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A B S T R A C T

Northeast Farming Region of China (NFR) produces about one-third of the national maize output. Shortage of
crop irrigation water is one of the main threat to the stable level of maize production in the NFR. Previous studies
on the sensitivity of maize production to drought are typically based on field experiments and treat the maize
growing season as a whole, with rare attention to the varying impacts of drought across different maize growth
stages. Given the importance of NFR on China’s food security, it is crucial to optimize the irrigation schedule to
mitigate the adverse effects of drought. In this study, we employ Agro-ecological Zone (AEZ) model to in-
vestigate how climate change affects irrigation water requirement (IWR) of maize during different growth stages
and under different climate change scenarios. Results indicate that the NFR would experience a substantial
increase in the probability of extremely shortage of crop irrigation water under future climate change. The
ensemble simulation under future climate projections indicates more frequent demands for irrigation with
substantially increased amount in the mid-season stage (G3) when maize is more sensitive to water deficit
compared with other stages. These findings indicate that earlier planning of irrigation infrastructure and de-
velopment of more efficient irrigation scheme and technologies is of great importance to secure maize pro-
duction in the region.

1. Introduction

Maize (Zea mays L.) production is critical in guaranteeing food and
feed security for China (Gustafson et al., 2014). As the famous Golden
Maize Belt, the Northeast Farming Region (NFR) is the largest rain-fed
maize-producing region in China and accounted for more than one-
third of the nation’s total production in 2016 (National Bureau of Sta-
tistics of China, http://data.stats.gov.cn). However, with 62% of the
crop water requirements (CWR) being met by precipitation (Meng
et al., 2016), maize yield and production in the NFR have been vul-
nerable to drought due to the high sensitivity of maize to water supply
and temperature as well as the spatial and temporal variability of

effective rainfall in the region (Cook et al., 2015; Zhao et al., 2015). In
the coming decades, the projected decrease in precipitation (Yu et al.,
2014) and increase in the frequency and intensity of drought episodes
(Leng et al., 2015) will further elevate the risk of maize production in
the NFR (Xu et al., 2013; Meng et al., 2016; Zhao et al., 2015). The
increasing competition for water from the much more profitable non-
agricultural sectors will add diverting pressure on irrigation water
supply and thus imposing further challenges to maize production in the
region.

Water stress caused by the shortage of irrigation water at any stage
of maize growth can reduce biomass production and lead to yield loss.
As such, extending irrigation network and optimizing irrigation scheme
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should be one of the most efficient adaptation measures to alleviate the
negative impact of drought on maize production. However, only 15% of
the maize growing areas in the NFR are irrigated (Liu et al., 2005).
Existing assessments of drought risk in the region are mostly based on
precipitation changes in the whole growth season (e.g. Kent et al.,
2017) without considering the varying sensitivity of maize growth to
water stress at different growing stages (e.g., vegetative, silking and
kernel-filling growth stages). For example, the maize sowing season
ranges from late April to mid-May in the NFR. Spring drought can delay
the sowing date, changing the corresponding relationship between
hydrothermal factors and exerting influence on maize grain yields
(Osman, 2015; Wang et al., 2017). The maximum reduction in grain
yield results when the drought stress occurs at the vegetative growth
stage (Osman, 2015). It is, therefore, crucial to understand the dis-
tribution of irrigation water requirement (IWR) in different growing
stages (Song et al., 2013; Yu et al., 2013). Such distributional in-
formation will provide a scientific base for irrigation infrastructure
planning and irrigation schedule designing, with the aim to mitigate the
adverse effects of irrigation water shortages in the NFR under future
climate change (Jiang et al., 2017; Wang et al., 2016).

Climate change will affect water availability for crop growing and
increase crop water requirements as a result of changes in the magni-
tude and timing of precipitation at different spatial and temporal scales
(Gornall et al., 2010). Warming affects irrigation water demands in two
ways: First, evapotranspiration increases due to the increase in radia-
tion, rise in temperature and uneven distribution of precipitation
(Abtew and Melesse, 2013). Second, the warming climate can poten-
tially increase the drought risk at the key growing stages. This primarily
occurs through increasing crop water requirements and reducing the
available crop irrigation water during the growing period with an
earlier planting and harvest dates. On the other hand, climate change
can advance the start date and delay the end date of the crop growing
season, resulting in a longer growing season that can be utilized by
farmers to increase crop yield. In fact, farmers in the NFR region have
taken measures to adapt to the observed warming trend in the region
during recent decades. They have typically adopted maize cultivars
with longer growing-cycle which allows earlier sowing, later har-
vesting, and thus prolonging the maize growing length and leading to
higher yield. However, such adaptation measure has significant im-
plications for irrigation water demand because both evapotranspiration
and precipitation vary seasonally (Zhang and Cai, 2013). This research
will explicitly assess such implications for each growing stage of maize
in the NFR.

