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Reports of a global decline in land surface wind speed of 8% 
from ~1980 to 2010 have raised concerns about outputs from 
future wind power1–5. Wind power (p) varies with the cube of 

wind speed (u) according to the formula:

p ¼ ρsf
2

u3 ð1Þ

where ρ is air density, s is the swept area of the turbine and  
f is an efficiency factor6. The decline has been manifested in the 
northern mid-latitude countries where the majority of wind tur-
bines are installed, including China, the United States and Europe1. 
If the observed trend from 1980 to 2010 were to continue to the 
end of the century, global wind speed would reduce by 21%, halv-
ing the amount of power available in the wind (using equation (1)). 
Understanding the drivers of this long-term decline in wind speed is 
critical, not only to maximize wind energy production7–9 but also to 
address other globally significant environmental problems related 
to terrestrial stilling, including reduced aerosol dispersal, changes 
in evapotranspiration rates and adverse effects on animal behaviour 
and ecosystem functioning1,3,4,10.

The potential causes for the global terrestrial stilling are complex 
and remain contested2,3,11,12. Many regional-scale studies13–17 using 
reanalysis datasets have found correlations of wind speed with vari-
ous climate indices. Those studies hypothesize that terrestrial stilling 
is caused by changes in large-scale circulations11, which manifest as 
consistent wind speed changes at the surface and at higher levels in 
reanalysis datasets11,14. Nevertheless, there are large uncertainties in 

these datasets2,11,14 and, more importantly, global terrestrial stilling is 
either not reproduced or it has been largely underestimated in global 
reanalysis products2,11 (Supplementary Fig. 1) and/or climate model 
simulations for the IPCC Fifth Assessment Report8 (Supplementary 
Fig. 2). Acknowledging that wind speed reanalysis datasets do not 
represent land surface dynamics, the discrepancies between the 
decreasing trends derived from in  situ stations and from reanaly-
sis or climate model simulations lead to the hypothesis that global 
terrestrial stilling is caused by increased drag related to increased 
surface roughness from the greening of the Earth and/or urbaniza-
tion2,18, both of which would suggest further declines in the future.

However, conversely, recent studies have described wind speed 
reversal at local scales19,20 or an increase of global wind speed during 
a particular year21, despite uncertainty over the global trend of wind 
speed change5,11. The recent reversal over land, if evidenced to be 
true at the global scale, could elucidate the causes of global terrestrial 
stilling and potentially improve future wind energy projections.

Analysis
We integrate direct in situ observations of wind speed from ground 
weather stations from 1978 to 2017 with statistical models for 
detection of trends. The stations, mainly distributed in the north-
ern mid-latitude countries, were carefully selected from the Global 
Summary of Day (GSOD) database following strict quality control 
procedures (Supplementary Fig. 3; see Methods for details). To test 
for a continuation of the terrestrial stilling after 2010 (refs. 1–4), we 
use a piecewise linear regression model to examine the potential 
trend changes22,23.
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Scope of a reversal in global terrestrial stilling
The analysis shows that global mean annual wind speed decreased 
significantly at a rate of −0.08 m s−1 decade−1 (or −2.3%) during 
the first three decades, beginning from 1978 (P < 0.001; Fig. 1a, 
Supplementary Table 1). Although the decreasing trend has previ-
ously been shown2–4 and confirms global terrestrial stilling as an 
established phenomenon during the period of 1978–2010, we find 
that wind speed has significantly increased in the current decade. 
This turning point is statistically significant at P < 0.001, with a 
goodness-of-fit of R2 = 90% (Fig. 1a). The recent increasing rate 
of 0.24 m s−1 decade−1 (P < 0.001) is threefold the decreasing rate 
before the turning point in 2010.

To exclude the possibility that the turning point is caused by 
large wind speed changes at only a few sites, we repeat our analyses 
300 times by randomly resampling 40% of the global stations each 
time (grey lines in Fig. 1a; 40% of the stations are selected to ensure 
a sufficient sample size (n > 500)). We find significant turning 
points in each randomly selected subsample (P < 0.001; R2 ≥ 76%). 
Run-specific turning points occur between 2002 and 2011, with 
most (95%) of them between 2009 and 2011 (Fig. 1b). In addition, 
mean annual wind speed changes before and after a specific turning 
point based on the 300 subsample estimates are −0.08 ± 0.01 m s−1 
decade−1 and 0.24 ± 0.03 m s−1 decade−1, respectively (Fig. 1c), which 
are identical to those values based on all global samples.

Spatial analyses further confirm that the recent reversal is a 
global-scale phenomenon (Supplementary Fig. 4a–c). A majority 
(79%) of the stations where wind speed decreased significantly dur-
ing 1978–2010 (Supplementary Fig. 4b) have positive trends after 
2010 (Supplementary Fig. 4c). The stations are mainly distributed 
over North America, Europe and Asia. Significant turning points 
exist in all three regional mean annual wind speed time series 
(P < 0.001, Supplementary Fig. 4d–f), but they vary in the specific 
year of occurrence. For example, a turning point occurs earlier in 
Asia (2001, R2 = 80%, Supplementary Fig. 4f) and Europe (2003, 
R2 = 56%, Supplementary Fig. 4e) than in North America (2012, 
R2 = 80%, Supplementary Fig. 4d). Nevertheless, all three regions 
have the most significant increase in wind speed after ~2010 
(Supplementary Fig. 4d–f).

