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A B S T R A C T

Changes in water availability strongly affect vegetation growth, and vegetation can also modify land water
storage by changing the land surface water balance. Here, based on the terrestrial water storage (TWS) data
retrieved from the Gravity Recovery and Climate Experiment (GRACE)satellites mission and the normalized
difference vegetation index (NDVI) from Jan. 2003 to Dec. 2015, we investigate the interplay between land
water and vegetation greenness at a global scale. The results reveal a coherent trend with statistical significance
between the terrestrial water storage anomaly (TWSA) and the NDVI in 20.90% of global vegetated lands in
contrast to a non-coherent trend of 20.87% in global vegetated lands. Vegetation greenness exhibits a common 0-
to 1-month delayed response to the TWSA, and significant positive TWSA-NDVI relationships appear in ap-
proximately 43.17% of global vegetated areas. A comparison study suggests that the response of vegetation
greenness to the TWSA is more rapid than that to precipitation. Interactions between the TWSA and NDVI are
further investigated by using the Granger causality test technique. Globally, a strong interaction between the
TWSA and NDVI occurs in over 16.75% of vegetated areas. Simultaneously, vegetation greenness is found to be
the Granger cause of the TWSA in over 40.34% of global vegetated areas, indicating widespread impacts of
vegetation change on variations in land water storage. A case study in China suggests that vegetation greenness
increase is an important reason for the decrease in the TWSA in North and Northwest China, which are tradi-
tionally water-limited-growth regions. In two humid regions, Southwest and South China, the influence of the
TWSA on vegetation greenness seems to be stronger than that of vegetation greenness on the TWSA. Our study
suggests that the GRACE TWS is a useful tool for investigations of interactions between vegetation greenness and
land water conditions.

1. Introduction

Water is a vital prerequisite for maintaining vegetation greenness
(Nemani et al., 2003). The availability of water regulates vegetation
growth over approximately half of the global ecosystem (Heimann and
Reichstein, 2008; Seddon et al., 2016), thereby strongly influencing the
global carbon cycle (Christian et al., 2010; Humphrey et al., 2018). On
the other hand, as a crucial component of terrestrial ecosystems, ve-
getation has great importance in regulating water balance at both re-
gional and global scales (Donohue et al., 2009; Gerten et al., 2004;
Heimann and Reichstein, 2008). Hence, a clear understanding of the
interactions between land water and vegetation greenness is particu-
larly important for forecasting future carbon cycles and water cycles
(Campos et al., 2013; Heimann and Reichstein, 2008).

A large number of studies have investigated how vegetation

responds to water conditions, mainly by relying on precipitation and
soil water (Chen et al., 2014b; Joiner et al., 2018; Papagiannopoulou
et al., 2017). For example, Wu et al. (2015) examined the response of
vegetation to precipitation globally and found a prevailing time-lag
effect of precipitation on vegetation greenness. By a comprehensive
investigation of the response of vegetation to moisture conditions in-
dicated by both precipitation and soil moisture, Papagiannopoulou
et al. (2017) suggested that water is the leading driver of vegetation
change and dominates vegetation greenness over 61% of global vege-
tated areas. Precipitation is the primary source of surface water and is
the indicator most frequently used to explore the impact of water
conditions on vegetation greenness. However, precipitation only pro-
vides indirect information about the surface water conditions (Yang
et al., 2014). In comparison, soil moisture can be directly used by ve-
getation and is more linked with variations in plant physiological
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processes. In some water-limited-growth areas, soil moisture has been
shown to be an excellent predictor of vegetation dynamics (Chen et al.,
2014a; Nicolaishaw et al., 2017; Wang et al., 2018a). However, despite
great improvements in soil-moisture observations and simulations,
large-scale investigations of the soil moisture-vegetation relationship
are still constrained by the accuracy of detecting soil moisture in the
root zone (Chen et al., 2013b).

Conversely, vegetation change also strongly impacts land water
conditions by directly regulating terrestrial evapotranspiration (ET)
(Wei et al., 2017) and indirectly changing precipitation, runoff, and soil
moisture by altering the water cycle (Zeng et al., 2018). A recent
modelling study quantitatively assessed how earth greening affects the
global water cycle and claimed that greening resulted in an increase of
12 ± 2.4mm/yr in global ET and 12.1 ± 2.7mm/yr in global pre-
cipitation over the period of 1982 to 2011, accounting for approxi-
mately 55% and 28% of the observed increase in global ET and pre-
cipitation, respectively (Zeng et al., 2018). Changes in vegetation were
also found to significantly affect the land water balance in basin-scale
investigations (Koirala et al., 2017; Xu et al., 2014). Koirala et al.
(2017) examined the relationship between groundwater and ecosystem
productivity and suggested a potential influence of ecosystem water use
on groundwater table variation in some humid regions covered by
forests. Wei et al.'s (2018) simulation suggested that change in vege-
tation cover contributed an average of 30.7% ± 22.5% to the variation
in global annual runoff from 2000 to 2011. Feng et al.'s (2016) finding
suggested that China's revegetation project on the Loess Plateau has
greatly changed water yields across hydrological catchments due to
greening-associated ET increases. The above knowledge on the impacts
of vegetation growth on the land water cycle is mainly obtained
through modelling, and observational evidence is still needed.