Sustainable agricultural production also depends on the efficient use
of existing water resources, for instance by increasing the efficiency of
irrigation systems and adjusting crop calendar to meet the suitable
climate conditions. Field experiments show that such adaptation mea-
sures can increase maize yield by 13%–38% (Liu, et al. 2012). Thus, a
better understanding of the CWR and IWR is of great importance for
irrigation infrastructure planning, irrigation scheduling, and agri-
cultural water management, because of the urgent need for producing
more food per unit volume of water. In other words, an enhanced
ability in estimating evapotranspiration and predicting the CWR and
IWR by crop growing stages can help improve crop water-use effi-
ciency, improve crop productivity and consequently save water for
other purposes (Fischer et al., 2012b).

A number of process-based crop models have been employed to
assess changes in average productivity levels under future climate
change (Bassu et al., 2014; Challinor et al., 2014). Nevertheless, how to
effectively use them to investigate the response of rainfed agriculture to
the elevated drought risk, especially for the crop water use, is not well
established yet. Recent studies have focused on assessing the quantity of
IWR and the impact of irrigation water shortfall on maize production
over the whole growing season in the NFR, largely based on field ex-
periments (Liu et al., 2013). There has been a lack of attention to the
following important question: How does the irrigation water shortfall

affect maize production at different growing stages across the region?
Because the performance of process-based and site-specific models
outside the place of observation would be biased due to insufficient
data coverage and the inability to show spatial integrity (Tubiello and
Fischer, 2007), we cannot directly use these process-based models
across a large region to simulate crop growing dynamics and quantify
the IWR under different climate change scenarios. In addition, previous
assessments of climate change impact on maize production in China
(e.g., Tao and Zhang, 2010; Xiong et al., 2007) were based on Special
Report on Emission Scenarios (SRES) (Parry et al., 2004) and has been
out of date. Another weakness of previous assessments is the in-
sufficient attention to adaptation measures of crops (Gustafson et al.,
2014).

In this study, we adopt a nested modeling procedure to better
capture different key agricultural processes which influence maize
growth and development across different spatial scales, and to improve
the spatial performance of the Agro-ecological Zone (AEZ) model
(Fischer et al., 2012a,b) in terms of maize growth at regional scale. At
the 6 representative sites where we have detailed agro-meteorological
records and agronomic information, we employ the Decision Support
System for Agro-Technology Transfer (DSSAT) model to simulate the
eco-physiological processes at daily steps, with the aim to calibrate and
validate key eco-physiological parameters for the AEZ model based on
the outputs of the DSSAT model (Tian et al., 2012, 2014). At the re-
gional level, we employ the AEZ model to quantify the amounts of the
IWR at the grid-cell level across the NFR region and analyze the impact
of irrigation water shortage on maize yield and production under cur-
rent and future climate conditions in the NFR. The AEZ model employs
a powerful algorithm to simulate crop growth and provides standar-
dized crop simulation and environmental matching programs to quan-
tify the limitations of climate, soil and agro-ecological environments
under specific management conditions, to determine the expected yield
of related planting activities (Fischer et al., 2002). The objectives of this
study are to: (1) analyze the spatial-temporal variations of the CWR and
IWR with a focus on the maize growing season; (2) estimate the spatial
and temporal variation of the CWR and IWR in each key growing stage
under different climate scenarios; (3) investigate the risk of crop irri-
gation water shortage in each growing stage under different climate
scenarios.

