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ABSTRACT

A time lag exists between precipitation P falling and being converted into terrestrial water. The responses

of terrestrial water storage (TWS) and its individual components toP over the global scale, which are vital for

understanding the interactions and mechanisms between climatic variables and hydrological components,

are not well constrained. In this study, relying on land surface models, we isolate five component storage

anomalies from TWS anomalies (TWSA) derived from the Gravity Recovery and Climate Experiment

mission (GRACE): canopy water storage anomalies (CWSA), surface water storage anomalies (SWSA),

snow water equivalent anomalies (SWEA), soil moisture storage anomalies (SMSA), and groundwater

storage anomalies (GWSA). The responses of TWSA and of the individual components of TWSA to P are

then evaluated over 168 global basins. The lag between TWSA and P is quantified by calculating the cor-

relation coefficients between GRACE-based TWSA and P for different time lags, then identifying the lag

(measured in months) corresponding to the maximum correlation coefficient. A multivariate regression

model is used to explore the relationship between climatic andbasin characteristics and the lag betweenTWSAand

P. Results show that the spatial distribution of TWSA trend presents a similar global pattern to that of P for the

period January 2004–December 2013. TWSA is positively related to P over basins but with lags of variable du-

ration. The lags are shorter in the low- and midlatitude basins (1–2 months) than those in the high-latitude basins

(6–9 months). The spatial patterns of the maximum correlations and the corresponding lags between individual

components of the TWSA and P are consistent with those of the GRACE-based analysis, except for SWEA

(3–8 months) and CWSA (0 months). The lags between GWSA, SMSA, and SWSA to P can be arranged as

GWSA. SMSA$ SWSA.Regression analysis results show that the lags between TWSAandP are related to the

mean temperature, mean precipitation, mean latitude, mean longitude, mean elevation, and mean slope.

1. Introduction

Terrestrial water storage (TWS) is a vital compo-

nent of the global hydrological cycle and can be di-

vided into surface water storage (SWS), soil moisture

storage (SMS), canopy water storage (CWS), snow wa-

ter equivalent (SWE), and groundwater storage (GWS)

(Pan et al. 2017; Strassberg et al. 2009; Tregoning et al.

2012; see appendix for a list of acronyms used in this

paper). Precipitation P is a major input to terrestrial

water flux (Gao et al. 2014). In the water balance

equation [d(TWSA)/dt 5 P 2 ET 2 R, where ET is

evapotranspiration and R is runoff], it is the derivative of

TWS anomalies (TWSA) that relates simultaneously to

P, and therefore a time lag is expected (Eagleson 1978).

Xu et al. (2018) also showed that when P is converted to

TWS through water distribution, there is a theoretically

delayed response of TWS to P. Determining the specific

lag between TWS and P and the spatial variation of this
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lag are crucial to understanding interactions in the cli-

mate factors and the hydrological cycle.

Recently, the relationship between P and TWS has

been investigated over a number of basins. Syed et al.

(2008) demonstrated that terrestrial water storage

change (TWSC) based on land surface model simula-

tions in the Global Land Data Assimilation System

(GLDAS) is strongly correlated with P in low-latitude

areas. Based on TWSA from the Gravity Recovery

and Climate Experiment (GRACE), Mo et al. (2016)

found a stronger correlation between P and TWSA in

southern than in northern China. Xu et al. (2018)

identified a 2-month lag in a study of GRACE-based

TWSA response to P in the Three Rivers source region

of the Tibetan Plateau, similar to the 1–2-month lag

between GRACE-based TWSA and P found by Soni

and Syed (2015) for Indian river basins. Ndehedehe

et al. (2016) determined a 1–2-month lag for TWSA

responses to P for West Africa basins.

Previous studies have also found that the different

components of TWS may have different responses to P.

The maximum lag between TWSA and P in the Three

Rivers source region of Tibet is 2 months, whereas soil

moisture there can respond to P without delay (Xu

et al. (2018). In southernManitoba, Canada, Chen et al.

(2002) found that the responses of groundwater level

to P vary among different wells, with time lags ranging

from 3months to 3–4 years. Lorenzo-Lacruz et al. (2017)

analyzed the relationship between a standardized

groundwater index (SGI) and a 48-month standardized

precipitation index (SPI) to investigate the relationship

between groundwater storage and P variability in the

Mediterranean region. They identified the responses of

groundwater storage anomalies (GWSA) to P for dif-

ferent aquifers, including lags of 6 months for the Can

Bajoca aquifer, 9 months for the Massanella red aqui-

fer, and 46 months for the Estremera aquifer. Liesch

and Ohmer (2016) established that the lags for both

GWSA-P and SMSA-P were 1 month in Jordan.

In addition, several studies tried to reveal the rea-

sons for the delayed response of TWSA to P. A study

in Ethiopia (Awange et al. 2014) showed that aquifer

properties have a strong influence on the lag be-

tween TWSA and P, such as 0-month time lag in karst-

dominated regions and a lag of up to 6 months in

unconsolidated sediment regions. Chen et al. (2002)

established that the different recharge characteristics

and permeability of sediments influence the response

of groundwater level to P. Heterogeneous lithology

and the percentage of clay in an aquifer were found by

Lorenzo-Lacruz et al. (2017) to influence the response

of GWSA and TWSA to P. For example, a longer

lag between GWSA and P occurred mostly in areas

where high-permeability rocks predominated, with lower

correlation coefficients between P and aquifer storage

being found in areas of higher clay content. Soni and Syed

(2015) showed that the relationship between P and

TWSA and the associated lag were influenced by such

factors as climatic conditions, vegetation density, runoff

pathlength, basin size, and the abundance of surface

water bodies. However, despite these various studies, the

spatial pattern of the responses of TWSA and its indi-

vidual components to P, and the influence of climatic

factors, vegetation behavior, and basin characteristics on

the associated lags, remain unclear over global scale.

Traditionally, TWS is obtained from model simula-

tions and in situ observations. Global Land Data As-

similation System (GLDAS) land surface models can be

used to successfully simulate some components of TWS,

such as SMS and SWE, but perform relatively poorly in

capturing other components, such as GWS (Syed et al.