Recently, terrestrial water storage (TWS) data retrieved from the
satellites of the Gravity Recovery and Climate Experiment (GRACE)
have used as a new indicator to explore the hydrological impacts of
vegetation greenness (Andrew et al., 2017a; Velicogna et al., 2015;
Yang et al., 2014). TWS reflects all types of water stored in the con-
tinents, including canopy water, surface water, soil water, and
groundwater (Tapley et al., 2004), and variations in the TWS represent
integrated changes in the land water mass and have been used ex-
tensively in investigations of global and regional water storage changes
and attributions, drought and flood monitoring, groundwater depletion,
sea level variations, etc. (Andrew et al., 2017a; Chen et al., 2013a;
Felfelani et al., 2017; Long et al., 2013; Richey et al., 2015; Scanlon
et al., 2018; Thomas et al., 2014; Wang et al., 2018b). Yang et al.
(2014) examined the response of vegetation greenness to the TWS
anomaly (TWSA) in mainland Australia and suggested that the TWSA
can capture both seasonal and interannual changes in vegetation
greenness. Andrew et al. (2017b) further explored the TWSA-vegetation
relationship in Australia by using the discrete wavelet transform tech-
nique, which decomposes the TWSA into different temporal fre-
quencies. Their results show that the decomposed TWSA better explains
variations in vegetation than the raw TWSA. The study of Velicogna
et al. (2015) in Eurasia suggests that the TWSA not only directly im-
pacts vegetation by changing water-availability conditions but also
indirectly influences vegetation growth by regulating the response of
vegetation to temperature. Although these regional investigations have
suggested that vegetation growth is sensitive to the TWSA, a global
examination is still required to provide a global view of the land water-
vegetation relationships.

In summary, existing studies mainly focus on the one-way effect
between vegetation and terrestrial water conditions, but the interac-
tions between these two variables remain poorly understood. The pre-
sent study investigates the interplay between the TWSA determined by
the GRACE and vegetation greenness indicated by the normalized dif-
ference vegetation index (NDVI) at a global scale. Two main issues are
addressed: (1) how vegetation responds to the hydrological conditions
indicated by the TWSA and (2) the location of hot places that provide

strong feedback between the TWSA and vegetation greenness.

2. Data and methodology

2.1. Data sets

The global TWS data were obtained from the GRACE JPL-Mascons
product (version RL05M_1.MSCNv02CRIv02) produced by the Jet
Propulsion Laboratory (JPL) of NASA using a mass concentration
(mascon) approach (Watkins et al., 2015; Wiese, 2015; Wiese et al.,
2016). Compared to traditional spherical harmonic solutions (Landerer
and Swenson, 2012), the mascon solution has been suggested to im-
prove the signal resolution (Save et al., 2016; Watkins et al., 2015;
Wiese, 2015; Wiese et al., 2016). The JPL-Mascons product is available
at a monthly temporal resolution from Apr. 2002 to Jun. 2017 and a
spatial resolution of 0.5°× 0.5° latitude/longitude grid, though its na-
tive resolution is a 3°× 3° equal-area caps. Data missing for several
months were simply filled in with the two-month average centred on
the missing month (Andrew et al., 2017b; Long et al., 2015).

The satellite-based NDVI was used here to indicate vegetation
greenness. We used the 8 km GIMMS (Global Inventory Modelling and
Mapping Studies) NDVI 3 g data set retrieved from the Advanced Very
High Resolution Radiometer (AVHRR) from 1982 to 2015 (Tucker
et al., 2005). Despite the availability of a higher-resolution (1 km) NDVI
product derived from the Moderate Resolution Imaging Spectro-
radiometer (MODIS), we still used the AVHRR NDVI 3 g product be-
cause it is the most commonly used product and has comparable ac-
curacy with the MODIS NDVI in capturing vegetation change (Fensholt
et al., 2012). This NDVI product is pre-treated for radiation correction,
geometric correction, image enhancement, etc. (de Jong et al., 2013).
The maximum value composite method was applied to reduce noise
from the atmosphere, clouds, and changes in solar attitude angle and to
create monthly NDVI time series (Holben, 1986).