To our best knowledge, this is the first study to characterize the
impacts of future climate change on irrigation water demands at a re-
gional scale in NFR, thus providing the water demand context for re-
gional agricultural planning and the scientific information for irrigation
water resource management decision-making in the NFR of China. The
AEZ model has three advantages to achieve the goals we raised above:
(1) The AEZ model contains an automatic crop calendar search for
adaptation to climate change; (2) the AEZ model estimates land suit-
ability and productivity at the grid-cell level across a large region like
the NFR; (3) the AEZ model can compute the CWR and IWR for each
major crops and highlight the trade-offs among crop planting options
and between rain-fed and irrigation uses. In addition to providing a
regional-scale water requirement context for decision making, this
study also lays the foundation for future efforts that can look at water
supply and requirement in conjunction, and include other considera-
tions such as competing uses, and water management (such as water
rights curtailment) and human decision-making in an internally con-
sistent manner.

The rest of the paper is structured as follows. Sections 2 provides
details of the study region and datasets, and presents the approach to
quantify the IWR at each growth stages across grid-cells in the NFR.
Section 3 reports changes in the CWR, IWR and drought risk at different
growing stages under multiple climate change scenarios. Finally, Sec-
tion 4 concludes and discusses the advantages and limitation of this
work.
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2. Materials and methods

2.1. Study area and data

The Northeast Farming Region (NFR) is located in the Northeast
China (118°50′-135°05′E, 38°43′-53°24′N), including provinces of
Heilongjiang, Jilin and Liaoning. The total area of NFR is 787,300 km2

with a population of 129.5 million in 2015. During the maize growing
season (from April to October), the average precipitation ranges from
308 to 657mm, and the ≥10 °C accumulative temperature ranges from
2200 to 3600 °C. The input data for this study includes observations of
maize phenology and management information, meteorological and
climate data, elevation, soil, and land-use data.

Maize phenology and management information are obtained from
the National Meteorological Networks of China Meteorological
Administration (CMA) (see Fig. 2 for station locations). These includes:
basic site characteristics (site name, latitude, longitude and altitude),
cultivation information (planting varieties, crop system, farming, etc.),
the detailed date of maize growth and development (seeding, emer-
gence, flowering and maturity, etc.), yield component (planting den-
sity, grain weight, total production potential, stem weight, etc.) and
crop management (irrigation, fertilization, harvest, etc.). In this study,
we focus on the maize growing period and divide it into four stages
according to the AEZ model: 1) from planting date to approximately
10% ground cover as the initial growth stage (G1), 2) from 10% ground
cover to effective full cover as the crop development stage (G2), 3) from
effective full cover to the start of maturity as the mid-season stage (G3),
4) and from the start of maturity to harvest or full senescence as the late
season stage (G4) (Fischer et al., 2012a).

Meteorological data (1981–2010) are from the Data Center of CMA,
including daily observations of sunshine hours, maximum and
minimum temperature, precipitation, relative humidity and wind
speed. The monthly maximum and minimum air temperature, pre-
cipitation, relative humidity, wind speed and sunshine hours are re-
quired in the AEZ model. Because solar radiation is not available at the
six sites but is required by the DSSAT model, we calculated it from the
recorded daily sunshine hours using the empirical global radiation
model (Pohlert, 2004). Other daily weather observations can be used
directly in the DSSAT model. Climate projections are taken from the
CMIP5 ensemble with five global climate models (GFDL-ESM2M,
HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM and NorESM1-M)
driven by the four representative concentration paths (RCPs) scenarios
(Moss et al., 2010; Taylor et al. 2012). Future climate change data from
the above 20 GCM-RCP combinations are used in this study, including
surface air temperatures, precipitation, surface radiation (short and
long wave down welling), surface wind speed, surface air pressure,
surface relative humidity (Warszawski et al., 2014).

Soil properties, such as soil texture and organic matter content, play
significant roles on soil water status and crop growth and thus affect
crop yield and water productivity. The Harmonized World Soil
Database (HWSD) is employed as the base for soil data. HWSD is also
the base for the Global Agro-ecological Zones model. The HWSD is
developed by the Land Use Change and Agriculture Program of
International Institute for Applied Systems Analysis (IIASA) and the
Food and Agriculture Organization (FAO) of the United Nations, it
provides reliable and harmonized soil information at the pixel level for
the world (FAO/IIASA/ISRIC/ISSCAS/JRC 2009). Soil properties (soil
texture, clay content, slit content, sand content, PH in water, cation
exchange capacity, organic carbon, bulk density) required by the AEZ
model can be extracted directly from the HWSD soil database.

