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ARTICLE INFO ABSTRACT

An abrupt change is an important manifestation of hydroclimatic variability. Accurate detection of change points
is a critical issue in hydroclimatic and climate change studies. In the article, we evaluated the performances of 12
methods (including both parametric and non-parametric) for detecting change points in hydroclimatic time
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Keywords: series by considering the influences of eight major factors. Different methods exhibited different efficiencies and
Change point eight of the methods performed better which are recommended for application. Furthermore, the mean values of
Hydrological variability series and locations of change points were found to have little influence on the detection of change points.
Detection . However, for a time series with smaller variance but bigger skewness and larger difference in the mean values
;];?:tz?;?;;a]ysm before and after the change point, the abrupt changes can be more easily and accurately detected. Detection of

change points in shorter series would have larger uncertainty. Based on the Monte-Carlo experiments, the ef-
ficiency of each method was quantified and its capability was quantitatively clarified. Detection of abrupt
changes in precipitation over Southwest China showed that the Indian monsoon had a dominant influence on
precipitation in the regions south of 30°N and west of 110°E. Since 2007 the Indian monsoon has maintained a
weakening pattern, causing a decrease in precipitation on the Yunnan-Guizhou Plateau, which is one of the main
causes of frequently occurring droughts. Results of this study can be a useful reference for choosing a method to
detect change points in hydroclimate time series, and be an important complement for the detection and at-
tribution of hydroclimatic variability.

1. Introduction

Hydrological analysis and design are fundamental in water-re-
sources engineering practice (Favre et al., 2004; Raghunath, 2006; Kao
and Govindaraju, 2007). Climatic and hydrological processes are
usually assumed stationary, and observed hydroclimatic data are gen-
erally assumed to satisfy the consistency condition (Beighley and
Moglen, 2003; Renard and Lang, 2007; Sang et al., 2010). Therefore,
many methods of hydrological analysis and design are based on the
stationary and consistency assumptions (Xu and Singh, 2004). How-
ever, the hydroclimatic system has been exhibiting significant varia-
bility over recent decades, perhaps due to the impacts of global change
(Allen et al., 2002; Trenberth et al., 2014). In particular, streamflow
regimes in many basins worldwide have been changing because of the
profound influence of human activities, including water infrastructures,
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channel modifications, drainage works, as well as land use and cover
changes (Milly et al., 2008; Sang and Yang, 2017). Statistically, prob-
ability distributions of hydroclimatic data and their parameters are
changing (Lépez and Francés, 2013; Cheng et al., 2014). How to detect
the changed signals in the hydroclimatic system is of great socio-
economic significance (Diffenbaugh et al., 2008; IPCC, 2013) and re-
mains a challenge.

An abrupt change is a phenomenon frequently encountered in hy-
droclimate studies. It usually presents some physical process that causes
an rapid switch or change from one mode of behavior to another
(Thorne et al., 2005), as an important manifestation of hydroclimatic
variability, for it intuitively reflects the changed signals in many si-
tuations (McCabe and Wolock, 2002; Wilby and Harris, 2006; McCuen,
2016). Another well-known example is the abrupt increase (or de-
crease) in streamflow and water level in rivers due to dams and other
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water-retaining constructions (Zhang et al., 2014; Tongal et al., 2017; <]
Stosic et al., 2016). g

There are many methods for detecting abrupt change points in hy- é
droclimatic time series. These methods, with different mathematical o
hypotheses and scopes of application, can be divided into two types: %" 2zS 5 B5ET 2 Sen -
parametric and non-parametric tests (Kendall et al., 1999). When using z 222 2 222 3§ Zggzs
parametric tests, such as moving T-test (Welch, 1947) and moving F-test _ .