The global monthly ET data with a spatial resolution of 0.25° used
herein were obtained from the Global Land Evaporation Amsterdam
Model (GLEAM) version 3.3a data set (Martens et al., 2017; Miralles
et al., 2011). This product is estimated through a process-based meth-
odology driven by gauged-based precipitation, reanalysis of air tem-
perature and net radiation, and satellite observations of soil moisture
and vegetation optical depth (Martens et al., 2017). It has a reasonable
accuracy against eddy-covariance observations (Martens et al., 2017;
Yang et al., 2017) and has been widely used in the study of land-at-
mosphere interactions (Good et al., 2017).

Global 0.5° precipitation (P) and potential evapotranspiration (PET)
data sets since 1901 were obtained from the Climatic Research Unit
Time Series 4.01 (CRU TS4.01). Using these two data sets, the aridity
index (AI), which is defined as P/PET (Gao and Giorgi, 2008), was
calculated. We divided global continents into 4 climate regions ac-
cording to classifications of the AI (Findell and Eltahir, 1997): humid
(AI≥0.65), sub-humid (0.5≤ AI<0.65), semi-arid (0.2≤AI< 0.5),
and arid (AI< 0.2).

The 1° monthly vegetation water content (VWC) data from 1979 to
the present were obtained from the Global Land Data Assimilation
System (GLDAS) product (Rodell et al., 2004). This product contains
simulations from four models: NOAH, CLM, VIC and MOS. In this study,
we averaged the four simulations to obtain a VWC sequence. In addi-
tion, the 1 km MODIS global land cover product (MCD12Q1) was also
used here to determine global land cover classifications.

To match the resolution of the GRACE TWS data, all data sets were
processed into 0.5°× 0.5° using the nearest neighbour resampling
method. In addition, our analysis was confined to the period from Jan.
2003 to Dec. 2015 because all data sets were available for this period.
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2.2. Methodology

2.2.1. Calculation of TWS and NDVI anomalies
The strong seasonality of the TWS and NDVI may significantly in-

fluence investigations on the relationships between these two variables.
Thus, the seasonality of these two variables was removed by calculating
the monthly anomalies relative to multi-year mean values, as done by
Yang et al. (2014) and Andrew et al. (2017b). Specifically, we used

∑= −
=

X i j X i j
n

X i j( , ) ( , ) 1 ( , ),
i

n

anomaly
1 (1)

where X is the monthly variable (TWS/NDVI) of interest, i is the specific
month, j is the specific year, and n is the total number of years.

We noted that the seasonality of P was also removed using the above
method when correlated to the NDVI.

2.2.2. Trend analysis of TWSA and NDVI
We applied the Mann–Kendall trend test to detect trends of the

TWSA and NDVI over the period of Jan. 2003 to Dec. 2015. This
nonparametric rank-based method was proposed by Mann (1945) and
further improved by Kendall (1948, 1975), and it is frequently used for
trend analysis of hydrological, meteorological, and vegetation variables
(Nguyen et al., 2018). The significance of the studied trends was
evaluated at a p-value<0.05.

2.2.3. Temporal correlations between the TWSA and P
Pearson's correlation analysis was applied to explore the relation-

ship between the NDVI and water-availability indicators (P and TWSA).
In addition, some studies have shown that water availability generally
leads to the behaviour of vegetation (Chen et al., 2014b; Yang et al.,
2014). Therefore, the time lag of the NDVI to TWSA/P was also ana-
lysed by shifting the TWS/P time series to precede the NDVI series. A
150-month window was selected corresponding to the study period,
and zero- to six-month lags were considered. The significance of the
correlation coefficients was evaluated at p-value<0.05.

2.2.4. Granger causality analysis between the TWSA and NDVI
The Granger causality test method was applied to explore the in-

teraction between the TWSA and vegetation greenness. This test was
first proposed by the economist Granger (1969) and has been widely
used in many fields (Hiemstra and Jones, 1994; Papagiannopoulou
et al., 2017; Sun et al., 2016). It not only explores the interrelationship
between variables but also considers changes in the variable itself,
thereby avoiding pseudo-correlation existing between variables. In re-
cent years, this method has been used to explore interactions between
the biosphere and atmosphere (Green et al., 2017).

Granger causality is generally defined as follows: For two time series
X and Y, if the prediction effect of variable Y improves upon including
the past information of variable X (as opposed to only using the past
information of Y), then the variable X is considered to be the Granger
cause of the variable Y (i.e., the variable X contributes to predicting the
conditional distribution of the variable Y) (Sugihara et al., 2012).