The existence of turning points is robust, regardless of season 
(Supplementary Table 1 and Fig. 5) or wind variable chosen for 
analysis (Supplementary Fig. 6), and shows no dependence on qual-
ity control procedures for weather station data (Supplementary 
Fig. 7). For maximum sustained wind and wind gusts, the turn-
ing points appear earlier and the recent increasing rates are weaker 
(Supplementary Fig. 6). Furthermore, we show that our findings 
are robust and repeatable (Supplementary Fig. 8) using a differ-
ent dataset—the HadISD database, which follows station selection 
criteria and a suite of quality control tests established by the UK 
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Fig. 1 | Turning point for mean global surface wind speed. a, Global mean annual wind speed during 1978–2017 (black dots and line). The piecewise linear 
regression model indicates a statistically significant turning point (TP) in 2010. The red line is the piecewise linear fit (R2 = 90%, P < 0.001). The dashed 
line indicates the turning point. The trends before and after the turning point are shown in the inset. Each grey line (n = 300) is a piecewise linear fit for  
a randomly selected subset (40%) of the global stations. b, Frequency distribution of the estimated turning points derived from 300 resampling results.  
c, Frequency distribution of the trends in mean annual wind speed before and after the turning points identified in the 300 resampling results. The result  
is based on the weather stations in the GSOD database.
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Met Office Hadley Centre24. We also find that the tendency for an 
increasing number of stations becoming automated during recent 
decades (Supplementary Figs. 9 and 10) does not affect the result 
(Supplementary Fig. 11). Finally, to test the effect of inhomogene-
ity, we remove all the stations with change points detected by Pettitt 
tests25. After removal, the results do not change when the analysis 
is repeated (Supplementary Fig. 12). All these lines of evidence 
provide independent support that the trends in wind speed are not 
caused by changes in measurement methods and inhomogeneity.

Causes of the reversal in global terrestrial stilling
A variety of theories have been presented previously to explain still-
ing, many of which focus on the drag force of wind speed linked to 
increased terrestrial roughness caused by urbanization and/or veg-
etation changes2,12. These theories are contested26 (see Supplementary 
Figs. 13 and 14). Our finding of a global stilling change after 2010, 
and especially the finding of an increasing rate that is three times of 
the decreasing rate before 2010 (Fig. 1a), are counter to these theories. 
Terrestrial roughness did not suddenly change in 2010. More likely, 
the variation in wind speed (including prior stilling and the recent 
reversal) is determined mainly by driving forces associated with 
decadal variability of large-scale ocean–atmospheric circulations.

Wind is created by pressure gradients associated with uneven 
heating of the Earth’s surface (temperature anomalies or heteroge-
neity), and heterogeneity is to a large extent described by climate 
indices for oscillations. To test such associations, we first include 21 
climate indices in the pool of indicators for ocean–atmosphere oscil-
lations (Supplementary Table 2 and Methods). To avoid overfitting, 
we apply stepwise regression27 to identify the six largest explanatory 
power factors for the decadal variations of wind speed over the globe, 
North America, Europe and Asia (see Supplementary Table 3). The 
reconstructed wind speed obtained from the stepwise linear regres-
sion matches well with the observed wind speed (Supplementary 
Figs. 15 and 16, and discussion in Methods). Finally, we train our 
models using only the detrended time series before the turning 
points (2010 for the globe, 2012 for North America, 2003 for Europe 
and 2001 for Asia), finding that the models are capable of repro-
ducing the positive trends after the turning points, not only for the  
globe (P < 0.001; Fig. 2a), but also for all three regions (P < 0.001; 
Fig. 2b–d). The magnitude of the increasing rate after the turning 
points is well modelled (Fig. 2). These results suggest a predictive 
relationship between wind changes and ocean–atmosphere oscilla-
tions, which would be valuable for the wind energy sector.

We further construct the composite annual mean surface tem-
perature for the years that exhibit negative (Fig. 3a) and positive 
(Fig. 3b) anomalies of detrended wind speed. During the years of 
negative wind speed anomalies (Fig. 3a) the following are observed: 
(1) positive anomalies of temperature prevail over the tropical 
northern Atlantic (5.5° N to 23.5° N, 15° W to 57.5° W), showing a 
positive value for the Tropical Northern Atlantic Index (TNA); (2) 
the west (east) Pacific is warmer (colder) than that in normal years, 
demonstrating a negative value for the Pacific Decadal Oscillation 
(PDO) and (3) positive anomalies of temperature occur near the 
Azores and negative anomalies occur over Greenland, indicating a 
negative value for the North Atlantic Oscillation (NAO). The oppo-
site pattern (that is, negative TNA and positive PDO and NAO) 
occurs during the years of positive wind speed anomalies (Fig. 3b). 
Furthermore, TNA has strong, significant and negative correlations 
with regional wind speed, particularly over North America (Fig. 3c);  
PDO has significant positive correlations with regional wind speed 
globally (Fig. 3e) and NAO has overwhelmingly significant posi-
tive correlations with regional wind speed in the United States and 
Northern Europe, but negative correlations with regional wind 
speed in Southern Europe (Fig. 3d). These patterns are consistent 
with the finding that the greatest explanatory power factor is TNA 
for North America (R = −0.67, P < 0.001), PDO for Asia (R = 0.50, 

