the starting or ending

point was close to either end of the series Xt, the sample

size of the shorter subseries would be too small to achieve

reliable results. Therefore, in this study the data points

from 11 to n-10 are considered to detect the JPs in

hydroclimate data.

3 Verification of the developed MCCD
method through statistical experiments

A set of statistical experiments were designed and used to

verify the efficiency of the MCCD method for JP detection.

These were also used to investigate the influence of some

of the main factors that affect JP detection: data length n,

the mean value EX, the variation coefficient Cv and the

skewness coefficient Cs of a series. Because a JP is rep-

resented by both its jump degree q and position a (calcu-

lated by n1=n), these two parameters are also considered

(‘‘Appendix 1’’). The statistical experiments are designed

as follows:

1. Set EX = 500, Cv = 0.5, and Cs = 2.0. For the jump

component, q = 300 and the JP is set at the middle of

the series (a = 0.5). Set

n = 50,100,150,200,250,300,350,400,450 and 500 to

investigate its influence on the detection of JPs.

2. Set n = 200, Cv = 0.5, and Cs = 2.0. For the jump

component, set q = 300 and a = 0.5. Set EX =

100,300,500,700 and 900 to investigate its influence

on the JP detection.

3. Set n = 200, EX = 500, and Cs = 2.0. For the jump

component, set q = 300 and a = 0.5. Vary Cv from 0.1

to 0.9 in increments of 0.1 to investigate its influence

on JP detection.

4. Set n = 200, EX = 500, and Cv = 0.5. For the jump

component, set q = 300 and a = 0.5. Change Cs from

1.0 to 3.0 in increments of 0.5 to investigate its

influence on the detection of JPs.

5. Set n = 200, EX = 500, Cv = 0.5 and Cs = 2.0. For the

jump component, a = 0.5. Vary q by 50 from 100 to

500 to investigate its influence on the detection of JPs.

6. Set n = 200, EX = 500, Cv = 0.5, and Cs = 2.0. For

the jump component, set q = 300. Vary a by 0.1 from

0.1 to 0.9 investigate its influence on the detection of

JPs.

For each group of statistical experiments, we generate

100 synthetic series with known JPs using the Monte-Carlo

method (Veihe and Quinton 2015), and use the MCCD

method to detect their JPs. Two typical non-parametric

methods, the Pettitt test (Pettitt 1979) and the Mann–

Kendall (M–K) test (Ahmadi et al. 2018; Mann 1945), and

two common parametric methods, the Brown–Forsythe (B–

F) method (Brown and Forsythe 1974) and the Bayesian

method (Nasseribrahim et al. 2005), are also used f here

(‘‘Appendix 2’’). As these four conventional methods are
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used widely and perform well, their results can be com-

pared with the MCCD method for verification.

Comparing the JPs detected by different methods and

the preset JPs, we can use the indicator of efficiency

coefficient g ð0� g� 100%Þ to evaluate the performance

of each method:

g ¼ d

D
� 100% ð11Þ

where d indicates the acceptable detection times and

D represents the total detection times, here D = 1000. An

acceptable detection time means that the difference

between the identified JPs and the preset JPs should not be

larger than 1.

We repeated the above steps 100 times and obtained the

gfinal from each group of experiments:

gfinal ¼
P

g
100

ð12Þ

The evaluation results are shown in Fig. 2. They indi-

cate that the MCCD method performs better overall than

the M–K test, but worse than the Pettitt test, and that it has

a similar performance to that of the Bayesian method and

the B–F method.

When the data length n is increased the efficiency of the

M–K test goes down, but that of the B–F test slightly

increases. The Pettitt test, Bayesian method and MCCD

method perform stably and are little influenced by the data

length n (Fig. 2a). The performance of all five methods

becomes worse when EX is increased (Fig. 2b). This phe-

nomenon is likely attributed to the fact that when the value

of EX increases, the relative jump degree is less and so the

corresponding JP becomes more difficult to identify. The

Fig. 1 Steps for jump point (JP)

detection in hydroclimate data

using the moving correlation

coefficient-based detection

(MCCD) method proposed in

Sect. 2. ‘‘DOF’’ indicates

degree of freedom
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performance of all five methods obviously decline with

the increase of Cv (Fig. 2c). This implies that for those

hydroclimate time series with higher variability

degrees, the jump degrees would become weaker and so

their JPs will be more difficult to identify. Meanwhile,

the results indicate that the factor of Cs has little

influence on the efficiencies (gfinal [ 60%) of these

methods (Fig. 2d).