The model is given as follows:

∑= + +
=

− −y α x β y ε( ) ,t
i

P

i t i i t i
1

1
(2)

∑= +
=

−y β y ε ,t
i

P

i t i
1

1
(3)

where P is the maximum lag order, N is the sample capacity, αi and βi
are regression coefficients, and ε1 is the error term.

An F-test was used to determine whether the estimates of Eq. (2)
were statistically significantly different from the estimates of Eq. (3):

=
−

−
∝ −F RSS RSS P

RSS N P
F P N P( )/

/( 2 )
( , 2 ),r m

m (4)

The quantities RSSm and RSSr are the residual sum of the squares of
Eqs. (3) and (4), respectively. If F≤ Fα, then the null-hypothesis does
not stand, that is, X is the Granger cause of Y, where Fα is the reliability
(usually set to 0.05 or 0.1).

In our study, we treated each grid as a separate problem and per-
formed the Granger causality test between the NDVI and the TWSA grid
by grid. If the prediction of the NDVI was improved by including the
TWSA as a predictor, but the prediction of the TWSA was not improved
by including the NDVI as a predictor, then the TWSA was said to be the
unidirectional Granger cause for the NDVI. The opposite condition
suggests that the NDVI was the unidirectional Granger cause of the
TWSA. If the prediction of the NDVI was improved by including the
TWSA as a predictor, and the prediction of the TWSA was also im-
proved by including the NDVI as a predictor, then there was a bidir-
ectional causality relationship between the TWSA and NDVI.

3. Results

3.1. Trends of the GRACE terrestrial water storage anomalies and
vegetation greenness

Fig. 1a shows the global pattern of TWSA trends from Jan. 2003 to
Dec. 2015. Over 31% of the global continents present significant de-
creasing trends (p-value<0.05), with the largest drops occurring in
northern Russia, southwestern and western Asia, southern South
America, and northern and southern North America. In contrast, strong
increases in the TWSA occur in eastern and western Russia, western
Europe, eastern and central North America, southern South America,
and southern Africa, all of which also accounts for 47.36% of the global
continental land. This global pattern is basically consistent with that
suggested by Reager et al. (2016) and is roughly consistent with some
regional investigations (Ahmed et al., 2014; Asoka et al., 2017). Con-
sidering the potential impacts of the length of study periods and ab-
normal changes (e.g., extreme droughts and floods) on the judgement of
the TWSA trends, we first tested the TWSA trends for different periods,
including Jan. 2003 to Dec. 2012, Jan. 2003 to Dec. 2013, and Jan.
2003 to Dec. 2014 (Fig. S1a-c). Second, we re-examined the TWSA
trends by removing the maximum and minimum anomalies for the
period of Jan. 2003 to Dec. 2015 (Fig. S1d-f). We found that there is a
roughly consistent pattern in the TWSA trends between these different
tests. These generated patterns also agree well with the original pattern
of the TWSA trends during Jan. 2003 to Dec. 2015.

Simultaneously, significant vegetation greening during the period of
Jan. 2003 to Dec. 2015 occurs in eastern and southwestern Asia, wes-
tern Europe, and eastern Australia, accounting for 18% of the global
vegetated lands (Fig. 1b). Conversely, 36.72% of the global vegetated
lands feature significant vegetation browning, mainly in western Asia,
central Africa, northern South America and North America. The sig-
nificant trends in the TWSA and the NDVI are coherent over a total of
20.9% of the global vegetated lands, with 12.06% of the land exhibiting
significant increasing trends and 8.84% exhibiting significant de-
creasing trends, as shown in Fig. 1c. These coherent trends are mainly
observed in relatively dry areas. Simultaneously, the non-coherent
trends between the TWSA and NDVI are also found over 20.87% of the
global vegetated lands.

To explore the coherence and non-coherence of those significant
trends between the TWSA and the NDVI at the biomes scale, we divided
the global vegetated lands into five types (forest, shrubland, savanna,
grassland and agricultural land; see Table S1) according to global land
cover classifications (Fig. 2). Interestingly, we found that the area ratio
with coherent trends is larger than those with non-coherent trends
except for forests and shrublands. The largest ratio with coherent trends
is observed for grasslands, while the largest ratio with non-coherent
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trends is found for shrublands.