P < 0.01) and NAO for Europe (R = 0.37, P < 0.05) (for more discus-
sion refer to Methods). The ocean–atmosphere oscillations, char-
acterized as the decadal variations in these climate indices (mainly 
TNA, NAO, PDO), can therefore explain the decadal variation in 
wind speed (that is, the long-term stilling and the recent reversal) 
(Figs. 2 and 3f–h).

Several theories28–31 have tried to identify potential physical 
mechanisms describing how various ocean–atmosphere oscilla-
tions affect regional wind speed over land. With respect to TNA, 
prior studies demonstrate that the positive phase of TNA is linked 
with a weakened Hadley circulation (for details of the theory refer 
to ref. 28). We also find that during the positive phase of TNA a cold 
anomaly occurs over the eastern coast of the United States (Fig. 3a 
and ref. 28). This pattern leads to a southward component of surface 
wind and a stable environment of weak convergence from the trop-
ics to the mid-latitudes, resulting in a reduction of wind speed in 
the mid-latitudes and particularly in the United States (Fig. 3c and 
Supplementary Fig. 17a,b). As for NAO, its negative and positive 
phases have different jet stream configurations and wind systems 
in northern versus southern Europe (Supplementary Fig. 17c,d 
and refer to ref. 29). During the positive (negative) phase, the pres-
sure gradient across the North Atlantic29 generates strong winds 
and storms across northern (southern) Europe (Supplementary  
Fig. 17c,d), explaining the contrasting correlations of NAO to wind 
speed in these two regions (Fig. 3d and Supplementary Fig. 18). For 
PDO, the temperature gradient during the negative (positive) phase 
generates an easterly (westerly) component of surface wind (refer 
to refs. 30,31), which weakens (strengthens) the prevailing westerly 
winds in the mid-latitudes (Supplementary Fig. 17e,f) and explains 
the widespread and significant positive correlations between PDO 
and wind speed across the whole mid-latitudes (Fig. 3e). Despite 
these potential physical mechanisms28–31, the relationships between 
ocean–atmosphere oscillations and long-term wind speeds over 
land are still uncertain and require more investigation.

Finally, it is critical to determine why global reanalysis products 
do not reproduce or underestimate the historical terrestrial stilling 
(Supplementary Fig. 1), which is a major basis for prior studies2,12 
rejecting ocean–atmosphere oscillations as a dominant driver for 
terrestrial stilling. Although global reanalysis products are generated 
at numerical weather prediction centres with advanced data assimi-
lation systems, most cannot assimilate near-surface winds over land 
satisfactorily due to inappropriate model topography and inaccu-
racy of atmospheric boundary layer processes that are implemented 
into the data assimilation systems. ERA-Interim32, one of the best 
products available, can only assimilate surface winds over seas from 
scatterometers, ships and buoys. The capacities of these products in 
reproducing the near-surface wind speed over land are thus generally 
poor and rely on climate models. We find that in the regions where 
Atmospheric Model Intercomparison Project model simulations 
(that is, atmospheric simulations forced with observed sea surface 
temperature (SST)) capture the stilling, such as Europe and India 
(fig. 4a,b in ref. 26), the global reanalysis products are also capable 
of reproducing the stilling (Supplementary Fig. 1c). In contrast, for 
regions where Atmospheric Model Intercomparison Project simula-
tions do not capture the stilling, such as North America26,33, the global 
reanalysis products fail to reproduce the stilling2,11 (Supplementary 
Fig. 1b). Model limitations are therefore probably the reason pre-
venting global reanalysis products from reproducing the observed 
near-surface wind speed changes in some regions. More efforts 
are required to improve surface process parameterization schemes 
and their connections to ocean–atmosphere circulations in climate 
models and operational weather data assimilation systems.

Implications for wind energy production
In wind power assessments, near-surface wind observations from 
weather stations (u at height zs = 10 m) are often used to estimate 
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wind speeds at the height of a turbine (utb at height ztb = 50–150 m) 
using an exponential wind profile power law relationship:

utb ¼ u
ztb
zs

� �α

ð2Þ

where α is commonly assumed to be constant (1/7) in wind resource 
assessments because the differences between these two levels  
are unlikely to be great enough to introduce considerable errors in 
the estimates5.

Changes in wind speed matter not only on average but also in 
the percentage of the time that the wind speeds are high or low. A 
velocity of utb > 3 m s−1 is a typical minimum value needed to drive 
turbines efficiently and therefore, wind speeds below 3 m s−1 are 
typically wasted from the power generation perspective. Although 
periods of high wind speed greatly increase the physical capac-
ity to generate power according to equation (1), turbines are built 
with a maximum capacity, and so periods of high wind speed can 
also ‘waste’ the uses of wind with the threshold depending on the 
capacity of the turbine.