The spatial distribution of cultivated land area is derived from the
2010 land use database (100m×100m), which is developed by the
Chinese Academy of Sciences (CAS). The primary data source for de-
veloping this land-use database is Landsat TM images, with the China-
Brazil Earth Resources Satellite (CBERS) as a supplementary for places
where the Landsat images do not cover. The original land use data is

classified into 25 types and we further group them into six categories:
cropland, woodland, grassland, water body, built-up area and unused
land. These databases have been widely used in previous studies (Liu
et al., 2012, 2010). In this study, we extracted the cropland data from
the land-use dataset for the regional simulation. Finally, all the input
data for the AEZ are bilinear interpolated into the same spatial re-
solution of 10 km×10 km.

2.2. The AEZ model and the estimation of irrigation water requirement
(IWR)

The IWR of maize growth in the NFR of China is estimated using the
Agro-Ecological Zone (AEZ) model (Fischer et al., 2007). The AEZ
model is jointly developed by the International Institute for Applied
Systems Analysis (IIASA) and the Food and Agricultural Organization
(FAO) of the United Nations. The AEZ model employs simple and robust
crop submodules and provides standardized crop modeling and en-
vironmental matching procedure to identify crop-specific limitations of
prevailing climate, soil and terrain resources under assumed levels of
management inputs (e.g., low, medium and high). The standardized
crop-modeling and environmental matching procedure in the AEZ
makes it well-suited for crop productivity assessment at regional, na-
tional and global scales (Fan et al., 2017; Fischer et al., 2012a, 2005;
Fischer and Sun, 2001; Fischer et al., 2002; Tian et al., 2014, 2012;
Zhong et al., 2017). The IWR in the AEZ is mainly determined by the
availability of effective rainfall, radiation and temperature. The soil
data are used to calculate the soil-water balance, which is then used to
determine the potential and actual evapotranspiration for a reference
crop and the duration of its growing period.

In this research, we run the AEZ model at a daily time step for a 30-
year time frame corresponding to historical climate (1981–2010), and
two 30-year time frames corresponding to future climate in the 2050s
(2041–2070) and the 2080s (2071–2100), respectively, to understand
the direct impacts of climate change on water deficit and crop IWR at
different growing stages of maize in the NFR of China.

The crop water requirement (CWR) is the total amount of water
required for compensating evapotranspiration loss from the cropped
field under the well-managed condition, i.e., without water, nutrient, or
pest stress. Drought occurring at any maize growth stage would reduce
biomass production and cause yield loss, due to insufficient water to
meet the CWR. Effects of water stress on maize include the visible
symptoms of reduced growth, delayed maturity, and reduced crop
yield. For instance, water stress may reduce maize canopy height, leaf
area index, and root growth. The crop-specific water requirement is
calculated by multiplying the crop and crop-stage specific parameters
‘kc’ with the reference evapotranspiration (ET0) at different maize
growing stages:

= ×CWR Kc ET0

The calculation of the CWR for a ‘reference crop’ is based on the
assumption that sufficient water is available for uptake in the rooting
zone. CWR is linked to ET0 through the crop coefficients for water re-
quirements (kc). The kc factors for different growing stages (early, de-
velopment, middle and late stages) are determined by phenological
development and leaf area, which are obtained from previous studies
(Allen et al., 1998; Kang et al., 2003; Zhao et al., 2013). The ET0 re-
presents the evapotranspiration from a defined reference surface which
is similar to an extensive surface of green and well-watered grass of
uniform height (0.12 m). The ET0 was calculated according to the
Penman-Monteith equation using the driving meteorological variables
as inputs (Monteith, 1981, 1965).

The IWR is the amount of water required to meet the CWR, beyond
that supplied by effective rainfall. It can be calculated using the fol-
lowing equation.

= −IWR CWR ETa
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The actual uptake of water for the ‘reference’ crop is characterized
by the actual evapotranspiration (ETa). Calculation of ETa is differ-
entiated between two possible cases depending on the availability of
water for plant extraction: (i) adequate soil water availability (ETa =
CWR) and (ii) limited soil-water availability (ETa< ETm, i.e., maximum
reference evapotranspiration) (Allen et al., 1998).