3.2. Response of vegetation greenness to terrestrial water storage anomalies

The response of the monthly NDVI to the TWSA was investigated
using correlation analysis at the global scale without considering the
lagged response of the NDVI to the TWSA (Fig. 3a). We observed an
apparent decrease in the correlation coefficient associated with in-
creasing AI (Fig. S2). Significant positive relationships are concentrated
in arid, semi-arid and sub-humid regions, such as Australia, western

Asia, the Indian peninsula, northern and southern Africa, southern
South America, and southern North America, accounting for 30.75% of
the global vegetated areas. Simultaneously, significant negative corre-
lations mainly appear in humid regions, such as in the high northern
latitudes and in areas with tropical rainforests, accounting for 16.93%
of the global vegetated areas. We further investigated the NDVI-TWSA
relationships using annual mean values and annual maximum and
minimum values (Table S2). The largest area ratio (13.02%) with a
significant positive relationship is observed between the annual max-
imum NDVI and TWSA, followed by that between the minimum NDVI

Fig. 1. Global distribution of the linear trends in a) the TWSA and b) the NDVI and c) the coherent and non-coherent trends (significant at p < 0.05) between the
TWSA and NDVI from Jan. 2003 to Dec. 2015. Areas without significant trends are shown in grey.
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and TWSA (12.79%) and between the annual mean NDVI and TWSA
(11.76%), implying an enhanced response of the NDVI under extreme
water storage conditions. In addition, the NDVI-TWSA relationship was
also explored at the seasonal scale (Table S3). The NDVI tends to have
higher sensitivity to the TWSA in summer than in the other three sea-
sons.

The apparent lag in the response of the NDVI to the TWSA is
identified by correlating the NDVI to the TWSA with a time lag of 1 to
6months (Fig. S3). Upon extending the length of the time lags, some
weak positive relationships change to significant positive relationships.
Simultaneously, the negative relationships are reduced. The maximum
area ratio with significant positive relationships between these two
variables occurs at 0-month lags (Fig. 5a). When we consider the lagged
response, the percent of area with a significant positive correlation
between the NDVI and TWSA increases from 30.75% to 43.17%.
Figs. 4a and 5a demonstrate the spatial distribution of the maximum
positive correlations between the NDVI and TWSA and their corre-
sponding time lags, respectively. Spatially, short time lags (0–1) appear
in arid areas covered mainly by savannas and grassland (Fig. 5d),
whereas longer time lags appear in relatively humid regions covered
mainly by forests, mainly concentrating in the northern middle and
high latitudes.

3.3. Comparison of the NDVI response to the TWSA with that of
precipitation

P is the most frequently used indicator for exploring hydrological

controls of vegetation greenness. We also calculated the correlations
between the NDVI and P to compare with the correlations between the
NDVI and TWSA (Fig. 3b). Ignoring the potential response lag of the
NDVI with respect to these hydrological indicators, the NDVI is more
strongly correlated with the TWSA than with P (Fig. 3), demonstrating
higher correlation coefficients and a wider extent of significant positive
relationships. A total of 10.88% of the vegetated areas exhibited sig-
nificant positive correlations between the NDVI and P, whereas this
value was 30.75% for NDVI-TWSA. Despite differences in the values of
correlation coefficients, the spatial patterns of correlations between the
NDVI and the two hydrological indicators are basically coherent. Po-
sitive relationships occur in relatively dry areas, and negative re-
lationships occur mainly in humid regions.

We also explored the response lag of the NDVI with respect to P.
Figs. 4b and 5b show the maximum positive significant relationships
between the NDVI and P and the corresponding time lags. Significant
positive relationships between the NDVI and P are found in over
44.78% of the global vegetated areas, which are slightly higher than
those between the NDVI and TWSA (43.17%). However, in terms of the
maximum correlation, the NDVI variations seem to be correlated more
with the TWSA than with P.

In addition, differences in the response lag of the NDVI also appear
for the two indicators. In dry areas, the response lag of the NDVI to the
TWSA is short or non-existent and is also shorter than that of P. In
relatively humid areas, the NDVI response lag to the two indicators is
relatively long. The largest proportion of significant relationships be-
tween the NDVI and TWSA is identified at 0-month lags (Fig. 5a), while

Fig. 2. a) Spatial distribution and b) area ratio of the coherent and non-coherent trends (significant at p < 0.05) between the TWSA and the NDVI from Jan. 2003 to
Dec. 2015 for different land cover types. Areas without significant trends of TWSA/NDVI are shown in grey.
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that between the NDVI and P is found at 1-month lags (Fig. 5b), in-
dicating a more rapid response of the NDVI to TWSA than to P. At the
biomes scale, larger proportions of the NDVI respond to the TWSA
without lags, excluding forests (Fig. 5c-d). However, a greater propor-
tion of the NDVI tended to respond to P with a 1-month lag across all
vegetation types. Overall, the TWSA demonstrates a comparable and
even better performance in capturing vegetation change with P, espe-
cially in dry areas.