Besides, the Pettitt test, the Bayesian method, the

MCCD method and the B-F method all perform better with

the increase of q, especially the MCCD method (Fig. 2e).

That is, the more significant jumps are easier to identify.

However, the position of the JP has a strong effect on the

accuracy of the detection results. The Pettitt test performs

much better at detecting the JP in the middle position of a

series than in other positions (Fig. 2f), causing its higher

efficiency in Fig. 2a–d where we set a = 0.5 (i.e., the JP is

set at the middle of a series). The B–F method’s efficiency

becomes higher when a increases from 0.2 to 0.7, and then

decreases to the end of the series. Meanwhile, the Bayesian

method and the MCCD method maintain their high effi-

ciency at any JP positions.

The above results show that the MCCD method per-

forms well at detecting JPs in hydroclimate time series,

even when encountering the influences of some adverse

factors. It shows stable efficiency compared to four other

commonly used methods. In addition, the correlation

coefficient, as the core of the MCCD method, is easier to

calculate than the calculations required for the other

methods. The correlation coefficient directly reflects the

proportion of the jump component in the original hydro-

logic data, and so it can also be an effective indicator for

comparing the jump variation significance among different

hydroclimate time series (Xie et al. 2018).

Fig. 2 Detection efficiencies of

the moving correlation

coefficient-based detection

method, the Pettitt test, Mann–

Kendall test, Brown–Forsythe

method and the Bayesian

method, and their variations

with the changes of data length

(n), mean value (EX), variation

coefficient (Cv) and skewness

coefficient (Cs) of a series, and

with the changes of jump degree

(q) and change point position

(a)
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4 Case study

4.1 Study area and data

The hydroclimate data measured in the Lancang River

Basin (LRB) are used to further verify the performance of

the proposed MCCD method. The LRB is the up-reach of

the Mekong River Basin, reaching from its source in the

Tibet Plateau to the China–Myanmar border. Its long and

narrow basin has a drainage area of 167,000 km2 (Shi et al.

2013). Due to the plunge of 4700 km from the upper to the

lower reaches, this basin is abundant in hydropower

resources (Fan et al. 2015). It provides rich natural

resources (Dugan et al. 2010) not only to China but also to

South Asia. Under the influences of human activities over

recent years (Lauri et al. 2012), especially the implemen-

tation of some large water conservancy projects, the natural

hydrologic variability in the LRB has been changing. The

jump points in observed hydrologic data have therefore

become a hot issue and are being investigated in Mekong

River studies.

There are four primary hydrologic stations in the main

stream of the LRB: Liutongjiang (LIU), Gongguoqiao

(GON), Jiajiu (JIA) and Yunjinghong (YUN) (shown in

Fig. 3), with drainage areas of 78,391 km2, 91,302 km2

112,091 km2 and 145,295 km2, respectively, and runoff

data measured at the four stations are used as our case

study. The four sub-basins corresponding to these

Fig. 3 Location of the Lancang

River Basin (LRB) and its four

sub-basins in China, and the

distributions of hydrologic

stations, meteorological stations

and hydropower stations in and

around the basin
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hydrologic stations are also denoted as LIU, GON, JIA and

YUN, respectively. Twenty-one meteorological stations are

distributed in and around the whole LRB (as shown in

Fig. 3). The annual area precipitation time series were

obtained by using the Thiessen Polygon method (Bayraktar

et al. 2005; Dessie et al. 2015), with the areas and weights

shown in Table 1. The annual actual evapotranspiration E

at each meteorological station is estimated using Fu’s

equation (Fu 1996; Sun 2007), which is suitable for

mountainous areas:

E ¼ E0 1þ p

E0

� 1þ p

E0

� �m� 	1=m( )
ð13Þ

where E0 is the potential evaporation, p is the precipitation

and m is a parameter calculated by:

m ¼ 1þ cpad
1� Y

Y

� �b

ð14Þ

where pd is the daily precipitation (mm/d), and Y is the

runoff coefficient (the ratio between runoff depth and

precipitation). For the LRB, the parameters of a, b, and

c are set as 1.210, 0.393 and 0.293, respectively (Fu 1996).