On average, the rise of global mean annual wind speed from 
3.13 m s−1 in 2010 to 3.30 m s−1 in 2017 (Fig. 1a; see Methods for 
details) increases the amount of energy entering a hypothetical 
wind turbine receiving the global average wind by 17 ± 2% (uncer-
tainty is associated with subsamples in Fig. 1a; regionally, 22 ± 2% 
for North America, 22 ± 4% for Europe and 11 ± 4% for Asia). 
At the hourly scale, the frequency of low wind speed decreases 

while the frequency of high wind speed increases (Fig. 4a). Using 
a General Electric GE 2.5-120 turbine34 (Supplementary Fig. 19) 
for illustration, the effects of changes in global average wind speed 
increase potential power generation from 2.4 × 106 kWh in 2010 to 
2.8 × 106 kWh in 2017 (+17%). If the present trend persists for at 
least another decade, in light of the robust increasing rate during 
2010–2017 (Fig. 1a) and the long cycles of natural ocean–atmo-
sphere oscillations28–31,35 (Supplementary Fig. 20), power would 
rise to 3.3 × 106 kWh in 2024 (+37%), resulting in a +3% decade−1 
increase of global average capacity factor (mean power generated 
divided by rated peak power). This change is even larger than the 
projected change in wind power potential caused by climate change 
under multiscenarios36.

During the past decade, the capacity factor of the US wind 
fleet37 has steadily risen at a rate of +7% decade−1 (Fig. 4b) and it 
was previously attributed only to technology innovations38. We find 
that the capacity factor for wind generation in the United States is 
highly and significantly correlated with the variation in the cube 
of regional-average wind speed (u3, R = 0.86, P < 0.01; Fig. 4b). To 
isolate the wind speed-induced increase in capacity factor from that 
due to technology innovations, we use the regional mean hourly 
wind speed in 2010 and 2017 to estimate the increase of capac-
ity factor for a given turbine, thereby controlling for technology 
innovations. It turns out that the increased cube of the regional-
average wind speed explains ~50% of the increase of the capacity 
factor (see Methods for details). Therefore, in addition to technol-
ogy innovations, the strengthening wind speed is another key factor 
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powering the increasing efficiency of wind power production in the 
United States (and other mid-latitude countries where wind speed is 
increasing, such as China and European countries).

One turbine (General Electric GE 1.85-87 (ref. 39)) installed 
at one of our in situ weather stations in the United States in 2014 
(inset plot in Fig. 4c) is selected to illustrate the consequences. The 
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Optimum Interpolation Sea Surface Temperature V2, with a spatial resolution of 1° × 1° (ref. 43). c–e, Spatial patterns of the correlation between the 
regional (5° × 5°) mean annual wind speed and TNA (c), NAO (d) and PDO (e) for 1978–2017. The green dots represent significance at P < 0.05 level.  
f–h, Decadal variations are shown for TNA and regional wind speed in North America (f), NAO and regional wind speed in Europe (g) and PDO and 
regional wind speed in Asia (h). The thin lines are annual values and the thick lines are 9-yr-window moving averages. The black lines are wind speed  
and the coloured lines are TNA (blue), NAO (red) and PDO (green).
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turbine was expected to produce 1.8 ± 0.1 × 106 kWh using four 
years of wind speed records before the installation (2009–2013)39, 
but actually produced 2.2 ± 0.1 × 106 kWh between 2014 and 2017 
(+25%). This system has the potential to generate 2.8 ± 0.1 × 106 
kWh (+56%) if wind speed recovers to the 1980s level (red bars in 
Fig. 4d; see Methods for details). Globally, 90% of the cumulative 
wind capacity has been installed in the last decade40, during which 
the global-average wind speed has been increasing (see above).

Discussion
Although the response of ocean–atmosphere oscillations to anthro-
pogenic warming remains unclear31, the increases in wind speeds 
should continue for at least a decade because these oscillations 
change over decadal time frames28–31,35. Climate model simulations 
constrained with historical SST also show a long cycle in wind speed 
over land (Supplementary Fig. 20). Our findings are therefore good 
news for the power industry for the near future.

However, oscillation patterns in the future will probably cause 
a return to declining wind speeds. Anticipating these changes is 

important for the wind power industry. Wind farms should be con-
structed in areas with stable winds and high effective utilization 
hours (for example, 3–25 m s−1). If high wind speeds are likely to be 
common, building turbines with larger capacities could be justified. 
For example, capturing more available wind energy (blue bars in 
Fig. 4d) could be achieved through the installation of higher capac-
ity wind turbines (for example, General Electric GE 2.5-120, green 
bars in Fig. 4d), greatly increasing total power generation. Most 
turbines tend to require replacement after 12–15 years41. Further 
refinement of the relationships uncovered in this paper could allow 
choices of turbine capacity, rotor and tower that are optimized not 
just to wind speeds of the recent past but also to possible future 
changes during the lifespan of the turbines.