(Jackson et al., 2016), a proper probability distribution should be preset E g 5 -

and its statistical parameters should be estimated from observed data %] § ’éa g 5
(Geisser and Johnson, 2006). Non-parametric tests, such as Mann- %‘;% 9 _;g ﬁ = =
Kendall test (Kisi and Ay, 2014) and Pettitt test (Pettitt, 1979), need not ) B % “”3 % § ‘é
to postulate any probability distribution and thus perform better com- B s 3 & :E; E E
pared with parametric tests. E E ”g g b = &

All methods for the detection of change points in time series have - = E 8 2 ’Fé E -E
advantages and disadvantages (Lloyd et al., 2014; Jeon et al., 2016; g ? 2 -g § 2 @ &
Turner et al., 2016), and they may not suffice to meet practical needs. g E % : B ; 3 =§0
For example, the moving average method is suitable for detecting the @ = =g & &;’ E i‘:—i
change point at around the middle of a time series but performs poorly 5 ; Z go E _ g 2 § &
for the change point that is close to either of the two endpoints (Nigro % E % £ & g g 2 f)‘ 2
et al.,, 2014). The Mann-Kendall test is commonly used for detecting £ % o g- TE 23 g ’i é
change points but would be unreliable when there are several change _; g E - s £ El 25 _
points in a time series (Gocic and Trajkovie, 2013). The rescaled range 5 § .2 E % ; g 5 é g %
analysis method mainly depends on the difference between a time ."é “; g g 8 = g 6 i;ﬁ =
series before the change point and that after the change point S %* &2 = E g 3" _ EQ = E
(Mandelbrot and Wallis, 1969). Generally, change points detected by a E 5E3 E; 2s E2 g B =
method are often not as reliable as expected, and results vary with the £ g2 _é 2 - g 2 8¢ E g8 &
methods used. Hence, the reliability of detected abrupt changes in a '§ _g ¥ g S é.:é ‘;5) E s g ) E
hydroclimatic time series may be suspect, which may lead to an un- k| ° E E g = E P 2z § g E"‘é
reasonable evaluation of global change impacts and biased hydrological c % 58 = ; =2 &% 2 § E b
design values. However, efficiency and applicability of different £ 5 E _§ %ﬂ 5§ Es E ; BE5 Tg
methods for detecting change points are not clearly clarified, and how = g2 é ’§ Jf E g2 o é —g E« E 3
to accurately detect change points in a hydroclimatic time series still % Té‘ ‘§ % é é ‘E @; E % g 2E E
remains a challenge. Q s§8s & L"TE E=24%F3

The objective of this study therefore is to evaluate the efficiencies of iE z & % E & %”é E § £ 3 _é‘ i,
the twelve methods that are used widely for the detection of change .:‘;3 3 E S ; Ec ES g é 5 é E g

. - . L. . ) oz & S w = S =522
points, aiming at providing guidelines for choosing a proper method. To 2 s 53 T g€ = &é £ < 9 E <
that end, the capabilities of these methods are first clarified through E g g g g g2 ¢ = % S22 5 f g
Monte-Carlo experiments, where the influences of eight factors are EIERR-S: i = - é £ _-é s é ol
considered. After that, these methods are used to detect the variability 2 Sl ge2% - <% e % 52 3 ERE]
and abrupt changes of annual precipitation in Southwest China, and S| 2 '§ £ ‘2 g E E;'i’ 22 25232 ':: 'i’
their relationship with the climatic variability is investigated. The g R e g ? % 55§ : 8§ § 5 % 58
conclusions are given finally. Eu q:.'?c [}5’ é“ [}5’ g é“ E é‘ é“ é“ %é’ E é“ gé‘ é“

o
2. Methods for detection of change points % £EE £ £ ==
= EEE ¢ gEBg E wgbt

Twelve methods that are used widely for the detection of change E § § § ‘é ‘é § ‘é § ‘é ‘é § §
points were considered here, with the aim to compare their perfor- S qé 55§ &£ ESE E E£ELEE
mances and improve the accuracy of detection results. These methods ] A
included: moving F-test, moving T-test, Lee-Heghinian Bayesian % §
method (Lee and Heghinian, 1977), ordered clustering method, re- S| g
scaled range analysis method, Brown-Forsythe test (Brown and 8 %) E8m E Z9g & ELESR
Forsythe, 1974), moving rank sum test, moving runs test, optimal di- Z2l=| 2= 5 5 o&Am & EF2E0
midiate partitioning method, Mann-Kendall test, Bayesian analysis E
method (Perreault et al., 2000a,b), and Pettitt test. Their abbreviations 9 .on
and applicable conditions are briefly listed in Table 1. 2] g