For limited water conditions, the ETa can be calculated as the pro-
duct of CWR and the variable ρ,

= + ×ET min pre ρ CWR CWR[( ), ]a

Here, “pre” represents the effective precipitation, and ρ is the quotient
of the current water balance (Wb) and the readily available soil water
(Wread),

=ρ W
W

b

read

The volume of water available for plant uptake is calculated using a
daily soil-water balance (Wb). The Wb accounts for the accumulated
daily water inflow from precipitation (pre, mm/day) or snowmelt (snm)
and the outflow from actual evapotranspiration (ETa) and excess water
loss due to runoff and deep percolation.

= + + −−Wb min Wb pre snm ET W( , )j j a max1

where j is the day of the year, and Wmax is the maximum soil water
storage capacity.

2.3. Calibration of DSSAT and validation of maize cultivars for the AEZ
model

Although the standardized crop-modeling and environmental
matching procedure in the AEZ makes it well suited for crop pro-
ductivity assessment and the IWR estimation at the regional scale, a
disadvantage of the AEZ model is the lack of mechanisms to update the
key ecophysiological parameters in its input database. The updating
procedure of the AEZ is largely depedent on trial and error method. The
observed warming in the last several decades in the NFR has caused the
original parameters in AEZ model to be unrepresentative and outdated
because farmers in the region have made innovative adaptation efforts
by adopting new caltivars. To update key AEZ eco-physiological para-
meters in a systematic way, we adopt the model-couping procedure
developed in Tian et al. (2012, 2014), which can be summarized as
follows. Firstly, we employ the DSSAT model (Jones et al. 2003) to
calibrate the phenological and physiological parameters of maize using
detailed observations of maize growth, development and management
data from six agro-meteorological stations in the NFR. The DSSAT
model is developed by the International Benchmark Sites Network for
Argo-technology Transfer project (IBSNAT) and it simulates the growth
and development of crops within a homogeneous plot in a daily time
step. The DSSAT model uses genotype coefficients to describe the
genotype-by-environment interactions and simulate performance of
diverse cultivars under different conditions (Penning de Vries et al.,
1992). Each cultivar of a crop has specific parameters to describe the
genotypic information of the cultivar within the parameter ranges of
the crop. Our calibration and validation of the DSSAT is based on the
attainable yield under ideal crop management conditions (no water,
nutrien and pest stress). In this way, the calibration and validation can
approximate field experiment conditions. The maximum attainable
yield is calculated from optimum yield components, including the
maximum grain number per tiller and the correspondent grain weight,
maximum tiller number per plant and the optimum plant density. Tian
et al. (2014, 2018) present the technical details of this calibration and
validation procedure. Secondly, we convert these genotype coefficients
obtained from the above calibration and validation process to the eco-
physiological parameters of the AEZ to enrich and update its cultivar
parameters set.

2.4. Calculation of the probability of extreme IWR under climate change

In this study, we also investigate how the probability of exceeding a
critical threshold (xc) of IWR will be altered under climate change
scenarios compared to the historical period. Different from the tradi-
tional analysis focusing on the climatological mean, we are interested in
the extreme case of IWR because extreme cases are useful and often
provide significant insights into the particular phenomenon being stu-
died, which also have important implications to crop yield. xc is chosen
so that the average occurrence of IWR which exceeds xc is only 10% for
both future (2041–2070) and historical (1981–2010) period in a 30-
year window. We then calculated the normalized difference of this
probability as follows:

> − > ∕ >P x x P x x P x x[ ( ) ( )] ( )c c c2 1

where x2 refers to IWR during the future period (2041–2070) and x1
refers to IWR during the historical period (1981–2010). The shift is
normalized by P (x > xc), where x refers to values during the both time
periods of 1981–2010 and 2041–2070, and xc is chosen so that P
(x > xc) is 10%. The results are based on 20 ensemble members for
each of the five models (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR,
MIROC-ESM-CHEM, NorESM1-M). Each model’s values are first stan-
dardized to have zero mean and unit variance.