3.4. Causal link between terrestrial water storage anomalies and vegetation
greenness

The potential interactions between the NDVI and TWSA were de-
tected by Granger causality analysis, as shown in Fig. 6. Significant
bidirectional causality relationships appear in over 16.75% of the
global vegetated areas, indicating a detectable interaction between the
TWSA and NDVI. These areas are scattered across continents, such as
eastern Australia, southern Africa, and southwestern North America. At
the biome scale, the highest proportion of interactions is observed for
grasslands, followed by savannas, agricultural lands, shrublands and
forests. Furthermore, the TWSA is found to be the unidirectional cause
of the NDVI in over 26.21% of the vegetated areas, which are mainly
distributed in drylands featured as grasslands and shrublands. The op-
posite conditions (i.e., that the NDVI is the unidirectional cause of the
TWSA) occur both in dry and humid areas, accounting for 23.59% of

the vegetated lands, which indicates that changes in vegetation may
strongly affect land-water conditions. The largest area ratio with this
kind of relationship is found for forests, followed by savannas, grass-
lands, shrublands and agricultural lands.

Overall, the TWSA is the causal cause of the NDVI in 42.96% of the
vegetated areas, which are concentrated in water-limited-growth areas.
In contrast, the NDVI is found to be a cause of the TWSA in 40.34% of
the vegetated areas. Interestingly, we find that the areas where the
NDVI is the unidirectional cause of the TWSA are mainly distributed in
temperature- and radiation-limited growth areas, such as boreal forests
and tropical rainforests. This suggests that vegetation dynamics in these
areas will cause changes in surface hydrological processes. At the
biomes scale, more extensive influences of water availability on vege-
tation greenness than the opposite condition are observed for all ve-
getation types except forests, which are featured with more extensive
influences of vegetation greenness on land water conditions.

3.5. A case study in China

To better understand the interaction between the TWSA and NDVI,
a case study was carried out in China, which has a vast territory with
various climate zones and vegetation types. The whole study region was
further divided into 9 sub-regions according to Peng et al.'s (2011)
study for convenience of analysis (Fig. 7a), and the TWSA–NDVI re-
lationship was explored for each region using Pearson's correlation

Fig. 3. Patterns of correlations of the NDVI with the a) TWSA and b) P from Jan. 2003 to Dec. 2015 without considering lags. The number in the lower left corner
indicates area ratios with significant positive/negative relationships (p < 0.05). Areas without significant correlation are shown in grey.
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analysis and the Granger causality test. Fig. 7b shows the maximum
correlation between the regional mean TWSA and the NDVI when time
lag was considered. A significant negative relationship is observed in
the Northwest region (NW) and the North region (NO), while a sig-
nificant positive relationship occurs in the Inner Mongolia region (IM),
the Northeast region (NE), the Central region (CE), the Southwest re-
gion (SW) and the South region (SO). In the East region (EA) and the

Qinghai-Tibet region (QT), the TWSA and NDVI present a weak nega-
tive correlation. Strong interactions determined by the Granger caus-
ality test between the TWSA and NDVI are observed in over 16.63% of
the vegetated areas in China (Fig. S4e) and are mainly distributed in the
SO and NO. The NDVI is identified as the unidirectional cause of the
TWSA in over 24.11% of the vegetated areas located in the NW, IM, EA,
and NE. On the other hand, the TWSA is found to be the unidirectional

Fig. 4. Maximum correlation coefficients of the NDVI with the a) TWSA and b) P (only significant relationships are shown) and corresponding c) area ratios for each
land cover classification. Areas without significant correlations are shown in grey.
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cause of the NDVI in over 26.13% of the vegetated areas, which are
concentrated in the SW and CE.

Combining the results from the correlation analysis and the Granger
causality test, we found that in two traditional water-limited-growth
regions, the NW and NO, extensive influences of vegetation greenness
on the TWSA are observed (Fig. 8a and b). In contrast, in two tradi-
tional radiation-limited-growth regions, SW and SO, we found wide-
spread influences of the TWSA on vegetation greenness (Fig. 8c and d).
To explore the potential reasons, we further examined the interannual
variation in the TWSA, NDVI and ET in these four regions. ET was in-
cluded here, as it is a main way by which vegetation changes the TWSA.
The TWSAs in the NW and NO regions both show a decreasing trend

(Fig. 8a, Fig. S4a), while the NDVI and ET present an increasing trend
(Fig. 8a, Fig. S4b and S4c). According to previous studies (Deng and
Chen, 2017; Xie et al., 2018), warming-caused snowmelt and enhanced
ET might be responsible for the TWSA decrease west of the NW region.
The eastern part of the NW is the Loess Plateau, where a revegetation
programme was launched in 1999. The revegetation programme has
been suggested to increase vegetation growth and associated ET (Feng
et al., 2016; Jin et al., 2017; Pei et al., 2017). The promoted ET is also
found to decrease surface water yield and exert pressure on land water
availability (Feng et al., 2016; Jin et al., 2017). This can partly explain
the decreasing TWSA. The NO is a typical irrigated agricultural region,
and groundwater extraction for irrigation caused a rapid decrease in the

Fig. 5. The time lags of the NDVI to a) TWSA and b) P corresponding to the maximum coefficient, as shown in Fig. 4. c) and d) indicate area ratios with land cover
types. Areas without significant correlations are shown in grey.