Again, the areal actual evapotranspiration time series in the

sub-basins are obtained by using the Thiessen Polygon

method. All the runoff, precipitation and evaporation data

were analyzed to detect their JPs.

4.2 Detection of JPs in precipitation and runoff
data

The MCCD method is used to detect the JPs in the annual

precipitation and runoff series corresponding to the four

sub-basins. The Pettitt test, Mann–Kendall test (M–K),

Brown–Forsythe method (B–F) and the Bayesian method

were again used for comparison. The JP detection results

are summarized in Table 2 and represented in Fig. 4. These

results show that the JPs vary with the methods used. For

the four precipitation series, every method but t the M–K

test produces similar results of no jump. This indicates that

the precipitation variability in the LRB has remained

stable over the last five decades. As for the runoff data, all

five methods give the same results: no JP is identified in the

LIU runoff time series, but a JP in about 2004 is identified

Table 1 Areas and weights used for computing the annual area precipitation in four sub-basins (LIU, GON, JIA and YUN) of the Lancang River

Basin

No. Station LIU GON JIA YUN

Area (km2) Weight (%) Area (km2) Weight (%) Area (km2) Weight (%) Area (km2) Weight (%)

0 Zaduo 24,067 30.70 24,067 26.36 24,067 21.47 24,067 16.56

1 Yushu 3139 4.00 3139 3.44 3139 2.80 3139 2.16

2 Shiqu 588 0.75 588 0.64 588 0.52 588 0.40

3 Dingqing 5588 7.13 5588 6.12 5588 4.99 5588 3.85

4 Nangqian 15,164 19.34 15,164 16.61 15,164 13.53 15,164 10.44

5 Changdu 27,882 35.57 18,914 20.72 18,914 16.87 18,914 13.02

6 Dege 1963 2.50 1114 1.22 1114 0.99 1114 0.77

7 Batang 7091 7.77 7091 6.33 7091 4.88

8 Deqin 4154 4.55 4154 3.71 4154 2.86

9 Gongshan 1611 1.76 1611 1.44 1611 1.11

10 Weixi 9872 10.81 7166 6.39 7166 4.93

11 Lijiang 2219 1.98 2219 1.53

12 Baoshan 9090 8.11 6812 4.69

13 Dali 12,186 10.87 10,122 6.97

14 Jingdong 5109 3.52

15 Lincang 7950 5.47

16 Lancang 5018 3.45

17 Jinghong 4535 3.12

18 Simao 7269 5.00

19 Gengma 2236 1.54

20 Shuangjiang 5429 3.74

Total 78,391 100 91,302 100 112,091 100 145,295 100

21 Meteorological stations are considered, and the Thiessen Polygon Method is used. The Liutongjiang sub-basin is abbreviated as ‘‘LIU’’; the

Gongguoqiao sub-basin abbreviated as ‘‘GON’’; the Jiajiu sub-basin as ‘‘JIA’’; and the Yunjinghong sub-basin is abbreviated as ‘‘YUN’’
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Table 2 Jump points identified