2008; Xu et al. 2018). To now, in situ measurements

of TWS have not been obtained at a global scale. The

GRACE satellite, launched in 2002 to monitor Earth’s

time-variable gravity field, which reflects Earth’s surface

mass redistribution and transport, provides unique data

on TWS over large regions (Tapley et al. 2004; Wahr

et al. 2004). These data can be used to accurately mea-

sure the vertically integrated water resources stored

above and beneath Earth’s surface (Jin et al. 2010; Long

et al. 2016; Rodell et al. 2004a; Syed et al. 2008; Wahr

et al. 1998; Yang et al. 2013). Therefore, using TWS data

from GRACE, the goals of this study are to 1) examine

the responses of TWSA and its individual components

to P for 168 global basins using both basin-average and

grid-based approaches, 2) distinguish the differences in

time lags between individual components of TWSA and

P, and 3) explore the factors that may influence the lag

between TWSA and P.

2. Materials and methods

a. Study regions

In this study, we analyze the TWSA–P relationship for

168 global basins. The criteria for basin selection followed

those of Scanlon et al. (2016), which are 1) basins with

areas . 40000km2 and 2) basins with radius . 200km

(Fig. 1). Applying these criteria, data for 168 basins cov-

ering 663 106km2 are extracted from the Global Runoff

Data Centre (GRDC; http://grdc.bafg.de) (Fig. 1).

b. Data

1) GRACE DATA

Global monthly TWSA data retrieved from GRACE

are obtained from the latest-release (RL05) mass
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concentration (mascon) solutions processed by Jet

Propulsion Laboratory (JPL) processing centers at

NASA and by the Center for Space Research (CSR) at

the University of Texas at Austin. Based on the equal-

area 3 3 3 spherical cap mascon function, the JPL

mascon data uses a priori constraints, including altime-

try data and forward models (GLDAS land surface

models; Rodell et al. 2004a) for land, and Estimating

the Circulation and Climate of the Ocean 2 for oceans

(Menemenlis et al. 2008), to estimate the global

gravity fields. These procedures can minimize the

effect of measurement errors. The coarse 38 3 38 JPL
mascon data (0.58 3 0.58 latitude–longitude grid) are

then multiplied by the Community Land Model 4.0

(downsampled from 18 3 18 to 0.58 3 0.58) provided by

the Tellus website to reduce leakage errors intro-

duced by the mascon basis function (Watkins et al.

2015). We obtain the JPL mascon data from https://

grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/. A

detailed description of these JPL mascon data can be

found in Wiese et al. (2016). The CSR mascons, calcu-

lated based on equal-area geodesic grids of approx-

imately 120km (18 at the equator), are processed by

constraining the original GRACE level-1 data through

the Tikhonov regularization method, which effectively

suppressed the north–south stripe errors in the GRACE

measurements. We obtain the CSR mascon data from

http://www.csr.utexas.edu/grace/RL05_mascons.htm. A

detailed description of the CSR mascon data is given in

Save et al. (2016). Monthly anomalies of TWS are ob-

tained relative to the baseline average for the period

January 2004–December 2009. Here, the average of the

adjusted months is applied to complement the missing

months (Andrew et al. 2017; Long et al. 2015; Mo et al.

2016), and the mean TWSA from the GRACE JPL and

GRACE CSR mascons is then calculated. Details of the

TWSA dataset used in this study are reported in Table 1.

2) PRECIPITATION

The global 0.58monthly P datasets used in the present

study are obtained from the Global Precipitation Cli-

matology Centre (GPCC) (Schneider et al. 2014) and

the Climatic Research Unit (CRU) Time Series Version

4.00 dataset (Harris et al. 2014), designated as PGPCC

andPCRU, respectively. Details of these two datasets are

given in Table 1.

3) INDIVIDUAL COMPONENTS OF TWS

In this study, the soil moisture (SM), SWE, surface

water (SW), and canopy water (CW), are obtained from

NASAGLDAS land surfacemodels (LSMs) (Feng et al.

2013; Beaudoing and 2015; Rodell et al. 2004b; https://

disc.sci.gsfc.nasa.gov/). Owing to the different versions,

structures, and parameters of these models, the LSMs

have been previously divided into the Community Land

Model (CLM) (Dai et al. 2001), Community Land

Model 4.0 (CLM4.0) (Oleson et al. 2010), variable

infiltration capacity (VIC) (Liang et al. 1994), Noah-1

and Noah-2.1 (Chen et al. 1996), and Mosaic (Koster

and Suarez 1996). We obtain the individual components

of TWS, at a spatial resolution of 18, by averaging them

from the six LSMs and then calculating the all indi-

vidual component anomalies of TWSA by subtracting

the average individual components of TWS from 2003

to 2014 (Chen et al. 2018). Details of the components

included in the GLDAS LSMs are given in Table 2.

FIG. 1. Distribution of the 168 river basins examined in this study. Basins with areas of

.500 000 km2 are numbered 1 through 31 in order of decreasing basin size: 1, Amazon; 2,

Congo; 3, Mississippi, 4, Ob; 5, Parana; 6, Nile; 7, Yenisei; 8, Lena; 9, Niger; 10, Amur; 11,

Yangtze; 12, Mackenzie; 13, Volga; 14, Zambezi; 15, Nelson; 16, Murray; 17, Ganges; 18,

Orange; 19, Indus; 20, Tocantins; 21, Yukon; 22, Danube; 23, Mekong; 24, Yellow River; 25,

Columbia; 26, Brahmaputra; 27, Kolyma; 28, Colorado (Argentina); 29, Colorado (Caribbean

Sea); 30, Colorado (Pacific Ocean); and 31, Sao Francisco.
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Reservoir storage, considered as an important compo-

nent of water storage (Castle et al. 2014; Famiglietti et al.

2011; Scanlon et al. 2012; Shamsudduha et al. 2017; Soni

and Syed 2015; Strassberg et al. 2009), is disregarded in

this study because of the lack of data on integrated res-

ervoir storage for global basins.