In summary, we find that after several decades of global terres-
trial stilling, wind speed has rebounded, increasing rapidly across 
the globe in the decade since 2010. Ocean–atmosphere oscillations, 
rather than increased surface roughness, are probably the causes. 
These findings are important for those vested in maximizing the 
potential of wind as an alternative energy source. The development 
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Fig. 4 | Implications of the recent reversal in global terrestrial stilling for the wind energy industry. a, Frequency distribution of global mean hourly 
wind speed in 2010 and 2017, and the year 2024 assuming the same increasing rate as that during 2010–2017. The density curves from the respective 
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overall capacity factor for wind generation, and the inset red numbers show the wind speed-induced increase of capacity factor in the United States.  
c, Mean annual wind speed observed at a weather station near an installed turbine at Deaf Smith County in the United States (<1 km; location shown in 
the inset). The turbine was installed in 2014. The background colours separate different periods: P0, the 1980s level when wind speed is relatively strong 
(1978–1995); P1, the evaluation years before the installation of the turbine (2009–2013) and P2, the operation years when the turbine was generating 
power (2014–2017). d, Mean annual wind power production at Deaf Smith County from different wind turbines during the three periods of reference  
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of renewable energy sources, including wind power6–9,40, is cen-
tral to energy scenarios8 that help keep warming below 2 °C. One 
megawatt of wind power reduces 1,309 tonnes of carbon dioxide 
emissions and also saves 2,000 litres of water compared with other 
energy sources9,40. Since its debut in the 1980s, the total global wind 
power capacity reached 539 gigawatts by the end of 2017, and the 
wind power industry is still booming globally. For instance, the 
total wind power capacity in the United States alone is projected 
to increase fourfold by 2050 (ref. 9). The reversal in global terres-
trial stilling bodes well for the expansion of large-scale and efficient 
wind power generation systems in these mid-latitude countries in 
the near future.
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Methods
Wind datasets. The key data used in this analysis is the Global Surface Summary 
of the Day (GSOD) database processed by the US National Climatic Data Center 
(downloaded 1 August 2018 from ftp://ftp.ncdc.noaa.gov/pub/data/gsod). The 
database is derived from the United States Air Force DATSAV3 surface data and 
the Federal Climate Complex Integrated Surface Hourly dataset based on data 
exchanged through the World Meteorological Organization (WMO) World Weather 
Watch Programme according to WMO Resolution 40 (Cg-XII)44. There is a total of 
28,149 stations included in the GSOD database globally (for distributions see the 
dots in Supplementary Fig. 3). The original records from all the weather stations 
have undergone extensive quality control procedures (more than 400 algorithms, 
see www.ncdc.noaa.gov/isd for details). These synoptic hourly observations were 
processed into mean daily values from recorded hourly data by the National 
Climatic Data Center.

We focus our study on the decadal variation of wind speed and other wind 
variables (maximum sustained wind speed, maximum wind gust) for the 40-yr 
period of 1978–2017, when the data are the most complete. When selecting the 
final subset of stations, we employ strict selection criteria to avoid including 
incomplete data series. First, we only select stations with complete data for all the 
40 years of the analysis (1978–2017), with each year having complete records for 
all 12 months. Second, each monthly value has to be derived from at least 15 d of 
data. The daily values have to be derived from a minimum of four observations. 
As a result, only 1,435 stations are included for analysis (locations are shown in 
Supplementary Fig. 3; the mean number of observations in a day is shown in 
Supplementary Fig. 10; code and processed data are available in Supplementary 
Data 1). Among them, 543 stations are automatic monitoring stations that are in 
operation during the entire study period. For some analyses (Supplementary  
Fig. 7) we relax our selection criteria to include more stations, for instance by 
allowing 1, 5, 10 or 20 years of missing data. Last, the results show no dependence 
on whether global mean annual wind speed or global median annual wind speed 
is used to describe the decadal variation of global wind speed (Supplementary  
Fig. 21 versus Fig. 1a).

We also repeat the wind analyses using the HadISD (v.2.0.2.2017f)24 global 
subdaily database, which is distributed by the UK Met Office Hadley Centre and 
is freely accessed from https://www.metoffice.gov.uk/hadobs/hadisd/. The total 
number of stations in HadISD is 8,103, all of which passed quality control tests 
that are designed to remove bad data while also keeping the extremes of wind 
speed and direction, temperature, dew point temperature, sea-level pressure and 
cloud data (total, low, mid and high level). For example, a set of quality control 
procedures24 (such as duplicate check, distributional gap check, neighbour outlier 
check and so on) has been performed on the major climatological variables. In 
our analysis, we use the criteria that are described above to select stations that 
have uninterrupted, continuous monthly records during the period 1978–2017 
(n = 1,542; code and processed data are available in Supplementary Data 2).