in the annual area precipitation

and runoff series of four sub-

basins in the Lancang River

Basin

Variable Sub-basin Year MCCD Pettitt M–K B–F Bayesian

Precipitation LIU 1961–2014 – 1984 1997 1997 –

GON 1961–2014 – – 1988 – –

JIA 1961–2014 – – 1988 – –

YUN 1961–2014 – – 1995 2004 –

Runoff LIU 1987–2014 – – – – –

GON 1955–2010 – 1986 1997 – –

JIA 1965–2014 – 2005 1979 2004 –

YUN 1956–2014 2004 2001 – 2004 2004

5% Significant level is considered here. ‘‘–’’ means no jump point in the series

Fig. 4 Detection results of jump

components in the precipitation

and runoff time series (in

modulus ratio) of four sub-

basins (LIU, GON, JIA and

YUN) in the Lancang River

Basin. The modulus ratio is the

ratio between the origin and

mean value of a series with no

unit
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in the YUN runoff time series. Figure 4 shows the slight

decrease of annual runoff since 2004 at the YUN station,

but indicates no changes at other stations. By considering

Table 2 and Fig. 4 together, it can be perceived that the JPs

detected by the MCCD and by the Bayesian methods are

more reliable, but the results of the Pettitt, M–K and B–F

methods have bias.

The jump in the precipitation–runoff relationship is

further analyzed to investigate its changes from upstream

to downstream in the LRB (see Fig. 5). Here the expo-

nential curve is used to fit the precipitation–runoff rela-

tionship for each sub-basin thanks to its high fitting

efficiency. Since the runoff series at the YUN station has a

JP in 2004, it can be divided into two sections: a basic

section (before the jump) and a changed section (after the

jump). Considering that shorter sub-series would cause

larger errors when analyzing the precipitation–runoff

relationship, we restored the series according to the mean

value difference before and after the JP in 2004. The

restored YUN series before the JP (i.e., the original series)

is denoted as the YUN-I series, while the series after the JP

is denoted as the YUN-II series. We also divide the other

three runoff series in 2004, but they give overlapping fitting

curves because there are no JPs. Overall, it indicates that

the precipitation–runoff relationship remains stable in the

LIU, GON and JIA sub-basins, but there is a big difference

before and after 2004 in the YUN sub-basin. A comparison

of the two curves in the YUN sub-basin reveals that the

runoff generation ability declines in the lower reach of the

LRB after 2004.

The efficiency coefficient R2 of each exponential curve

is calculated (in Table 3).and the efficiency coefficient

Fig. 5 Exponential fitting curves for describing the precipitation–runoff relationship in four sub-basins (LIU, GON, JIA and YUN) in the

Lancang River Basin. Each series is divided into two parts: before the jump point in 2004 (I) and after 2004 (II)

Table 3 Efficiency coefficients

(R2) and exponential equations

for describing the precipitation–

runoff relationship in four sub-

basins in the Lancang River

Basin

Sub-basin R2 (%) Equation

LIU 65.64 Ru ¼ � 1487:40þ 67:49EXPððPþ 9668:26Þ=3128:90Þ
GON 79.71 Ru ¼ � 109:03þ 11:11EXPððPþ 1309:67Þ=540:33Þ
JIA 68.39 Ru ¼ � 24942:79þ 7371:42EXPððPþ 35137:00Þ=28978:77Þ
YUN 55.80 Rubefore ¼ 197:58þ 1:07EXPððPþ 750:16Þ=301:64Þ

55.80 Ruafter ¼ 119:43þ 1:07EXPððPþ 750:16Þ=301:64Þ

P is precipitation and Ru is the corresponding runoff. For the YUN sub-basin, Rubefore (Ruafter) represents

the precipitation–runoff relationship before (after) the runoff change in 2004
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decreases from upstream to downstream in the LRB,

indicating that the precipitation–runoff relationship

becomes weaker when moving downstream of the basin.

This is especially notable in the YUN sub-basin, where the

R2 value is only 55.80%, implying that there should be

some factors acting on the precipitation–runoff relationship

and changing the natural runoff-generating conditions in

this sub-basin.

4.3 Discussion

As shown in Fig. 3, there are three main hydropower sta-

tions (Dachaoshan, Nuozhadu and Jinghong) located

between the JIA and YUN stations. Among them, the

Dachaoshan hydropower station has been operating since

2003, and the Jinghong and Nuozhadu hydropower stations

has been constructing since 2003 and 2004 respectively.