4) CLIMATIC AND BASIN CHARACTERISTICS DATA

Data on basin properties, vegetation, and climate char-

acteristics data are collected to investigate how catchments

regulate the time lag betweenTWSAandP. Basin elevation

(DEM) is derived from Global Multiresolution Terrain El-

evation Data 2010 (GMTED2010) provided by the U.S.

Geological Survey and the National Geospatial-Intelligence

Agency (https://topotools.cr.usgs.gov/GMTED_viewer/

viewer.htm) (Danielson andGesch 2011). Slope data are

obtained from the Food and Agriculture Organization

of the United Nations (http://www.fao.org/soils-portal/

soil-survey/soil-maps-and-databases/harmonized-world-

soil-database-v12/en/). The P datasets are collected

from the CRU and GPCC. Shortwave radiation data R

and temperature data T at 0.58 spatial resolution for

the period January 2003–December 2014 are obtained

from the CRU and National Centers for Environ-

mental Prediction (ftp://nacp.ornl.gov/synthesis/2009/

frescati/temp/land_use_change/original/readme.htm).

basin vegetation coverage (described by a monthly nor-

malized difference vegetation index (NDVI) datasetwith a

spatial resolution of 0.00838) is obtained from the Global

Inventory Modeling and Mapping Studies group (https://

ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/; Tucker et al.

2005). Details of all the above data are given in Table 1.

These monthly datasets are aggregated to multiyear

averages over basins scale.

c. Trend analysis

We determine the long-term trends of TWSA and P

using the nonparametric Mann–Kendall method (Kendall

1975). This method has been used extensively in trend tests

of climatic and hydrological variables (Asoka et al. 2017;

Scanlon et al. 2018). The significance level of the trends

is p , 0.05.

d. Time lag analysis

Pearson correlation analysis is used to explore the

relationships between P and TWSA. For each basin,

TABLE 1. Datasets used in this study.

Variable Product

Temporal

resolution

Spatial

resolution Period

Terrestrial water storage (TWS) GRACE RL05 mascon solutions (CSR) Monthly 0.58 Apr 2002–Jun 2017

GRACE RL05 mascon solutions (JPL) Monthly 0.58 Apr 2002–Jun 2016

Precipitation (P) CRU time series, TS 4.00 (PCRU) Monthly 0.58 1901–2014

Global Precipitation Climatology Centre

(PGPCC)

Monthly 0.58 1901–2013

Potential evapotranspiration (PET) CRU time series, TS 4.00 (CRU) Monthly 0.58 1901–2014

Global Land Data Assimilation

System (GLDAS)

Soil moisture storage (SMS) Monthly 18 1979–2014

Canopy water storage (CWS) Monthly 18 1979–2014

Snow water equivalent (SWE) Monthly 18 1979–2014

Surface water storage (SWS) Monthly 18 2004–13

Temperature CRU time series, TS 4.00 (CRU) Monthly 0.58 2004–13

Shortwave radiation CRU time series, TS 4.00 (CRU) Monthly 0.58 2004–13

Normalized difference vegetation

index (NDVI)

Global Inventory Monitoring and

Modeling System (GMMIS 3g)

Monthly 0.00838 2004–13

Global basins database Global Runoff Data Centre (GRDC) Shape files

DEM Global Multiresolution Terrain Elevation

Data 2010 (GMTED2010)

0.00838

Slope Food and Agriculture Organization of the

United Nations (FAO)

0.0838

TABLE 2. Summary of components included in the land surfacemodels used in this study. (Note thatümeans the component is included in

the model, however, 3 means the component is not included in the model.)

Model VIC GLDAS 1 CLM GLDAS 1 NOAH GLDAS 1 NOAH GLDAS 2.1 MOSAIC GLDAS 1 CLM-4.0

SWS Surface runoff and snowmelt ü
SMS ü ü ü ü ü ü
GWS 3 3 3 3 3 ü
CWS ü ü ü ü ü ü
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we obtain the correlation coefficients between P

and TWSA for different time lags (0–12 months)

by moving the TWSA time series forward 1 month at a

time (Frappart et al. 2013; Ndehedehe et al. 2016;

Soni and Syed 2015; Yang et al. 2014). We are then

able to identify the maximum correlation coefficient

and the lag time corresponding to that maximum

correlation coefficient. Only positive and statistically

significant correlations (p , 0.05) are included in the

analysis.

e. Individual TWSA component anomalies

As mentioned in section 2b(3), the values of CWS,

SWS, SMS, and SWE are averaged from six LSMs. We

calculated the anomalies as

SMSA5 SMS
uy
2 SMS,

CWSA5CWS
uy
2GWS,

SWEA5 SWE
uy
2 SWE,

SWSA5 SWS
uy
2 SWS, (1)

where SMSuy is the SMS in month u of year y and SMS is

the average SMS for the period January 2003 toDecember

2014 (Chen et al. 2017); the terms for the other compo-

nents are defined similarly.

f. Quantifying groundwater storage anomalies

Theoretically, TWS is the sum of its individual com-

ponents (Scanlon et al. 2016):

TWS5SWE1CWS1 SWS1 SMS1GWS. (2)

In addition to GWS, GLDAS-based TWS incorpo-

rates SWS, SMS, CWS, and SWE. Therefore, GWS can

be obtained by differencing GLDAS-based TWS from

GRACE TWS (Jin and Feng 2013; Rodell et al. 2009).

GWSA can thus be calculated as

GWSA5GRACE_TWSA2 SMSA2CWSA

2 SWEA2 SWSA. (3)

Jin and Feng (2013) found that GWS calculated from

GRACE–GLDAS is robust for estimating global GWS.