3. Results

3.1. Changes in precipitation and temperature

Table 1 reports the changes in daily mean precipitation and tem-
perature in each growth stages of maize between the baseline of
1981–2010 and the 2050s at the six stations. We can see from the
precipitation panel that there is no statistically significant reduction of
daily mean precipitation in stages G3 and G4 with the only exception of
Jiamusi station for G3. However, the statistically significant increases in
daily mean temperature are present in stages G3 with the only excep-
tion of Haicheng, and the extent of the significant increase will be 2.12
(Dunhua) to 9.73℃ (Haerbing). Similar significant temperature in-
creases are present in four of the six stations with the extent of sig-
nificant change being 5.03 (Shuangcheng) to 7.36 (Jiamusi). Significant
increase in temperature combined with the more or less unchanged
precipitation means significant increase in evapotranspiration and thus
irrigation water requirement in these two growth stages. The cases for
G1 and G2 are sharply different. For example, at Jiamusi station, al-
though reduction in daily mean precipitation is statistically significant,
the decrease in daily mean temperature is also statistically significant
and therefore, we would not expect a significant increase in the IWR at

Table 1
Change of daily mean precipitation and temperature between the baseline and
2050s in different growth stages at the six representative stations.

Site G1 G2 G3 G4

Precipitation (mm) and standard deviation of the change (in
parentheses)

Jiamusi −0.50 (0.10) −1.03 (0.17) −0.83 (0.19) −0.48 (0.38)
Dunhua −0.24 (0.15) −0.60 (0.19) 0.03 (0.43) 1.66 (0.65)
Haerbing −0.14 (0.10) −0.75 (0.22) 0.39 (0.36) 1.12 (0.43)
Shuangcheng −0.34 (0.10) −1.21 (0.22) −0.47 (0.44) 0.37 (0.33)
Haicheng −0.03 (0.18) 0.83 (0.49) −0.06 (0.86) 0.48 (0.34)
Zhuanghe −0.11 (0.18) 0.53 (0.65) −0.23 (0.96) 0.24 (0.39)

Temperature (℃) and standard deviation of the change (in
parentheses)

Jiamusi −3.36 (1.20) −2.02 (0.97) 2.41 (0.95) 7.36 (0.97)
Dunhua −0.70 (1.19) 0.23 (0.96) 2.12 (0.76) 5.61 (0.90)
Haerbing −0.96 (1.16) 0.32 (1.07) 9.73 (1.05) 6.00 (1.23)
Shuangcheng −1.02 (1.13) 0.33 (0.96) 3.00 (1.09) 5.03 (1.23)
Haicheng 0.43 (0.96) 0.31 (0.69) 0.57 (0.83) −0.26 (0.91)
Zhuanghe 3.4 (0.91) 3.04 (0.70) 8.3 (0.79) 1.32 (0.87)
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this station by the 2050.

3.2. Spatial-temporal distribution of the CWR

The estimated annual averaged CWR of rainfed maize for the entire
NFR in the historical period (1981–2010) is ∼415mm, with western
Liaoning having the highest CWR and northern and eastern
Heilongjiang province having the lowest (Fig. 1). This is due to the fact
that precipitation in the NFR is unevenly distributed both seasonally
and spatially with a decreasing temperature gradient from south to
north. Under future climate scenarios, CWR increases significantly over
the NFR by the 2050s compared to the baseline (1981–2010), with the
largest increase in the middle part of Liaoning province and parts of
western Jilin province (Fig. 1). More specifically, under RCP2.6, the
CWR of rainfed maize decreases in western Jilin and southwestern
Heilongjiang. In the medium emission pathways (RCP4.5 and RCP6.0),
we observe a reduced spatial extent of the decreased CWR in south-
western Heilongjiang province compared to RCP2.6. However, with the
high emissions pathway RCP8.5, the CWR increases in most parts of the
NFR, especially in the middle parts of Jilin province, and decreased
only in very small part of the southwestern Heilongjiang province.

3.3. Field-scale IWR under climate change

Table 2 reports the best attainable yield from observations and

model simulations (including the minimum, mean, and maximum), and
the average Relative Absolute Error (RAE) at the six stations in the
historical period (1981–2010). It shows that the observed yield lies
within the uncertainty range of the simulated yields for all six station
with average RAEs between 4.54% and 7.63%. These results demon-
strate that the simulated attainable yield matches observations rela-
tively well, indicating that the AEZ model with our enriched value set of
cultivar parameters is capable to simulate maize production level with
relatively good accuracy.

Fig. 2 presents the box plots of the simulated IWR in each growth
stage under the 20 GCM-RCP combine scenarios, with reference to the

Fig. 1. Averaged total CWR of rainfed maize in the historical period (1981–2010) in the NFR and relative changes in the 2050s (2041–2070) driven by five climate
models under four RCP scenarios (RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5).

Table 2
The observed best attainable yield, the minimum, mean, and maximum of the
simulated yields, and the average RAE at the six stations (1981–2010).