Hence, they inevitably cause the changes (especially the

abrupt decrease) in the runoff variability at around 2004,

considering that there were no changes in precipitation and

runoff upstream of the JIA station. However, can we be

sure that the abrupt decrease in runoff is only caused by the

effects of the three hydropower projects, or have other

hydroclimate factors also contributed?

To further explore the physical causes, we first calculate

the contribution rates of precipitation change and other

factors to the runoff change based on the equations in

Table 3 (Xie et al. 2012). For a brief overview, we rewrite

the equations as:

Ru1 ¼ f1ðP1Þ
Ru2 ¼ f2ðP2Þ
Ru01 ¼ f1ðP2Þ
Ru02 ¼ f2ðP1Þ

8>>><
>>>:

ð15Þ

where f1 (f2) refers to the Rubefore (Ruafter) equation from

Table 3; P1 and P2 are the average precipitation before and

after the JP, respectively, versus the runoff Ru1 and Ru2;

and Ru01 (Ru02) is the runoff from P2 (P1) according to the

precipitation–runoff relationship before (after) the JP. The

total runoff change DRu is caused by both the precipitation

change (denoted as DRupre) and other factors (denoted as

DRuoth), that is, DRu ¼ Ru2 � Ru1j j. From Fig. 6, we can

obtain DRupre1 ¼ Ru1 � Ru01


 

 ¼ f1ðP1Þ � f1ðP2Þj j and

DRupre2 ¼ Ru02 � Ru2


 

 ¼ f2ðP1Þ � f2ðP2Þj j. Considering

the contribution(s) of other factors, it can be described as

DRuoth1 ¼ Ru1 � Ru02


 

 ¼ f1ðP1Þ � f2ðP1Þj j and

DRuoth2 ¼ Ru01 � Ru2


 

 ¼ f1ðP2Þ � f2ðP2Þj j. Thus, DRu can

be obtained by DRupre1 þ DRuoth2 or DRupre2 þ DRuoth1.
The contribution rate of Cpre and Coth can be expressed as:

Cpre ¼ ðDRupre1 þ DRupre2Þ=2DRu
Coth ¼ ðDRuoth1 þ DRuoth2Þ=2DRu

(
ð16Þ

The results in Table 4 indicate that the abrupt decrease

of runoff in the YUN sub-basin is due much more to other

factors (with a contribution rate of 76.75%) rather than the

precipitation change (with a contribution rate of 23.25%).

Regarding the other factors, the underlying surface

conditions are further considered to clarify the physical

causes. Land-cover change is an important type of human

activity. The land-cover maps in the periods 2000, 2005

and 2010 (Fig. 7) were collected, and the areas of six land-

cover types in the whole LRB are shown in Table 5. Forest,

grassland and farmland are the main land-cover types in the

LRB, with an area of about 153,344 km2 (in 2010), while

urban areas only account for a small part. Forest accounts

for 42.02% (in 2000), 42.03% (in 2005) and 42.12% (in

2010), grassland accounts for 42.53%, 42.54% and

Fig. 6 Variables used to calculate the contribution rates of precipi-

tation change and other factors to the runoff jump based on the

precipitation–runoff relationship before and after the JP in the YUN

sub-basin. P1 (P2) and Ru1 (Ru2) are the average precipitation and the

related runoff before (after) the JP, respectively. Ru01 (Ru02) is the

runoff calculated with P2 (P1) according to the precipitation–runoff

equation before (after) the JP

Table 4 Contribution rate of precipitation change (Cpre) and other factors (Coth) to the runoff abrupt in the YUN sub-basin

Jump point P1 P2 Ru1 Ru2 Ru01 Ru02 Cpre Coth

2004 823.59 785.04 394.93 293.10 371.25 316.78 23.25% 76.75%

The unit for precipitation and runoff is millimeter (mm)
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42.51%, and farmland accounts for 8.88%, 8.79% and

8.72% in the three periods, respectively. Furthermore,

Further, no JP is identified in the areal actual evapotran-

spiration time series by MCCD method (as shown in

Fig. 8). This indicates that both land surface conditions and

precipitation (given in Fig. 4) show no significant change.