In addition, a good agreement has been found between

GWS calculated from GRACE–GLDAS and in situ

observations (J. Chen et al. 2014; T. Chen et al. 2014;

X. Chen et al. 2014; Jin and Feng 2013; Long et al. 2016;

Xiao et al. 2015).

g. TWSA component contribution ratios

We also determine the contributions of individual

components (GWSA, SMSA, SWSA, and SWEA) to

TWSA, which is crucial for understanding the effect of

these components on land water changes. We apply the

component contribution ratio (CCR) proposed by Kim

et al. (2009) to calculate the contribution of individual

components to TWSA for the studied global basins as

follows:

CCR5
MAD

TV
, (4)

where MAD is the mean absolute deviation of the

individual component [MAD5 (1/N)�N

t jSt 2Sj; S re-

fers to the individual storage components, for exam-

ple, GWS, SMS, and SWS; St is the value of individual

components in month t; and N is the number of

months] and TV is the sum of the MAD of all com-

ponents (TV5�storage

s MAD).

h. Linking lags to climatic and basin characteristics

Linear regression analysis is used to evaluate the re-

lationship between the lags of the response of TWSA to

P and the climatic and basin characteristics. The climatic

characteristics include: (i) basin mean temperature, (ii)

basinmean precipitation, (iii) basinmean short radiation,

and (iv) basin mean NDVI. The related basin charac-

teristics include (i) mean latitude, (ii) mean longitude,

(iii) mean elevation, (iv) mean slope, and (v) mean area.

Table S1 in the online supplemental material lists the

statistical measures of the climatic and basin character-

istics for the 168 studied basins.

Multiple regression analysis is used to construct a

statistical model of the relationship between climatic,

vegetation, and basin characteristics and the lag between

GRACE-based TWSA and P. Finally, for evaluating the

applicability of the regression models, the normality, ho-

moscedasticity, and independence of the residuals are

checked, as detailed below.

i. Residuals analysis

To evaluate the appropriateness of the regression

models, the residuals are examined for homoscedas-

ticity, independence, and normality (Xu 2001). These

tests are conducted using SPSS statistics 22 (analyze/
regression / linear; Elliott and Woodward 2007).

1) HOMOSCEDASTICITY TEST

When the variance of errors is the same for different

values of the independent variables, homoscedasticity

is indicated. A plot of the standardized residuals (the

error) versus the regression standardized predicted

value is used to check for homoscedasticity. The

presence of homoscedasticity in the plot is indicated

by the residuals being randomly scattered around 0 and

the data scatter showing no clear pattern (Osbourne and

Waters 2002).
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2) INDEPENDENCE TEST

The test for independence of residuals involves

checking that the residuals are uncorrelated (Osbourne

and Waters 2002). The Durbin–Watson statistic is used

to test for the presence of autocorrelation, with the value

of the statistic ranging from 0 to 4. Values close to 2

indicate that the residuals are independent. Values near

0 indicate the presence of significant positive autocor-

relation and those near 4 indicate the presence of sig-

nificant negative autocorrelation (Altman and Bland

1995; Chan 2004; Durbin and Watson 1971).

3) NORMALITY TEST

The regression model used is also based on the as-

sumption that residuals follow a normal distribution

(Altman and Bland 1995; Driscoll et al. 2000; Field 2013;

Pallant 2001). Visual inspection of the distributions,

namely, the frequency distribution (histogram) and the

probability–probability (p–p) plot (Field 2013), are used

for assessing normality. The histogram (of standard-

ized residuals) provides a visual judgment of whether

the distribution of the residuals is bell shaped (Thode

2002). The p–p diagram shows the cumulative proba-

bility of the expected values plotted against the cumu-

lative probability of the observed values. Data plotting

on or near a straight diagonal line indicate normally

distributed residuals (Field 2013).

3. Results

a. Spatial and temporal trends of precipitation and
TWSA over global basins

Trend analysis is a widely used tool among hydrolo-

gists (Scanlon et al. 2018) and is used here to examine

the covariation of TWSA and P. Figure 2 (top: PCRU)

and Fig. S1 (PGPCC) show the spatial patterns of the

trend of P for 168 global basins for the period January

2004 to December 2013. Results refer to that the trends

FIG. 2. (top) Trend of precipitation (PCRU) and (bottom) GRACE-based TWSA for the period January 2004–

December 2013 for the 168 studied basins. The significance of the trends was assessed at p , 0.05.
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of P based on the CRU and the GPCC are consistent

with each other. However, there is no significant vari-

ation trend existing in P over global 168 basins. Among

which, a nonsignificant decrease can be observed in

South America (e.g., the Amazon and Orinoco basins),

in southern North America (e.g., theMississippi basin),

in the Indus basin, and in southern Africa (e.g., the

Orange and Zambezi basins). However, the increased

trend for P is mainly in eastern Asia (e.g., the Yangtze

and Amur basins), in northern Asia (e.g., the Lena,

Yenisei, and Ob River basins), in eastern Australia (e.g.,

the Murray basin), and in northern Africa (e.g., the Nile

and Congo basins).

Figure 2 (bottom) shows the spatial pattern of

GRACE-based TWSAover for global basins.Most low-

latitude basins show an increase (significant) in TWSA

(26%), including the Nile, Congo, Murray, and Zambezi

basins. Increased TWSA is observed in several basins in

the midlatitudes of the Northern Hemisphere, such as

theMississippi and Yangtze basins. Decreases in TWSA

are observed for 30.4% of global basins, which are

seen mostly in basins at high and midlatitudes of the

Northern Hemisphere, such as the Lena, Yenisei, and

Ob basins, and those in northern India. These identi-

fied patterns of TWSA are consistent with those noted

by some previous global or regional-scale investigations,

such as those of Ahmed et al. (2014) and Scanlon

et al. (2016).

Coherence between P and TWSA is found for most

of the studied basins, but TWSA shows more instances

of significant increase and decrease trends, implying

potential influences of other factors on TWSA besides

P. Interestingly, for some basins, such as the Ob, Lena,

and Yenisei basins, increasing P corresponds to de-

creasing TWSA. However, in the Amazon basin, for

example, P shows a decreasing trend and TWSA an

increasing trend.

b. Response of TWSA to precipitation

Figure 3 shows the variation in correlation coefficient

between TWSA and P with different lags (0–12 month)

for 31 large basins (shown in Fig. 1). For some basins, the

correlation coefficient transforms from positive to neg-

ative with the increasing of the lag months, particularly

in low- and midlatitude basins, such as the Amazon

basin (Fig. 3, basin label 1). Some basins change from

negative to positive, which mainly occur in high lati-

tudes, such as in the Mississippi basin (label 3). Similar

patterns are shown for TWSA and PGPCC (Fig. S2).