%) =}

B =

3. Comparison of different methods % E %
E Q =

. . . . « E = g

3.1. Factors influencing detection of change point b 8 £ E o E
. 8¢ ET 23

In order to quantitatively evaluate the performances of different :;J o E % k4 = £ = %
methods, the factors which influence the detection of change points in 2 2 i”‘ E % sz —?; 2 §>=: g
hydroclimatic time series should be first specified. Considering a gen- £ 58E Z 3 E £z z E TET
eral situation of hydrological variability, for a time series X, (t = 1,2, - g;o E ’é" E’%q %" g % E = %"% E Tg“ g
...,n) with a length of n, it is assumed that there is one abrupt change at % ag E 28 l.j 2 “g E’ ,,% § 2 é 3 é‘i
an unknown time point n; (n; < n,), which is to be estimated by using = <
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Fig. 1. Diagrammatic sketch showing general situation of abrupt change point in a time series.
the twelve methods. The sub-series before and after the change point n, 1, l—ml 5
is denoted as X; and X, (Fig. 1), which follow a certain probability Ry = " T Q=12 .12 j=1,2,..10000
distribution: 0, MU;"” > 6 3)

X,~PDF(EX, Cv, Cs)
X,~PDF(EX’, Cv2/, Cs2) 1)

where PDF means the probability density function; EX (EX"), Cv (CVv"), Cs
(Cs") are the mean value, coefficient of variation, and coefficient of
skewness of the series X, (X5). From Eq. (1), it is seen that eight factors
would influence the detection of change point at n;, that is, the length
m; of X;, length n, -n; of X», EX, Cv, Cs, EX', Cv', and Cs'. To more clearly
describe the difference between X; and X,, some factors can be trans-
formed to:

0, = (EX' — EX)/EX
8, = (CV' — Cv)/Cv
9; = (Cs' — Cs)/Cs (2)

where 0, describes the relative difference between EX and EX'; 9, de-
scribes the relative difference between Cv and Cv'; and 8, describes the
relative difference between Cs and Cs'. The eight new factors are then
denoted as n,, ny/n,, EX, Cv, Cs, ©,, 95, 03, and their influences on the
detection of a change point can be more conveniently evaluated.

3.2. Design of MC experiments for investigating the influences of eight
factors

Monte-Carlo (MC) experiments were done to investigate the influ-
ences of the above eight factors on the performances of 12 methods
given in Table 1. The specific steps are described as follows:

(1) Set a group of values for parameter n,, n,/n,, EX, Cv, Cs, 81, 6,, &5,
and generate synthetic series with the total number of N
(N = 10,000 here). Each synthetic series includes the same change
point.

(2) Use theith (i = 1, 2, ..., 12) method in Table 1 to detect the change
point in the jth (j = 1, 2, ..., 10,000) synthetic series, and evaluate
the efficiency Ry of the result using the following equation:

where n, is the change point preset, and n; is the change point in the jth
synthetic series detected by the ith method; n, is the length of synthetic
series; and &, is a threshold used to quantify the difference between n,
and ny. A method succeeds if the estimation n; is close to the true point
ny, with the criterion of (n; — n;)/ m; < 8,. Here §; was set as 0.01 for
the MC experiments;

(3) The efficiency of each method was described as C;, i =1, 2, ..., 12:

1 N
Ci=— Y Rjx 100\%
N j=1 (4)

Ly
5= N >R — G

=1 (5)
where S is the variance of the Ry result and was used to describe its
uncertainty.