Fig. 6. Granger causality between the NDVI and TWSA. The red areas are identified with bidirectional causality relationships between the water conditions and the
NDVI; the green indicates that the NDVI is the unidirectional cause of the water conditions; the blue indicates that the water conditions are the unidirectional cause of
the NDVI. Areas without significant causal links are shown in grey. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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TWSA. Pan et al. (2017) determined the groundwater irrigation-in-
duced ET using the GRACE TWS in the Haihe River basin in the NO and
suggested that it contributes to a 12% increase in total ET. In summary,
greening-associated ET increases play an important role in TWSA var-
iation in the NW and NO regions.

In both the SW and SO regions, the TWSA demonstrates a significant
increasing trend accompanied by an increase in the NDVI (Fig. 8c and d,
Fig. S4a and S4b). We also observed significant positive relationships
between the TWSA and NDVI in these two regions (Fig. S4d). However,
according to previous investigations (Hou et al., 2015; Peng et al.,
2011), vegetation greenness in these two regions usually negatively
responds to precipitation, implying that water availability condition is
not a driver of vegetation change. The potential reason may be that
these studies ignored the lag of the NDVI to precipitation, which is
clearly illustrated by the difference between Figs. 3b and 4b. Despite
the increase in the TWSA and the NDVI, ET in both regions exhibits a
weak decreasing trend, implying that ET is not a main reason for the

TWSA change. The above analysis may explain why more extensive
influences of the TWSA on vegetation greenness than under the oppo-
site conditions are observed in these two regions.

4. Discussion and conclusions

The TWS derived from the GRACE provides an integrated mea-
surement of land water availability. Using TWS as a tool, this study
investigates the hydrological controls of vegetation greenness and ex-
amines the interactions between land water and vegetation greenness.
Although various studies have explored how the TWSA affects vegeta-
tion greenness at the regional scale (Andrew et al., 2017b; Yang et al.,
2014), there is no systematic modelling that actually links the NDVI
with the TWSA, particularly at a global scale. Vegetation greenness
responds positively to the TWSA in traditional water-limited-growth
areas but responds negatively in radiation- or temperature-limited-
growth areas. This pattern agrees roughly with previous investigations

Fig. 7. a) Spatial distributions of land cover types and 9 sub-regions, b) correlations and c) Granger causal links between the TWSA and NDVI in 9 regions during Jan.
2003 to Dec. 2015. The 9 regions are the Northwest (NW), Inner Mongolia (IM), Northeast (NE), North (NO), East (EA), Central (CE), Southwest (SW), and South (SO)
China and the Qinghai-Tibet (QT) region of China.

Fig. 8. Interannual variations in the TWSA, NDVI, and ET from 2003 to 2015 in a) Northwest, b) North, c) Southwest and d) South China.
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based on P and SM (Papagiannopoulou et al., 2017; Vicente-Serrano
et al., 2013). The significantly positive NDVI-TWSA relationship ac-
counts for 43.17% of the global vegetated areas. This ratio is compar-
able with a previous study that examined the response of global eco-
system productivity to hydrological conditions based on the aridity
index (Nemani et al., 2003). In addition, as previously reported
(Andrew et al., 2017b), the response of vegetation greenness lags be-
hind the TWSA, and the length of the time lags seems to depend on the
climate aridity, with more arid climates corresponding to shorter time
lags. The GRACE TWS reflects all kinds of water stored in land, among
which the vegetation water content (VWC) is an important component.
To examine whether the observed positive relationships between the
NDVI and TWSA are caused by the intrinsic relationship between the
NDVI and VWC, we tested the response of the NDVI to VWC obtained
from GLDAS, as shown in Fig. S5. Significant positive relationships are
observed in over 9.11% of the vegetated areas scattered throughout the
dry regions, suggesting the potential influence of the VWC on the NDVI-
TWSA relationships determined in this study.