The maximum correlation coefficients between

GRACE-based TWSA and P, and the lags (measured

in months) corresponding to those maximum correla-

tion coefficients, are determined using both a grid-based

approach (Figs. 4a,b, Figs. S3a,b) and a basin-average

approach (Figs. 5a,b, Figs. S4a,b). The spatial patterns

of the maximum correlation coefficient and the corre-

sponding lag month are similar for both approaches. The

correlation coefficients are significantly positive over

several very large land areas (Fig. 4a and Fig. S3a), in-

cluding northern South America, Africa, southern India,

southern China, and most of Russia. At a basin scale,

the larger correlation coefficients are observed for the

Amazon basin (0.92 forPCRU andGRACE-based TWSA;

0.94 for PGPCC and GRACE-based TWSA), Nile basin

(0.86 and 0.84), Niger basin (0.89 and 0.90), Yangtze basin

(both 0.85), and Mekong basin (0.90 and 0.93) (Fig. 5a

and Fig. S4a).

The lags between GRACE-based TWSA and P cor-

responding to the maximum correlation coefficients are

shorter for basins in low latitudes than for those in mid

and high latitudes. Generally, the GRACE-based TWSA

at low latitudes responds to P with a 2–3-month lag but in

the mid and high latitudes with a 7–9-month lag. For most

basins in South America, Africa, Australia, China, India,

andAustralia, the lag is 1–2months (Fig. 4b and Fig. S3b).

At the basin scale, the lower lags are found in theAmazon

(2 months), Congo (2 months), Nile (2 months), Yangtze

(1 month), and Ganges (2 months) basins (Fig. 5b and

Fig. S4b). The larger lags are observed mostly in the mid

and high-latitude parts of the Northern Hemisphere and

in southern South America, southern Africa, and south-

eastern Australia (Fig. 4b and Fig. S3b). At a basin scale,

these include the Mississippi (9 months), Ob (8 months),

Yenisei (8 months), Lena (8 months), and Murray

(7 months) basins (Fig. 5b and Fig. S4b).

In addition, the maximum correlation and the corre-

sponding lag of GLDAS-based TWSA and P are evalu-

ated (Figs. 4c,d and 5c,d, Figs. S3c,d and S4c,d). We find

that the maximum correlation coefficients are positive

(Figs. 4c and 5c, Figs. S3c and S4c) and that the spatial

pattern of the lags between GLDAS-based TWSA and P

is similar to that of the lags between GRACE-based

TWSA and P (Figs. 4d and 5d and Figs.S3d and S4d).

However, the lag between GLDAS-based TWSA and P

(about 7–8 months at high latitudes) is shorter than

that between GRACE-based TWSA and P (about 9–

10 months at high latitudes).

Furthermore, we calculate the difference of the

lag months between GRACE-based TWSA to P and

GLDAS-based TWSA to P by the grid-based approach

(Fig. 6a and Fig. S5a) and basin-based approach (Fig. 6b

and Fig. S5b), respectively. We find that the spatial

patterns for bothmethods are similar. The differences of

the lag months are about 1 month for most of the global

areas, which are mainly in the Africa (Congo basin, Nile

basin, Niger basin, etc.), in the northern South America
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(Amazon basin and Parana basin, etc.), in India (Ganges

basin, etc.), in the south of the China (Mekong basin,

etc.), and in the most of the north of Asia (Ob basin,

Yenisei basin, and Lena basin, etc.). In addition, we find

that the differences are larger in most of southern North

America (it ismainly shown for the grid-based approach),

in Australia (Murray basin), and in the east of north-

ern Asia (it is also mainly shown for the grid-based ap-

proach). These possible reasons for the differences of

the lag month between GRACE-based TWSA and

GLDAS-based TWSA may be caused by 1) the lack of

GWSA inGLDAS-based TWSA, 2) uncertainties of the

FIG. 4. Maximum Pearson correlation coefficients between monthly PCRU and GRACE-based TWSA (TWSAGRACE–PCRU) and

GLDAS-based TWSA (TWSAGLDAS–PCRU) using a grid-based approach for (a),(c) the period January 2004–December 2013 and (b),(d)

the corresponding lag months. The lagmonths indicate thatP precedes TWSA.A correlation coefficient of60.179 indicates a significance

level of p 5 0.05.

FIG. 3. Variation in correlation coefficients betweenTWSAand PCRU for the 31 largest studied basins for different

lags (in months).
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GLDAS-based TWSA (Nie et al. 2016; Scanlon et al.

2018), and 3) errors of the GRACE TWSA (Scanlon

et al. 2016, 2018).

c. Responses of the individual components of TWSA
to precipitation

The individual components of TWSA are isolated,

and the relationship of each of these components of

GRACE-based TWSA with P is evaluated using the

methods described in sections 2e and 2f.

1) SEPARATING THE COMPONENTS OF TWSA

Figure 7 shows the CCRs of GWSA, SMSA, SWEA,

and SWSA for 31 large global basins. The results are

similar to those of Felfelani et al. (2017), who de-

termine the CCRs for subsurface water storage, river

and reservoir water, and snow water storage with re-

spect to TWS based on the HiGW-MAT model. In the

present study, SWEA accounts for the highest pro-

portion of TWSA in the northern high-latitude basins,

including the Kolyma (48.6%), Mackenzie (50%),

Yenisei (48.9%), Lena (43%), and Ob (42.2%) basins.

In the midlatitude and subtropical basins, the CCRs of

SWSA, GWSA, and SMSA are high, and the CCR of

SWEA is low. In tropical basins, such as the Congo

and Ganges basins, GWSA and SMSA dominate

TWSA. It should be noted that because of the lack of

global reservoir water, we consider only runoff and

snowmelt as SWS, whichmay result in an underestimation

of the CCR of SWSA, especially for subtropical basins

and those basins with managed reservoirs, such as the

Yangtze, Brahmaputra, and Ganges basins.