(4) Reset the kth group of values for eight parameters in step (1), and
repeat the steps (1-3) to investigate the variation of methods’ ef-
ficiency with parameter values.

3.3. Influence of each factor on detection of change point

Through the MC experiments explained above, the influences of
eight factors (n,, n,/n,, EX, Cv, Cs, 6, 65, 65) on the efficiency of the 12
methods were analyzed, as discussed below.

(1) Influence of n,. Here the Pearson-III (P-III) probability distribution,
as applied commonly in hydrological design in China, was used to
generate the synthetic series. The values of six parameters were set
as: EX = 1000, Cv = 0.5, Cs = 2, 6,=1, 6,=0, 6;=0, and the posi-
tion of change point was set at the middle of synthetic series, that is,
n,/ny=0.5. Then, the data length (i.e., parameter n,) was increased
from 50 to 500, with a length interval of 50, to investigate its in-
fluence on the efficiency of each method. Fig. 2 shows performances
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Fig. 2. Variation of the efficiencies of 12 methods with the increase of series length n,. The results are obtained from the synthetic series, which follow the Pearson-111
probability distribution and have the parameters n,/n, = 0.5, EX = 1000, Cv = 0.5, Cs = 2, 6,=1, 6;=0, 8;=0.

of these methods. The influence of data length n, on these methods
is obviously different. Among them, MFT, RST, and ODP performed
poorly for any length, with an efficiency smaller than 10%. The
results of MKT were also not as good as expected no matter the
length, with an efficiency smaller than 30%. Comparatively, the
other eight methods (MTT, LHB, OCM, BFT, MRS, MRT, BYS and
PET) performed much better, and PET performed the best, with an

efficiency

It is thus seen that the data length has a big influence on the de-
tection of a change point. The efficiency of the eight methods with

bigger than 40%.

satisfactory performance can be divided into three parts, corresponding
to the data length < 200, 200—400, and > 400, respectively. Their ef-
ficiency was similar in each part, but increased with the data length.
The efficiency was higher than 70% for the data length bigger than 400.
Note that the noncontinuous variation of methods’ efficiency is due to
the threshold §, = 0.01 preset. Interestingly, it was found that the ef-
ficiency of each method for a smaller length had a bigger uncertainty,

described by the height of box in Fig. 2, and the change point in a time

series with a longer length can be more easily detected. Considering
that the result for a certain data length had similar uncertainty for each
method, it was not considered again in the following discussion. The
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Fig. 3. Variation of the efficiencies of 12 methods with the movement (n,/n,) of change point in time series. The results are obtained from the synthetic series, which
follow the Pearson-III probability distribution and have the parameters n, = 100, EX = 1000, Cv = 0.5, Cs = 2, 6,=1, 6,=0, 8;=0.

lengths of observed hydroclimatic time series are usually smaller than
100 years, and the results with shorter data lengths have worse effi-
ciencies (in Fig. 2), thus the length of synthetic series was set as 100 to
investigate the influence of other seven factors.

(2) Influence of n;/n. The parameters were set as: mn, = 100,
EX = 1000, Cv = 0.5, Cs = 2, 6,=1, 6,=0, 6;=0, and parameter n,/
n, was valued as 1/5, 1/4, 2/5, 1/2, 2/3, 3/5, 4/5, mainly to in-
vestigate its influence. Fig. 3 presents the results obtained from
different methods, which can be divided into four types based on
their different efficiencies. BFT, MRS, MKT, and RST were in the
first type and their performances became better when the change
point moved from the start-point to the endpoint of the series.
When using PET and MRT in the second type, the best results ap-
peared when the change point was in the middle of the series (i.e.,
ny/n, = 0.5), but the performance of the two methods became
worse when the change point moved from the middle to the end-
point, especially for MRT. The MTT, OCM, LHB and BYS methods
belonged to the third type, for which the results did not change with
the position of change point but were stable. For the MFT and ODP
method in the fourth type, the results were the worst and far away
from the true results, with an efficiency < 10%.