Climate indices. The dynamics of ocean–atmospheric circulations can be 
described with climate indices. Almost all climate indices are associated, to 
some extent, with regional surface temperature anomalies (or temperature 
heterogeneity), in particular SST. We select 21 time series of climate indices 
describing monthly atmospheric and oceanic phenomena to compare decadal 
variations of the Earth’s climate system with changes in wind speed (Supplementary 
Table 2). Only indices that are available for the whole study period (1978–2017) 
are considered (downloaded from https://www.esrl.noaa.gov/psd/data/
climateindices/list/). For example, we include the following eight teleconnection 
indices: PDO; Pacific North American Index; Western Pacific Index; NAO; East 
Pacific/North Pacific Oscillation; North Pacific pattern; East Atlantic pattern and 
Scandinavia pattern. We also include one atmospheric index (Arctic Oscillation) 
and one multivariate El Niño–Southern Oscillation index. We include six indices 
describing regional SST in Pacific oceans: Eastern Tropical Pacific SST (5° N–5° S, 
150° W–90° W) (NINO3); Central Tropical Pacific SST (5° N–5° S, 160° E–150° W) 
(NINO4); Extreme Eastern Tropical Pacific SST (0–10° S, 90° W–80° W) (NINO12); 
East Central Tropical Pacific SST (5° N–5° S, 170° W–120° W) (NINO34); Oceanic 
Nino Index; and Western Hemisphere Warm Pool. Two of the indices describe 
regional SST in Atlantic oceans: TNA and the Tropical Southern Atlantic Index. 
The final three indices are the Atlantic Meridional Mode, the Southern Oscillation 
Index and the 10.7-cm Solar Flux (Solar). All these indices are widely used by  
the climate community and are informative regarding the decadal variations of 
ocean–atmospheric circulations.

Statistical analyses. It is apparent that the trend varies in the time series of global 
and/or regional-average mean annual wind speed for different ranges of year  
(for example, Fig. 1a). A traditional single linear model does not provide an 
adequate description of a change in the tendency and, therefore, we apply a 
piecewise linear regression model22,23 to quantify potential turning points in a  
given time series. Piecewise linear regression is capable of detecting where the 
slope of a linear function changes and allows multiple linear models to be fitted 
to each distinct section of the time series. For a time series y (for example, global 
average mean annual wind speed), a continuous piecewise linear regression model 
with one turning point (TP) can be described as:

y ¼ β0 þ β1t þ ε; t≤TP

β0 þ β1t þ β2ðt � TPÞ þ ε; t>TP

�
ð3Þ

where t is year, β0, β1 and β2 are regression coefficients and ε is the residual of 
the regression. The linear trend is β1 before the TP (year) and β1 + β2 after the TP. 
We use least-squares error techniques to fit the model to the data and determine 
TP, β0, β1 and β2. To avoid linear regression in a period with too few years, we 
confine TP to be within the period of 1980–2015. The necessity of introducing TP 
is tested statistically with the t-test under the null hypothesis that ‘β2 is not different 
from zero’. The diagnostic statistics for the regression also include the goodness-of-
fit (R2), the P value for the whole model and the P values for the trends before and 
after TP. We consider P < 0.05 as significant.

In addition, we use a forward stepwise regression algorithm27 to select major 
climate indices that have the largest explanatory power for the decadal variations 
in wind speed. The algorithm is a systematic method for adding predictors from 
a multilinear model according to their statistical significance in explaining the 
response (decadal variation of u in this study). The initial regression model 
contains only an intercept term. The explanatory power of incrementally larger and 
smaller models is then compared to determine which predictor should be included. 
At each step, the P value of an F statistic is calculated to examine models with a 
potential predictor that is not already in the model. The null hypothesis is that 
the predictor has a zero coefficient if included in the model. If there is sufficient 
evidence at a given significant level to reject the null hypothesis, the predictor is 
added to the model. Therefore, the earlier the predictor enters the model, the larger 
the explanatory power the predictor has.

We apply the forward stepwise regression to determine six climate indices 
(referred to as major indices hereafter) from a generalized linear model according 
to their statistical significance in explaining wind speed. We use only six indices in 
the regression because the fit improvement becomes marginal when the number of 
indices retained in the stepwise regression is greater. The regression model is then 
applied to reconstruct interannual variations of wind speed over the globe and/or 
the regions using the selected six climate indices. The forward stepwise regression 
is first applied to the original time series considering the total variances, and then 
applied to the detrended time series to exclude the variances from linear trends 
(Supplementary Figs. 15 and 16). Last, to test whether these climate indices can be 
used to predict wind speed, we further train the models using only the detrended 
time series before the turning points. We then compare the reconstructed wind 
speed with the observed wind speed after the turning points (Fig. 2).

Analyses on the possible causes for the interannual variability of wind speed. 
The indicators (climate indices) significantly correlated with wind speed on a 
global scale include TNA (R = −0.50, P < 0.01), PDO (R = 0.46, P < 0.01), Western 
Hemisphere Warm Pool (R = −0.46, P < 0.01), NAO (R = 0.39, P < 0.05), Atlantic 
Meridional Mode (R = −0.39, P < 0.05), East Pacific/North Pacific Oscillation 
(R = 0.37, P < 0.05), Tropical Southern Atlantic Index (R = −0.38, P < 0.05), Solar 
(R = 0.35, P < 0.05), Southern Oscillation Index (R = −0.32, P < 0.05) and East 
Atlantic pattern (R = 0.31, P < 0.05). Overall, the 21 climate indices explain 90% of 
the interannual variation in global mean annual wind speed (adjusted R2 = 78%). 
Regionally, they explain 91%, 75% and 87% of the interannual variation in mean 
annual wind speed for North America (adjusted R2 = 81%), Europe (adjusted 
R2 = 46%) and Asia (adjusted R2 = 71%), respectively.