2) RESPONSES OF THE INDIVIDUAL COMPONENTS

OF TWSA TO PRECIPITATION

Responses of the individual components of GRACE-

based TWSA to P are determined by correlation anal-

ysis using both a grid-based approach (Fig. 8 and Fig. S6)

and a basin-average approach (Fig. 9 and Fig. S7), re-

spectively. Results show that the maximum correlation

coefficients of GWSA (Figs. 8a and 9a, and Figs. S6a and

S7a), SWSA (Figs. 8c and 9c, and Figs. S6c and S7c),

SMSA (Figs. 8e and 9e, and Figs. S6e and S7e), and

CWSA (Figs. 8g and 9g, and Figs. S6g and S7g) with P

are significantly positive for most regions and basins.

Moreover, higher correlation coefficients are found in

the low and midlatitudes than in the high latitudes

regardless of which method is used. For SWEA, the

larger correlation coefficients are observed mainly in

the mid and high latitudes (Figs. 8i and 9i, and Figs. S6i

and S7i).

Generally, the lag months of SWSA and SMSA with

P are shorter in the low and midlatitudes, usually

ranging from 0 to 3 months, compared with the lags

FIG. 5. Maximum Pearson correlation coefficients between monthly PCRU and GRACE-based TWSA (TWSAGRACE–PCRU) and

GLDAS-based TWSA (TWSAGLDAS–PCRU) using a basin-based approach for (a),(c) the period January 2004–December 2013 and

(b),(d) the corresponding lag months. The lag months indicate that P precedes TWSA. A correlation coefficient of 60.179 indicates a

significance level of p 5 0.05.
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of 8–12 months found in high-latitude basins (Figs.

8d,f and 9d,f, and Figs. S6d,f and S7d,f). For GWSA,

the longer lags are observed mainly in western and

northern North America, most of central and northern

Eurasia, southern South America, southern Africa, and

southeastern Australia (Figs. 8b and 9b, and Figs. S6b

and S7b). The lags between SWEA and P are longer in

mid- and high-latitude basins than in low-latitude basins

(Figs. 8j and 9j, and Figs. S6j and S7j). In particular, for

the Middle East and Tibetan Plateau, the lags are about

10 months. As expected, the lags between CWSA and

P are short or nonexistent for all basins, revealing that

CWSA can respond immediately to changes in P

(Figs. 8h and 9h, and Figs. S6h and S7h).

Furthermore, the lags of GWSA, SMSA, and CWSA

with P are compared (Figs. S8 and S9) within global

areas and basins. We found that the lag can be ar-

ranged as GWSA . SMSA $ SWSA in most basins

and regions (Note that the yellow areas and basins

with blue boundaries indicate that the lags of GWSA,

SMSA, and SWSA with P are ordered as GWSA $

SMSA $ SWSA).

d. Correlation of climatic and basin characteristics
with the TWSA–P lag

The data described in section 2b(4) are analyzed to

produce measures of climatic and basin characteristics.

The climatic characteristics are mean T, mean P, and

mean R. The vegetation data is mean NDVI. The basin

characteristics are mean latitude, meanDEM, andmean

slope and basin area. The relationships between these

characteristics and the lag months are evaluated by lin-

ear regression analysis for the 168 global studied basins

(Fig. 10 and Fig. S9). According to the linear fit line and

the significance level shown in the Fig. 10 and Fig. S9, we

found that the basins mean T (p , 0.05) (Fig. 10a and

FIG. 6. The difference of the lag months betweenGRACE-based TWSA and PCRU andGLDAS-based TWSA and

PCRU: (a) using a grid-based approach and (b) using a basin-based approach.
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Fig. S9a), mean R (p , 0.05) (Fig. 10b and Fig. S9b),

mean P (p , 0.05) (Fig. 10c and Fig. S9c), mean DEM

(p , 0.05) (Fig. 10d and Fig. S9d) show significantly

negative correlations with the lag months of GRACE-

based TWSA and P. The significant positive correlation

is shown for the relationship of mean latitude (p , 0.05

in the north latitude) (Fig. 10e and Fig. S9e) and mean

slope (p , 0.05) (Fig. 10f and Fig. S9f) with the lag

months. However, mean NDVI (Fig. 10g and Fig. S8g)

andmean basin area (Fig. 10h and Fig. S9h) are found to

play negligible roles in determining the lag months be-

tween TWSA and P.

e. Regression model of the TWSA–P lag

Given the results of section 3d, the data for mean T,

mean R, mean P, mean DEM, mean latitude, and mean

slope are used to construct a statistical model to explain

the lag months of the 168 studied basins. The following

multiple linear regression models are established for

the lag months of GRACE-based TWSA to PCRU

(Lag_CRU) and the lag months of GRACE-based TWSA

to PGPCC (Lag_GPCC), respectively:

Lag_P
CRU

5 8:2552 0:118X12 0:001X22 0:000 44X3

2 0:001X41 0:0075X51 0:002X6,

(5)

Lag_P
GPCC

5 6:5532 0:114X11 0:001X22 0:000 28X3

2 0:001X41 0:012X51 0:002X6,

(6)

where X1, X2, X3, X4, X5, and X6 are mean T, meanR,

mean P, mean DEM, mean latitude, and mean slope,

respectively. Equations (5) and (6) explain 66.0% and

63.9% of the observed variance in Lag_CRU and

Lag_GPCC, respectively.

We also use tests for independence, normality, and

homoscedasticity of the residuals as described in section

2i to check the applicability of the regression models.

The Durbin–Watson test for independence yields a

value of 1.7 for PCRU and 1.9 for PGPCC, which indicates

that the residuals are independent. The histograms and

p–p plots presented in Fig. S10 clearly show that the

residuals satisfy the normality assumption. The scatter-

plots in Fig. S11 show no clear pattern, and the line of

best fit is nearly horizontal (slope 5 6.74 3 10216 for

PCRU and slope 5 4.88 3 10216 for PGPCC), which to-

gether indicate that the residuals are homoscedastic.