Previous studies have suggested that in Australia, the GRACE is a
better indicator than soil moisture or precipitation for understanding
hydrological influences on vegetation (Andrew et al., 2017b; Yang
et al., 2014). The present comparison study suggests that globally, ve-
getation greenness tends to be more sensitive to the TWSA than to P.
This result may be explained by the fact that the TWSA provides a
better representation of the actual water availability condition for
plants (Yang et al., 2014), whereas precipitation only provides indirect
information about surface water conditions (Chen et al., 2013a).
Rainforests are traditionally considered to be not water-limited growth
areas. However, we found that the NDVI sensitively responds to the
TWSA in some areas of the Congo rainforest (Fig. 4a). This could be
supported by Zhou et al.'s (2014) study. They found that a rainfall
decrease caused a decline in vegetation greenness from 2000 to 2012.
As mentioned in the introduction, TWS reflects all types of water stored
in land, so anomalies in the TWS can result from any component of land
water (e.g., surface water, soil water, and groundwater) (Felfelani et al.,
2017; Soni and Syed, 2015). In other words, the TWSA does not ne-
cessarily reflect the change in water available conditions for vegetation
greenness. For example, deficits in groundwater may have no influence
on short-root plants. Generally, compared to P, the TWSA provides
more direct information on the availability of water for plants and
better explain changes in vegetation. This may be confirmed by the
finding that vegetation responds to the TWSA more promptly than to P.

In addition to the control exerted by land water over vegetation
greenness, plants can also regulate land water conditions (Liu et al.,
2016). This study provides a preliminary analysis of the interactions
between the TWSA and NDVI by using the Granger causality test.
Strong interactions occur in over 16.75% of the global vegetated areas.
In addition, the TWSA is identified as the Granger cause of the NDVI in
over 42.96% of global vegetated areas, which are concentrated in tra-
ditional water-limited growth areas. This is roughly consistent with the
findings from the correlation test between the TWSA and NDVI in both
the total area ratio and spatial patterns. Conversely, vegetation green-
ness is also found to strongly influence land water conditions over the
continents (Koirala et al., 2017). In this study, the NDVI is detected as
the Granger cause of the TWSA in over 40.34% of the global vegetated
areas, indicating an extensive influence of vegetation change on land
water storage. In some humid ecosystems (e.g., at middle and high la-
titudes), vegetation is the Granger cause of the TWSA, but the TWSA is
not the Granger cause of vegetation. A possible explanation is that the
vegetation in these regions is not limited by water but by temperature
or solar radiation (Nemani et al., 2003; Seddon et al., 2016). However,
these regions are mainly covered by forests with high ET rates.
Therefore, ET change caused by the variation in vegetation greenness
will inevitably influence the land water conditions (Wei et al., 2017). A
recent study also revealed the great impact of ecosystem water use on
groundwater level change in humid forests (Koirala et al., 2017).

The results from this study are mainly based on satellite products.
Hence, they will be inevitably subject to uncertainties associated with
satellite retrievals. For example, the satellite NDVI has been found to
frequently suffer from saturation problems in high vegetation cover
areas (e.g., tropic forests) (Huete et al., 1997; Morton et al., 2014;
Nicholson and Farrar, 1994). In addition, its accuracy is easily influ-
enced by the contamination of atmospheric conditions (e.g., clouds and
aerosols), shifts or degradation of sensors, etc. (Pinzon and Tucker,
2014; Tian et al., 2015). Uncertainties associated with the GRACE TWS
should not be ignored. Although the mascon solution has been sug-
gested to greatly reduce the signal loss (Watkins et al., 2015; Wiese
et al., 2016), caution is still needed when it is used near coastal regions
(Wiese et al., 2016). Additionally, as described in Section 2.1, the ori-
ginal resolution of the GRACE TWS is 3°× 3° (Watkins et al., 2015),
which indicates that the TWSA signal of the downscaled 0.5°× 0.5°
grid used for analysis is independent of its surrounding grids. Therefore,
the different relationships between the TWSA and NDVI built in this
study should not be fully interpreted as the differences in vegetation
type because each 3°× 3° grid may comprise several vegetation types.
It should also be noted that the detection of Granger causality between
the NDVI and TWSA does not imply a direct physical mechanism ex-
isting between these two variables. Therefore, our study only indicates
possible causality links by a statistical method.

Overall, the results confirm the basic feasibility of using the GRACE
TWS as a tool to explore the hydrological impact of plant greenness and
the interaction between vegetation greenness and land water condi-
tions. In particular, the TWS is found to be an ideal indicator to in-
vestigate the influence of vegetation change on land water conditions.
The interaction established herein between the TWSA and vegetation
can help to improve the understanding of the global terrestrial water
and carbon cycle. However, this study only provides a preliminary in-
vestigation of TWSA-vegetation relationships; more in-depth studies
focused on some specific areas, such as Andrew et al. (2017b) in Aus-
tralia, are still needed.
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