To avoid overfitting, we use stepwise linear regression to discuss whether 
multiple regression of six indices can reconstruct interannual variations of wind 
speed over the globe and/or regions. To estimate the uncertainty associated with 
samples, we randomly select 40% of stations for the calculation of global/regional 
wind speed and repeat the analyses 300 times. The number in parentheses in 
Supplementary Table 3 shows how many times climate indices are selected as six 
major predictors. These climate indices explain 70 ± 5%, 79 ± 3%, 48 ± 9% and 
51 ± 8% of the interannual variation in mean annual wind speed for the globe, 
North America, Europe and Asia, respectively (Supplementary Table 3 and Fig. 15).  
Furthermore, we also test stepwise regression analysis after detrending all data, 
although this adjustment may mask relationships underlying long-term stilling. 
The goodness-of-fit decreased as expected when the stilling trend is removed 
(Supplementary Fig. 16). However, detrended indices still significantly explain 
detrended variation of wind speed, particularly the recent reversal (Supplementary 
Fig. 16), which supports the robustness of the regression analyses.

The greatest explanatory power factor for each region is associated with 
the following indices: TNA for North America (R = −0.67, P < 0.001); NAO for 
Europe (R = 0.37, P < 0.05) and PDO for Asia (R = 0.50, P < 0.01) (Supplementary 
Tables 2 and 3). These three indices are also significantly correlated with global 
mean annual wind speed (P < 0.01; Supplementary Table 2). We further conduct 
Granger causality tests45 in which we select lag length using a Bayesian information 
criterion. Global mean annual wind speed is ‘Granger-caused’ by TNA (P < 0.001), 
NAO (P < 0.01) and PDO (P < 0.1). Regionally, the tests also reject the null 
hypothesis that (1) TNA does not Granger-cause wind speed over North America 
(P < 0.001), (2) NAO does not Granger-cause wind speed over Europe (P < 0.1) 
and (3) PDO does not Granger-cause wind speed over Asia (P = 0.11). In addition, 
although the reversal of winds and the retained climate indices differ in regions, 
owing to ocean–atmosphere oscillations having some degree of synchronization 
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during turning points of multidecadal climate variability46, the pattern of terrestrial 
stilling and its reversal seems to be synchronized.

PDO and TNA are important predictors regardless of the subset of stations 
used; however, although NAO has the largest explanatory power for regional wind 
speed over Europe, there are 169/300 cases in which NAO is not included as a 
major predictor (Supplementary Table 3). Thus, even within Europe, the impact 
of NAO differs regionally. We therefore investigate the spatial patterns of the 
correlation between the three indices (PDO, TNA, NAO) and the regional winds 
(Fig. 3c–e). The regional wind is calculated using all stations within a 5° × 5° cell; 
and only the cells with more than three stations are included in the analysis. TNA 
has a strong significant negative correlation with regional wind speed in North 
America, excluding western Canada and areas near Mexico (Fig. 3c). PDO has a 
significant positive correlation with regional wind speed globally (Fig. 3e). NAO 
has an overwhelmingly significant positive correlation with regional wind speed 
in the United States and Northern Europe, in particular the United Kingdom. In 
contrast, it has a negative correlation with regional wind speed in southern Europe 
(Fig. 3d). Statistically, NAO is negatively correlated with European winds south of 
48° N (R = −0.39, P < 0.05), whilst it is significantly and positively correlated with 
European winds north of 48° N (R = 0.48, P < 0.01).

Calculations for wind power assessments. Due to the nonlinear relationship 
between wind power and wind speed (equation (1)), high temporal resolution data 
are needed for wind speed to produce an accurate estimate of wind power. Thus, we 
use the HadISD global subdaily database from the UK Met Office Hadley Centre24. 
For each station that has uninterrupted continuous monthly records during the 
period 1978–2017 (n = 1,542), we use linear interpolation to interpolate a subdaily 
time series to an hourly time series. Figure 4a shows the frequency distributions 
of global average hourly wind speed in 2010 and 2017, and also for the year 2024, 
assuming the same increasing rate.

We then discuss annual wind power production given these hourly wind speed 
time series for 2010, 2017 and 2024, considering that production is dependent 
on the specifications of wind turbines. Here we use General Electric GE 2.5-120 
(ref. 34) as an example. The parameters for this turbine include the following: rated 
power, 2,500.0 kW; cut-in wind speed, 3.0 m s−1; cut-out wind speed, 25.0 m s−1; 
diameter, 120 m; swept area, 11,309.7 m2 and hub height: 110/139 m (here we take 
120 m). The power curve for this turbine is shown in Supplementary Fig. 22. The 
wind speed time series (2010, 2017 and 2024) at the height of the turbine (that 
is, 120 m) is first estimated using the wind profile power law (equation (2)), and 
then converted into the hourly wind power (Supplementary Fig. 19) using the 
power curve (Supplementary Fig. 22). Due to the increased frequency of high 
wind speed, annual wind power production from the turbine increases from 
2.4 × 106 kWh in 2010 to 2.8 × 106 kWh in 2017, and then to 3.3 × 106 kWh in 2024. 
As a result, the overall capacity factor increases 1.9% during 2010–2017 and 2.2% 
during 2018–2024.