Influence of EX. The parameters were set as: n, = 100, n,/n, = 0.5,
Cv = 0.5, Cs = 2, 6,=1, 6,=0, 63=0, and the mean value EX of the
sub-series before the change point was given different values,
mainly to investigate its influence on the detection. Fig. 4 indicates
that when the mean value increased from 0 to 5000 and other seven
parameters were fixed at certain values, there were no obvious
changes in the results obtained from different methods. It was
found that the EX parameter had little influence on both the de-
tection of change point and the efficiency of each method, and it
need not to be considered in practical analysis. Following the

3

—

general understanding of hydrological variability, it is known that
the significance of abrupt change is mainly determined by the de-
gree of relative difference between before and after the change
point, but should have little relationship with the mean value of the
series, explaining the reasonableness of the result in Fig. 4.

(4) Influence of Cv. The parameters were set as n, = 100, n; = 50,

EX = 1000, Cs = 2, 6,=1, 6,=0, 6;=0, and the Cv parameter in-
creased from 0 to 1.5 to investigate its influence. In Fig. 5, dramatic
changes occur in the results of all methods, except for MFT, RST and
OPD which kept their inferior performance and had an efficiency
smaller than 10%. The efficiency of other nine methods (MTT, LHB,
OCM, BFT, MRS, MRT, MKT, BYS, PET) similarly declined quickly
with the increase of Cv value. This can be qualitatively explained as
follows. If a time series shows a large variation (that is, large Cv
value), the random component would occupy a large ratio in the
original series and submerge the abrupt change occurring in the
series, causing the difficulty in detecting the change point.

(5) Influence of Cs. The parameters were set as n; = 50, EX = 1000,

Cv = 0.5, 6,=1, 6,=0, 6;=0, and the Cs parameter increased from
0.5 to 3.0, to investigate its influence. In Fig. 6, the efficiency of the
BFT, PET, MRS and MRT methods increased with the increase of Cs
value. Comparatively, the efficiency of MKT, MTT, BYS, LHT and
OCM kept stable, but again they exhibited inferior performance for
any Cs value. It was found that big skew characteristics (i.e., big Cs
value) of a time series would be favorable for the detection of
change point, which can be explained as follows.

For a hydrological time series with more skew statistical char-

acteristics (that is, bigger Cs value), the values at most of data points are
more likely concentrated to its modal value but far from its mean value,
causing more obvious difference between before and after the change
point and the easier detection.
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Fig. 4. Variation of the efficiencies of 12 methods with the increase of mean value EX of time series. The results are obtained from the synthetic series, which follow
the Pearson-III probability distribution and have the parameters n, = 100, n;/n, = 0.5, Cv = 0.5, Cs = 2, 8,=1, 6;=0, 6;=0.

(6) Influence of 8,. The six parameters were set as n, = 50, EX = 1000,

7

—

Cv = 0.5, Cs = 2, 6,=0, 8;=0, and the 8, parameter was increased
from 0 to 2.0 to investigate its influence. Results in Fig. 7 show that
the efficiency of all methods became better with the increase of
parameter €,, except for RST and ODP which kept their inferior
performance. It is known that parameter €, just reflects the differ-
ence of mean values before and after the change point in the ori-
ginal series, thus a bigger value of 6, indicates a more obvious
abrupt change, and it would more easily be detected.