4. Discussion and conclusions

This study examines the response of GRACE-based

TWSA and the individual components of GRACE-

based TWSA to P using a basin-average approach for

global 168 basins for the period January 2004–December

2013. We quantify the maximum correlation and lag

between TWSA and P, and that between the individ-

ual components of TWSA and P, for the studied ba-

sins, with great implications for understanding the role

of precipitation in the global hydrological cycle.

We investigate the spatial pattern of the trend of global

P based onGPCCandCRUdatasets andGRACE-based

TWSA. Consistent with Scanlon et al. (2016), Ramillien

et al. (2014), and Humphrey et al. (2016), increases in

GRACE-based TWSA are identified for various basins

including the Nile, Niger, and Yangtze basins. Humphrey

et al. (2016) and Ahmed et al. (2014) explained the

FIG. 7. Component contribution ratios of groundwater storage anomalies (GWSA), soil moisture storage

anomalies (SMSA), snow water equivalent anomalies (SWEA), and surface water storage anomalies (SWSA) over

the selected 31 river basins.
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FIG. 8. Maximum Pearson correlation coefficients between individual components of TWSA and PCRU (a),(c),(e),(g),(i) using a grid-

based approach for the period January 2004 toDecember 2013 and (b),(d),(f),(h),(j) the corresponding lags in number of months. The lags

indicate that P precedes TWSA. A correlation coefficient of 60.179 indicates a significance level of p 5 0.05.
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FIG. 9. Maximum Pearson correlation coefficients between individual components of TWSA and PCRU (a),(c),(e),(g),(i) using a basin-

based approach for the period January 2004 toDecember 2013 and (b),(d),(f),(h),(j) the corresponding lags in number of months. The lags

indicate that P precedes TWSA. A correlation coefficient of 60.179 indicates a significance level of p 5 0.05.
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FIG. 10. Correlation of the lag months between GRACE-based TWSA and PCRU

with the climatic and basin characteristics. (a) Scatterplot for lag months and tempera-

ture T. (b) Scatterplot for lag months and radiation R. (c) Scatterplot for lag months and

PCRU. (d) Scatterplot for lag months and DEM. (e) Scatterplot for lag months and lat-

itude. (f) Scatterplot for lag months and slope. (g) Scatterplot for lag months and NDVI.

(h) Scatterplot for lag months and basin area.
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increase in GRACE-based TWSA in the Niger basin is

related to the rising precipitation. However, in some ba-

sins, such as the Ob, Lena, and Yenisei basins, a non-

significant increase in P is associated with a decrease in

GRACE-based TWSA. Herein, according to the analysis

of the period ofAugust 2002–March 2008 byMuskett and

Romanovsky (2009), it may attribute that the GRACE-

based TWSA trends are related to groundwater, runoff,

and snowmelt. For the Amazon basin as a whole, a

nonsignificant decrease in P and an increase in GRACE-

basedTWSAare observed, consistent with the findings of

Humphrey et al. (2016). The 2009 Amazon flood event

may explain this phenomenon (Chen et al. 2010). The

groundwater depletion in the northwest India likely

causes the observed decrease in GRACE-based TWSA

for that region (J. Chen et al. 2014; Humphrey et al. 2016;

Rodell et al. 2009).

The maximum correlation coefficients between

GRACE-based TWSA and P, as well as the correspond-

ing lag months to this maximum value, are calculated us-

ing both a basin-average approach and a grid-based

approach. Results show that the spatial patterns pro-

duced by these two approaches are similar, including the

positive relationship between TWSA and P in most

basins and regions and the common lag between TWSA

and P. The lags are shorter in the low- and midlati-

tude basins, confirming the findings of previous studies

in those regions, including the 1–2-month lags in India

(Soni and Syed 2015), the ;2-month lag in the Amazon

basin (Famiglietti et al. 2011), and the 2-month lags in

Africa (Ndehedehe et al. 2016). Humphrey et al. (2016)

argued that the particular water storage processes could

cause the short lags in the tropical and subtropical re-

gion. Such as the transport processes of water within the

extensive floodplains caused the lag ofP to TWSA in the

Amazon basin (Frappart et al. 2013). However, longer

lags are found in the high latitudes, which are likely due

to the effect of seasonal snowmelt (Humphrey et al.

2016; Trautmann et al. 2018).

We also analyzed the relationships between individual

components of GRACE-based TWSA and P as well as

the corresponding lagmonths. The relationship between

SWSA and P is significantly positive. Moreover, the lags

between SWSA and P are shorter in the low- and mid-

latitude basins (0–3 months), suggesting a more direct

control of P on SWSA (Huang et al. 2019), whereas the

lag months of SWSA to P are longer in the high latitude

basins (8–12 months). Previous studies have argued that

lags in high-latitude basins may not alone be explained

by precipitation. Liesch and Ohmer (2016) referred to

the idea that P and evapotranspiration (ET) were the

main controls on SWS change and that ET relied mainly

on T. Therefore, we analyze the relationships of T and P

with SWSA (Figs. S12–S14). Results show that in low-

latitude and coastal subarctic areas, P controls SWSA,

with a shorter lag (0–1 month). In mid- and high lati-

tudes, T dominates SWSA, and the lags are 3–6 months

(Fig. S11). Moreover, we found that the response of

SWSA to T mostly occurred in the spring and autumn

seasons with different lag months. The reason may be

that the lower SWSA occurs in the autumn, lagging the

peakT by 4–6months (Fig. S15) (Humphrey et al. 2016),

and during spring, SWSA responds rapidly to T (yellow

area in Fig. S15). In coastal subarctic areas (such as the

Columbia and Colorado basins), owing to the temper-

ature difference between land and ocean, the maximum

P occurs during the autumn, which results in the re-

sponse of SWSA to P (Humphrey et al. 2016).

Similar to the relationship between SWSA and P, the

relationship between SMSA and P is significantly posi-

tive, and the lags are shorter (0–3 months) in the low-

and midlatitude basins. However, the longer lag months

are observed in high latitudes. Somorowska (2017) ex-

plained variation in SMS variability in Poland not only

in terms of precipitation but also in ET, which de-

pending on meteorological conditions, vegetation, and

soil hydraulic properties, can also directly influence

the surface soil layers. In the Songhua basin, north-

eastern China, the lag of SMSA mainly influence by

precipitation, snow melting, and seasonal permafrost

thawing processes (Chen et al. (2019).