Site Average
Observed
yield (kg/
ha)

Simulated attainted yield (kg/ha) Average
RAE (%)

Minimum Mean Maximum

Jiamusi 7670 6105 8237 9125 7.609
Dunhua 7500 7104 8032 8604 7.632
Haerbing 9000 7781 9015 9942 6.778
Shuangcheng 10147 9005 9782 10416 4.539
Haicheng 12285 11708 12667 13839 5.655
Zhuanghe 8692 7402 8084 8943 7.193
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historical mean of 1981–2010. Although there is no consistent IWR
increases in the growth stages G1 and G2 across all six stations, uniform
increases of the IWR are present in the growth stages G3 and G4. We
employ the t-test to check the statistical significance of such IWR in-
crease in stage G3, as crop growth in this stage is most sensitive to water
stress. Five out of six stations (except Jiamusi) will experience statis-
tically significant increase of IWR in G3 at the 5% or 10% level for both
the 2050s and 2080s.

3.4. Estimation of regional IWR during the maize growth season under
climate change

Fig. 3 depicts the spatial distributions of the average changes in the
IWR over 5 GCMs for each RCP between the baseline 1981–2010 and
the 2050s. A general increasing IWR is observed in the NFR for five
GCMs. Two regions are further distinguished according to the magni-
tude of irrigation water shortage: (1) a large region concentrated in
west Liaoning province, where IWR shortage can be very severe and
would exert a greater negative impact on yield by the 2050s; and (2)
west Jilin province and some southwest parts of Heilongjiang province,
where shortage of the IWR would become severe as well, implying a
negative impact on maize yields by the 2050s. Under RCP2.6 scenario,

the ensemble averaged IWR over western Jilin province and southwest
part of Heilongjiang province will decrease compared with the baseline
scenario. Under RCP6.0 scenario, the ensemble averaged IWR over the
southwest part of Heilongjiang province will increase compared to the
baseline. Under RCP8.5 scenario, the ensemble averaged IWR show a
significant and similar increase of the IWR with RCP6.0 by the 2050s.

3.5. The IWR in different growth stages under climate change

Assessment of the IWR at different growth stages is crucial because
different maize cultivars have different growth length and because
climate change may alter the seasonal variability of precipitation. The
spatial variation of the IWR at different growth stages of maize in the
NFR is shown in Fig. 4. The change of IWR in the early maize growth
stage (G1) ranges from –30 to 10mm, with a general decreasing IWR
across the NFR under RCP2.6 and RCP4.5, and more or less unchanged
level under RCP6.0 and RCP8.5 (Fig. 4-a). The range of IWR change is
from –30 to 40mm in development stage (G2), with the most significant
increase in western Liaoning and southwest Jilin (Fig. 4-b). Consistent
with the station-level findings, water deficit becomes the highest in the
middle stage (G3), with a gap of up to 100mm in the maize belt under
RCP8.5 (Fig. 4-c). During G3, maize is at the critical stage of plant

Fig. 2. Box plots showing the spread of IWR of rainfed maize in the 2050s (2041–2070, purple) and 2080s (2071–2100, green), with reference to the historical mean
(1981–2010, plus symbol), for different growing stages (G1: initial growth stage; G2: crop development stage; G3: mid-season stage; G4: late season stage) at the six
stations. The colored rectangle represents the 25th and 75th percentile. The vertical line and diamond symbol denote the ensemble median and mean (mm) of the 20
GCM-RCP combinations (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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development and the composition of evapotranspiration is dominated
by crop transpiration. Therefore, such water shortfall during G3 would
have significant negative consequences to maize production in the re-
gion by the 2050s. In the later stage (G4), the extent of change in the
IWR becomes very moderate, similar to the case in G1 (Fig. 4-d).