Influence of 8;. The parameters were set as n; = 50, EX = 1000,
Cv = 0.5, Cs = 2, 6,=1, 8;=0, and the &, parameter was increased
from 0 to 1.5 to investigate its influence. In Fig. 8, the results ob-
tained from the 12 methods showed different changes. To be spe-
cific, the result of MFT increased sharply, but that of MKT, MRS,
BFT, OCM, LHB, MTT, BYS, and PET decreased. Interestingly, the
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2 40t
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efficiency of MRT fell first in the €, range of 0-0.5 and then in-
creased afterwards. The results of RST and OPD were as small as 0
and did not change for any &, value. The increasing efficiency of
MFT with &, was due to its own basic idea, that is, MFT uses the F
test to evaluate the significance between two variances; bigger 5,
value means bigger difference in the variance of the two sub-series
between before and after the change point, which would more ea-
sily be detected by MFT. Besides, the varying efficiency of MRT was
mainly due to the first increase and then decrease in the number of
runs when considering the P-III PDF.

) Influence of &;. The parameters were set as n; = 50, EX = 1000,
Cv = 0.5, Cs = 2, 6,=1, 6,=0, and parameter S;was increased from
0 to 2 to investigate its influence. In Fig. 9, the efficiency of MFT,
RST and OCM was at low level and did not change with the increase
of parameter &;; the efficiency of MKT just increased slightly.
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Fig. 5. Variation of the efficiencies of 12 methods with the increase of variation coefficient Cv of time series. The results are obtained from the synthetic series, which
follow the Pearson-IlI probability distribution and have the parameters n, = 100, n;/n, = 0.5, EX = 1000, Cs = 2, 6,=1, 8,=0, 8;=0.
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Comparatively, the efficiency of other eight methods increased
obviously with parameter &;. The result here was similar to that in
Fig. 6, and the reason was also closely related to the modal value of
series, as explained above.

3.4. Discussion of results

Overall, the above results of MC experiments indicated that the
efficiency of the twelve methods was mainly influenced by the para-
meters 6;, Cv and 6,. When a time series had bigger &, but smaller Cv
and &,, its change point would more easily be detected. The Cs and &,
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parameters also had an influence on the results, but the degree of in-
fluence was weaker than that of the former three factors. The change
point in a time series with bigger Cs and 8; would more easily be de-
tected. The EX and n,/n, parameters had little influence on the results.
The n, parameter had little influence on the efficiency of these methods,
but the results would have big uncertainty when parameter n; had
smaller values. As a result, these factors should be carefully considered
when choosing a proper method to detect change points in a hydro-
climatic time series.

Besides, results also indicated different efficiencies of the 12
methods. The MFT, RST, MKT and ODP methods performed poorly,

60
—e— MTT ——LHB
50 - —»— OCM ——RST
—O—BFT —0—MRS
(o'- 40 b —— ODP —3—MKT|
< —Oo—BYS —/—PET
9
g 30|
=
=5 20}
10

04 06 08
Variation abrupt index

Fig. 8. Variation of the efficiencies of 12 methods with the increase of parameter &, of time series. The results are obtained from the synthetic series, which follow the
Pearson-I1I probability distribution and have the parameters n, = 100, n;/n, = 0.5, EX = 1000, Cv = 0.5, Cs = 2, 6,=1, 6;=0.
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although the MFT method can perform slightly better facing larger
values of parameter 6,. Comparatively, the efficiencies of MTT, LHB,
OCM, BFT, MRS, MRT, BYS and PET were better, and thus they are
recommended for the detection of change point. The efficiency of each
method estimated in this study (in Table 1) can be a useful reference for
the choice of a method for the detection of change points in hydrocli-
matic time series. However, the detection of change points in hydro-
logical time series is much more complex and difficult than that in
synthetic series, because the influencing factors would mutually influ-
ence each other simultaneously. In practice, not only the efficiency of
these methods but also their different performances under various
practical situations should be considered. Thus these methods are fur-
ther tested using a case study of observed dataset in the next section.