They could not cause significant changes of actual

evapotranspiration in the study area, and also could not

cause the jump decrease of runoff in the YUN sub-basin.

Therefore, we deduce that the abrupt decrease of runoff at

the YUN station in 2004 was mainly caused by the oper-

ation and construction of the three hydropower projects,

and that other hydroclimate factors contributed only very

slightly.

Fig. 7 Land-cover types for three periods (2000, 2005 and 2010) in the Lancang River Basin. Types of land-cover are farmland, forest, grassland,

water body, urban and virgin land

Table 5 Areas of different land-

cover types during three periods

(2000, 2005, and 2010) in the

Lancang River Basin

Year Area and ratio Farmland Forest Grassland Water body Urban Virgin land

2000 Area (km2) 14,501 69,030 69,856 1005 249 9629

Proportion (%) 8.83 42.02 42.53 0.61 0.15 5.86

2005 Area (km2) 14,442 69,040 69,883 1005 271 9629

Proportion (%) 8.79 42.03 42.54 0.61 0.17 5.86

2010 Area (km2) 14,329 69,192 69,823 1005 292 9629

Proportion (%) 8.72 42.12 42.51 0.61 0.18 5.86
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5 Conclusions

In this study, we developed the MCCD method for the

detection of jump points in hydroclimate data. In the

MCCD method, the correlation coefficient (CC) between

the potential jump component and the original hydrologic

data is calculated. The position corresponding to the big-

gest absolute CC value is the expected JP, and its signifi-

cance can be evaluated by comparing its biggest absolute

CC value with the CC threshold at the significance level

concerned. The results of statistical experiments have

verified the higher efficiency of the MCCD method com-

pared to four conventional methods. The results also

showed that some parameters (including the mean value

EX, the coefficient of variation Cv, the jump degree q and

the change point position a) influence the JP detection

result. The proposed MCCD method maintained a high

efficiency level and was little influenced by the above-

mentioned factors; it performed well for the detection of

JPs in hydroclimate data.

By applying the MCCD method to the precipitation–

runoff process in the LRB, the JP in 2004 was detected in

runoff at the Yunjinghong station. The precipitation–runoff

relationship was getting weaker from the upstream to

downstream, and the runoff generation ability declined

after 2004 in the YUN sub-basin. This was investigated,

and the results showed that the land-cover conditions and

the area actual evapotranspiration did not significantly

change in the whole basin, and that there was little change

of runoff and area precipitation in the areas above the JIA

station. Therefore, the abrupt decrease of runoff in 2004

was mainly caused by the operation of some major

hydropower projects, although precipitation change attrib-

uted a part of only 23.25%.

In summary, the detection of jump points is important to

the understanding of the spatiotemporal variability of the

hydrologic process and is especially useful in investigating

anthropogenic effects. The MCCD method developed in

this study performs better compared to four commonly

used conventional methods, and thus it can be an effective

alternative for the detection of JPs in hydroclimate data.

However, the limited efficiency of the MCCD method

should be noticed when detecting those JPs close to ends of

time series, which should be further studied for clarifica-

tion. Besides, the efficiencies of the MCCD method pro-

posed are mainly investigated by detecting abrupt changes

of mean values, while its performances for detecting the

abrupt changes of Cv and Cs should be further verified.

More hydrologic case studies are also needed to further

verify the validity and applicability of the MCCD method.

More efforts are needed to figure out the physical mecha-

nisms of runoff abrupt changes in this basin, where addi-

tional factors (such as soil moisture) should be further

considered.
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Fig. 8 Detection result of jump component in the area actual

evapotranspiration series (in modulus ratio) in the Lancang River

Basin. Here the modulus ratio is the ratio between the original

evapotranspiration and the mean value of a series with no unit
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Appendix 1: Groups of parameters used
in statistical experiments

Appendix 2: Mathematical expressions
of the four jump point detection methods
used in the statistical experiments
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