To compare the significance of the increased capacity factor induced by the 
strengthening wind speed with that due to technology innovation (for example, 
improvement of the turbine’s power efficiency), we collect the overall capacity 
factor for wind generation in the United States from the US Energy Information 
Administration37 (black line in Fig. 4b). In the United States, the overall capacity 
factor is highly correlated with the cube of the regional-average wind speed (u3) 
(R = 0.86, P < 0.01; Fig. 4b). Even for the detrended time series, the correlation 
coefficient between the capacity factor and the cube of the regional-average wind 
speed is as high as 0.71 (P < 0.05), showing that wind speed is a key factor for the 
year-to-year variation of wind power energy production. It is well known that 
technology innovation is a key factor that drives the increase of capacity factor for 
wind generation38. To isolate the wind speed-induced increase in capacity factor 
from that due to technology innovation, we use the regional mean hourly wind 
speed in 2010, 2017 and 2024 (assuming the same increasing rate) to estimate the 
increase of capacity factor for a given turbine, thereby controlling for technology 
innovation. The wind speed-induced increase in capacity factor is +2.5% between 
2010 and 2017 and +3.2% between 2017 and 2024. This explains more than 50% of 
the overall increase of capacity factor for wind generation in the United States.

We also collect information regarding the installed turbines from the US Wind 
Turbine Database (n = 57,646; https://eerscmap.usgs.gov/uswtdb) (for locations 
refer to Supplementary Fig. 23). The turbine that was nearest to one of the HadISD 
weather stations (n = 1,542) is at Deaf Smith County in the United States (<1 km; 
wind farm name: Hereford 1; case ID: 3047384; location see the inset plot in Fig. 4c).  
The turbine was installed in 2014. The turbine is a General Electric GE 1.85-87 
(ref. 39). The parameters for this turbine include: rated power, 1,850.0 kW; cut-in 
wind speed, 3.0 m s−1; rated wind speed, 12.5 m s−1; cut-out wind speed, 25.0 m s−1; 
diameter, 87.0 m; swept area, 5,945.0 m2 and hub height: 80 m. We combine 
these parameters with equation (1) to estimate the power curve for the turbine 
(Supplementary Fig. 24). Finally, we integrate the power curve with the hourly 
wind speed from 1978 to 2017 at the hub height at this station to calculate annual 
wind power production generated by the General Electric GE 1.85-87 turbine 
(Supplementary Fig. 25a; red bars in Fig. 4d). In addition, we calculate annual 
wind power production at the station generated by the General Electric GE 2.5-120 
turbine (Supplementary Fig. 25b; green bars in Fig. 4d). We also use equation (1)  
to estimate maximum annual wind power production at the station using a 

diameter of 120 m and hub height of 120 m (the same as the General Electric GE 
2.5-120 turbine), which is constrained by the Betz limit (f = 16/27 in equation (1))  
(Supplementary Fig. 25c; blue bars in Fig. 4d). The Betz limit describes the 
theoretical maximum ratio of power that can be extracted by a wind turbine to the 
total power contained in the wind. We used three reanalysis datasets47–49 and the 
satellite-observed changes of vegetation activity50 and urban extent51 over land for 
the past decades.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data for quantifying wind speed changes are the Global Surface Summary of 
the Day database (GSOD, ftp://ftp.ncdc.noaa.gov/pub/data/gsod) and the HadISD 
(v.2.0.2.2017f) global subdaily database (https://www.metoffice.gov.uk/hadobs/
hadisd/). The time series of climate indices describing monthly atmospheric and 
oceanic phenomena are obtained from the National Oceanic and Atmospheric 
Administration (https://www.esrl.noaa.gov/psd/data/climateindices/list/). 
Simulated wind speed changes in Coupled Model Intercomparison Project Phase 
5 (CMIP5) are available in the for Climate Model Diagnosis and Intercomparison 
(https://esgf-node.llnl.gov/projects/cmip5/). Simulated wind speed changes 
constrained by historical sea surface temperature are provided by the IPSL 
Dynamic Meteorology Laboratory. Wind records in reanalysis products include the 
ECMWF ERA-Interim Product (apps.ecmwf.int/datasets/data/interim-full-daily/), 
the ECMWF ERA5 Product (https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-single-levels-monthly-means) and the NCEP/NCAR Global 
Reanalysis Product (http://rda.ucar.edu/datasets/ds090.0/). The processed  
wind records and the relevant code are available in Supplementary Data 1 and 2 
(https://doi.org/10.6084/m9.figshare.9917246.v2). All datasets are also available 
upon request from Z. Zeng.

Code availability
The programs used to generate all the results are MATLAB (R2014a) and 
ArcGIS (10.4). Analysis scripts are available at https://doi.org/10.6084/
m9.figshare.9917246.v2. The code to produce the wind records are available in 
Supplementary Data 1 and 2.
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