4. Abrupt changes in precipitation in Southwest China

Southwest China, covering the southeast Tibetan Plateau, is one of
the regions that is sensitive to global climate change (Yao et al., 2012;
Sang et al., 2013; Feng et al., 2014). Especially, the southeast Tibetan
Plateau is well known as the “Asian water tower”, where many major
Asian rivers, including the Yellow River, Yangtze River, Brahmaputra
River, Mekong River and others, originate from (Lutz et al, 2014;
Immerzeel et al., 2013). They provide a vital water source for hundreds
of millions of people in China and Southeast Asia (Immerzeel et al.,
2013; Zhang et al., 2016). Over recent years, global climate change has
caused a change in the streamflow regimes of these major rivers (Zhang
et al., 2013), and caused frequent occurrences of drought events in
Southwest China. Knowledge about the variability of hydrological
process and its response to the changing climate is thus critical for
drought mitigation and sustainable water resources management in the
region.

Following the water vapor fluxes (Sang et al., 2016), it is known
that the precipitation process in Southwest China is mainly controlled
by the Indian summer monsoon (ISM). ISM brings significant amounts
of warm and wet air currents from the Indian Ocean and comes to
Southwest China through the Bay of Bengal. Recent studies have in-
dicated the weakening of Indian monsoon (Wu, 2005; Thompson et al.,
2006). It can directly influence the precipitation variability in South-
west China, and would directly cause severe drought disasters and
water resources shortages (Feng et al., 2014; Ji et al., 2015; Tan et al.,
2017). However, it is still not clear when the ISM started its weakening
pattern, and what influence it has on the precipitation variability and
its spatial distribution in Southwest China. Accurate detection and at-
tribution of abrupt changes in the precipitation in Southwest China is
therefore a fundamental issue.

To clarify it, we used the twelve methods to detect abrupt changes
in both the time series of ISM and precipitation in Southwest China, and

compared the results for investigating the physical causes. For
achieving the goal, we used the annual precipitation data measured at
144 meteorological stations in Southwest China (Fig. 11) and detected
their change points. The ISM index used here is defined based on the
convection near the Bay of Bengal, whose intensive activity is asso-
ciated with two of the major precipitation maxima in the south Asian
region (Wang and Fan, 1999), including Southwest China. All the
precipitation and ISM data have the same observation period from 1961
to 2013.

The change point detected in the ISM time series is shown in
Table 2. Among all the results, the change point of 2007 was detected
by seven methods (MTT, LHB, OCM, RST, BFT, ODP, BYS). The change
points obtained from MFT, MRT, MRS and PET were 2008 or 2006, just
being close to 2007. As a result, it was thought that the abrupt change
in the ISM process occurred in 2007, since then the Indian monsoon has
a much smaller amplitude. The mean values of the ISM time series
before and after 2007 were 0.160 and —0.964, respectively. Fig. 10
visually presents that the ISM time series kept stable in 1961-2007 but
then obviously decreased, indicating its reliability.

The same practice was applied to the annual precipitation series.
Results in Fig. 11 indicate that among all the 144 precipitation time
series, the precipitation time series measured at 48 stations in the
central area (i.e., the Yunnan-Guizhou Plateau within 100°-111°E and
22°-30°N) of Southwest China showed a decreasing pattern, with the
abrupt decrease occurring around 2002-2008, being consistent with the
abrupt decrease in 2007 in the ISM. The local difference of results can
be due to the complex topography, geography and hydroclimate con-
ditions in the area. Besides, the precipitation time series measured at
eight stations at the boundary of Southwest China did not indicate
significant abrupt changes at 5% significance level. It is thus thought
that although the boundary of Southwest China is geographically closer
to the Bay of Bengal, the weakening Indian monsoon has little influence
on the precipitation in the local area, but the effect of weakening
strengthens when moving inland. However, the precipitation time

Table 2
Abrupt change points in the time series of the Indian summer monsoon index
detected by 12 methods.