3.6. Shift in the probability of extreme IWR under climate change during the
growth season and different growing stages

Fig. 5 depicts a clear shift in the probabilities of extreme IWR for the
whole growing period both in terms of the mean value and the shape of
the distribution. The median values in Fig. 5 indicate that there is 50%
chance that the extreme IWR will become 1–1.8 times of the climato-
logical probability of 10% by the 2050s. The results show the prob-
ability distribution functions from pooling all grid boxes from the
periods 1981–2010 and 2041–2070. In all cases the distribution be-
tween the two periods are shown to be statistically significantly dif-
ferent from each other of exceeding a particular critical value xc during
the whole growing season. Because we are focusing on extreme years,
xc is chosen to be the 10% value based on all years. In regard to the
IWR, the results from the AEZ model indicate that much of the NFR has
experienced an increase in the probability of extreme water shortfall
under climate change during whole growing season. While the asym-
metry appears to have increased between the two periods, results

indicate that the distribution in the future has become worse.
Compared to the IWR for the whole growing season, results in dif-

ferent growing stages are more homogenous, with an increase in the
probability of extreme IWR under climate change compared with the
baseline. The pdf characterizing the IWR in the NFR shows lower in the
peak, so that the changes in the pdf occur primarily in the peak and
tails. While it is true that extreme IWR become more likely with future
warming due to the asymmetric effect of even small shifts to rare
events, it has also been implied that the IWR is becoming more variable
in the sense of each year drawing from a broadening probability dis-
tribution (Fig. 6).

4. Conclusions and discussions

In this study, we combined outputs from a wide range of GCM-RCP
combinations to produce detailed projections suitable for assessing the
impact of climate change on irrigation water requirement (IWR) in
different growth stages of maize in the Northeast Farming Region (NFR)
of China, a region which produces about one-third of the national maize
output. We employ an updated AEZ model to analyze the impact of
irrigation water shortfall on maize yield and production under current
and future climate conditions in the NFR. Main findings of this study
are as follows:

Fig. 3. Averaged total crop irrigation water requirement of rainfed maize in the historical period (1981–2010) in the NFR and the changes between the baseline and
the 2050s driven by five climate models under four RCP scenarios (RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5).

H. Xu et al. Agricultural Water Management 213 (2019) 594–604

600



Fig. 4. Comparison of the simulated irrigation water requirement of rainfed maize at different growing stages (G1-G4) between the historical (1981–2010) and future
period 2041–2070 (2050s) driven by five GCMs under four RCP scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5).
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(1) Significant increase in the IWR is expected in the mid-season stage
(G3), the critical development stage of maize growth, under future
climate change scenarios. The increase is highest in the RCP8.5
scenario, followed by the RCP6.0, RCP4.5 and RPC2.6 scenarios.

(2) Current results indicate that significantly higher mean temperature
and moderate change in rainfall during G3 would have a significant
negative impact on maize yield in the future. Therefore, earlier
planning of irrigation infrastructure and development of more

Fig. 4. (continued)
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efficient irrigation technologies is of great importance to secure
maize production level of the region.

(3) The NFR will exhibit a substantial increase in the probability of
extremely high level of the IWR under future climate. There is 50%
chance that the extreme IWR will become 1–1.8 times of the cli-
matological probability of 10% by the 2050s. For different growing
stages, the increase in IWR is most significant in the mid-season
stage (G3), in which maize growth is most sensitive to water
shortfall. The increase in the probability of extremely high level of
the IWR in G3 largely results from broaden probability distribution
and shift in the mean.

Anticipatory water management planning at regional and national
level, coping with future climate change should include suitable mea-
sures related to future IWR to deal with climate change uncertainties. In
particular, the spatial and temporal variations in the irrigation water
requirement of maize for the upcoming periods should be taken into
account in agricultural water resources management.

Despite the above important findings, some limitations are worth
mentioning. First, improvements can be achieved with respect to the
climate model selection. This paper uses the GCM-RCPs scenario data
proposed in the IPCC AR5, which shows improvements compared to
CMIP3 in mode resolution and experimental design. However, large
uncertainties still remain in the model simulations and further analysis
of the uncertainty is still needed. Second, because the hydrogeology
observations of groundwater resources in a large part of NFR are not
available (MacDonald et al. 2012), irrigation from the groundwater is
not considered in this study, which might have an impact on the current
estimation of maize production. Third, compounding weather extremes
(i.e., drought and high temperatures, rainstorms, freezing and fog) may
have adverse effects on maize production, but these factors are not fully
considered in our study. Fourth, it is worth highlighting that the
adoption of crop cultivar variety is often determined by farmers’ eco-
nomic calculations and such calculation may not be consistent with the
suitability consideration of agronomists. Future work is needed to
quantify the uncertainty caused by the changing inter-annual varia-
bility and will benefit from an extended analysis based on multiple crop
models.
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