For GWSA, the longer lags are found mainly in

western and northern North America, most of cen-

tral and northern Eurasia, southern South America,

southern Africa, and southeastern Australia. The lags

betweenGWSAandP are controlled by several factors. In

the Songhua basin, Chen et al. (2019) found increasing in

GWSA in 10–12months, due to themainly exploitation of

wildly distribution of snow, ice, and seasonal permafrost.

Under snowpack accumulation and melting processes,

groundwater was recharged in 1–6 months. It can ex-

plained as the end of snowpack melting, the increasing of

temperature, evapotranspiration and irrigation activity.

From6 to 10months, theGWSAwasmainly influencedby

precipitation. However, the recharged of P to GWSA in

these seasons is far less than the consuming of ground-

water by human activities such as irrigation, groundwater

exploitation and the evapotranspiration caused by climate

factors, such as temperature and speed, etc. In addi-

tion, the soil characteristics can also affect the lag between

GWSA and P. For example, Huang et al. (2019) found

that the lag betweenGWSA and Pwas shorter in the high

karstic region than in the low karstic region owing to the

soil characters and Topographic condition.

SWEA is influenced by T (Butt and Bilal 2011; Chen

et al. 2019). Lags between SWEA and P are longer
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(;10 months) and are mainly in the mid- and high lati-

tudes particularly in the Middle East and Tibetan Pla-

teau. As expected, the lags between CWSA and P are

short or nonexistent for all studied basins, revealing that

CWSA can respond immediately to P.

Furthermore, the lags of GWSA, SMSA, and SWSA

with P can be arranged as GWSA. SMSA$ SWSA for

most of the large basins. This pattern may be related to

the distribution of P in the atmosphere and on the land

surface. Oki and Kanae (2006) and Chen et al. (2018)

stated that water evaporates from the ocean, converting

from liquid to gas, and then changes to a liquid (or solid)

and falls as precipitation to the ground. Some of this

water flows as surface runoff, some soaks into the soil, and

some becomes groundwater. These broad components of

the hydrological cycle provide a first-order explanation of

the differences in the lags of GWSA and SMSA with P.

Using multiple linear regression models, we also ex-

amined the relationships between climatic factors and

basin characteristics and the lag between GRACE-

based TWSA and P. Result shows that the mean T,

mean P, mean R, mean latitude, mean DEM, and mean

slope are related to the lag months. Temperature mainly

influences the change of SWSA and SWSA (Liesch and

Ohmer 2016). The influence of mean latitude and mean

slope and DEM on the TWSA–P lag shows the control

of basin attributes, but these attributes also in part re-

flect climatic characteristics, such as mean temperature

and radiation (Parry et al. 2016). The result is consistent

with Yang et al. (2017), who indicated that the basin’s

mean DEM and latitude significantly control the lag of

hydrological drought recovery to that of meteorological

drought in Australia. In the present study, the basin mean

T, meanP, mean latitude, meanR, meanDEM, andmean

slope together explain 66.0% and 63.9% of the observed

variance in Lag_PCRU and Lag_PGPCC, respectively.

The remaining unexplained degree of explanation

may be related to variation in soil characteristics such as

soil porosity and permeability (Huang et al. 2019) and

irrigation activity (Chen et al. 2019), etc.

TWS plays an important role in climatological and

hydrological processes. This study conducted the first

subtle evaluation of the response of TWSA and the in-

dividual components of TWSA to P over global basins.

Beyond the above findings, this study should help hy-

drological researchers to understand the interactions

and mechanisms operating between climatic conditions

and variation in TWS, as well as the nature and speed of

the processes by which precipitation becomes surface

water, soil water, and groundwater. Because of the

complex processes involved in water circulation within

soil, especially in high latitudes (given the frozen sur-

faces), soil water circulation is the most difficult process

to be described by LSMs (Chen et al. 2019). Bao et al.

(2017) found that the correlation between GLDAS-

based soil moisture data and observed data was higher

during the April–October nonfrozen period (compared

with the November–March frozen period) over the Ti-

betan Plateau, which indicates that GLDAS soil moisture

estimates have certain representativeness. However, un-

certainties exist, including the change in soil moisture with

temperature during freezing–thawing in the frozen period

and the bias of values caused by GLDAS precipitation-

forcing data in the nonfrozen period. In the Songhua basin,

Chen et al. (2019) showed that SMSA estimates from

different GLDAS LSMs have apparent discrepancies.

Therefore, the relationship between SMSA and P can be

influenced by uncertainties caused by the SMS dataset in

different LSMs. In addition, uncertainties in SMS may

then propagate to GWS. Consistent with our study, pre-

vious studies have often taken averages of SMS based on

different GLDAS LSMs to reduce the uncertainties (Feng

et al. 2013; Gong et al. 2018; Soni and Syed 2015).
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APPENDIX

List of Acronyms

CCR Component contribution ratio

CLM Community Land Model

CRU Climatic Research Unit

CSR Center for Space Research

CW Canopy water

CWS Canopy water storage

CWSA Canopy water storage anomalies

CRUNCEP Climatic Research Unit, National Centers

for Environment Prediction

GLDAS Global Land Data Assimilation System

GPCC Global Precipitation Climatology Centre
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GRACE Gravity Recovery and Climate Experiment

GWS Groundwater storage

GWSA Groundwater storage anomalies

JPL Jet Propulsion Laboratory

NDVI Normalized difference vegetation index

SGI Standardized groundwater index

SMS Soil moisture storage

SMSA Soil moisture storage anomalies

SPI Standardized precipitation index

SWE Snow water equivalent

SWEA Snow water equivalent anomalies

SWS Surface water storage

SWSA Surface water storage anomalies

TRIP Total runoff integrating pathway

TWS Terrestrial water storage

TWSA Terrestrial water storage anomalies

TWSC Terrestrial water storage change

VIC Variable infiltration capacity
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