Method Method’s Abrupt Method Method’s Abrupt change

efficiency change point efficiency point
identified identified

MFT 0.129 2008 MRT 0.550 2008

MTT 0.307 2007 MRS 0.361 2006

LHB 0.310 2007 ODP 0.011 2007

OCM 0.307 2007 MKT 0.087 2005

RST 0.040 2007 BYS 0.307 2007

BFT 0.294 2007 PET 0.280 2006
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Fig. 10. Abrupt change point detected in the time series of Indian summer
monsoon, and the mean values of series before and after the change point.

series measured north of 30°N on the whole showed no abrupt changes
or even abrupt increase, differing from the abrupt decrease of pre-
cipitation south of 30°N.
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A previous study (Yao et al., 2013) confirmed three distinct domains
of climate condition in the Tibetan Plateau, associated with the influ-
ence of westerlies (north of 35°N), Indian monsoon (south of 30°N), and
transition in between 30°N and 35°N respectively. The results of spatial
pattern of abrupt changes in annual precipitation were consistent with
previous studies. Hence, two important findings can be obtained here.
The first is that the Indian monsoon directly controls the precipitation
variability in the regions south of 30°N and west of 110°E in Southwest
China, but its effect is weak in the local area of boundary. The other is
that the weakening pattern of the Indian monsoon over the recent
decade caused the decrease in precipitation on the Yunnan-Guizhou
Plateau in Southwest China, which can be main reason for frequent
occurrences of droughts.

5. Conclusions

As an important complement for the detection and attribution of
hydroclimatic variability, accurate detection of abrupt changes in hy-
droclimatic time series is critical for understanding the effects of cli-
mate change and human activities. Although there have been many
methods for meeting the needs, they do not suffice to meet practical
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Fig. 11. Abrupt change points detected in the annual precipitation time series at measured at 144 stations in Southwest China.
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needs due to limited applications. In this study, we compared the per-
formances of 12 methods that are used widely for the detection of
change points through Monte-Carlo experiments. We found that the
MFT, RST, MKT and ODP methods had inferior performance.
Comparatively, the MTT, LHB, OCM, BFT, MRS, MRT, BYS and PET
methods performed better, and thus they are recommended for the
detection of change points.

We also found that for those time series which have smaller variance
(Cv and &, in Figs. 5 and 8) but bigger difference in mean values before
and after the change point (&, in Fig. 7), the abrupt changes can be more
easily and accurately detected; for the time series with big skew char-
acteristics (Cs and &5 in Figs. 6 and 9), the abrupt changes can also be
easily and accurately detected. However, the mean values (EX in Fig. 4)
of time series and the location (n,/n, in Fig. 3) in the series have little
influence on the detection of change points. For the time series with
shorter length (n, in Fig. 2), the detection results of change points may
have bigger uncertainty and thus should be carefully considered. Con-
sidering performances of these methods and the influences of the above
factors, we quantified the efficiency of each method (Table 1), and
emphasize the accuracy and reliability of the change points from the
method with high efficiency.

We then used these methods to detect abrupt changes in precipita-
tion in Southwest China, and further investigated its physical connec-
tion to the weakening Indian monsoon. Results indicate that the Indian
monsoon directly controls the precipitation variability in the regions
south of 30°N and west of 110°E in Southwest China, but its effect is
weak in the local area of boundary (Fig. 11). Since 2007 the Indian
monsoon has maintained its weakening pattern (Fig. 10), and causes
the decrease in precipitation on the Yunnan-Guizhou Plateau, which
may be the main reason for the frequent occurrence of droughts. If the
Indian monsoon keeps the weakening effect, the droughts and water
resources shortages in Southwest China would be inevitably ag-
gravated, causing great difficulty to the socioeconomic development in
local and surrounding regions. Therefore, more proactive and effective
adaptation strategies should be implemented to handle the unfavorable
situation.

Finally, it should be pointed out that characteristics of observed
hydroclimatic data are complex, and the detection of change points in
hydroclimatic time series is challenging. Both the complex variability of
hydroclimatic process and the efficiencies of different methods should
be carefully considered together. Especially, the physical causes of the
abrupt changes in hydroclimatic process should be explored, based on
which the reliable results of abrupt change in time series can be ob-
tained.
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