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A B S T R A C T

Changes of global terrestrial water storage (TWS) retrieved from the Gravity Recovery and Climate Experiment
(GRACE) satellite mission have been extensively evaluated in previous studies. However, natural drivers and
their relative contributions to global TWS changes (TWSC) are still poorly understood. In this study, based on
two global precipitation (P) datasets, three global evapotranspiration (ET) datasets, and one global runoff (R)
dataset, the responses of TWSC to the three major water fluxes, P, ET, and R, were comprehensively examined
for 168 river basins. In addition, by using hierarchical partitioning (HP) analysis, the corresponding relative
contributions (RC) of P, ET, and R to TWSC were quantified. The results showed that for the period Jan.
2003–Dec. 2011, significant increases in terrestrial water storage anomalies (TWSA) were observed over 49
basins, whereas 42 basins presented significant decreases in TWSA. A robust positive relationship between P and
TWSC was observed in low-latitude basins, but strong negative relationships of TWSC with ET and R were
identified in mid- and high-latitude basins. Averaging the degree of explanation of 168 basins for all P–ET–R
combinations, we found that three independent variables explained an average of 61.4% of TWSC. The corre-
sponding RC of P, ET, and R were 42.6%, 43.2% and 4.2%, respectively. In spatial terms, a larger contribution of
P to TWSC was found in low-latitude basins, and larger contributions of ET and R were identified for mid-and
high-latitude basins. The findings of this study were important for improving our understanding of global TWSC
responses to climate change.

1. Introduction

Terrestrial water storage (TWS) reflects all types of water stored on
continents, including surface water, soil water, glaciers, and ground-
water etc. (Pokhrel et al., 2012a; Tregoning et al., 2012; Yun et al.,
2017). Variations in TWS have large impacts on terrestrial ecosystems,
human beings, and even the sea level (Deng and Chen, 2016). Climate
change and human activities have changed both the magnitude and
spatial distribution of TWS (Pokhrel et al., 2012b). TWS monitoring and
the investigation of its attributes are therefore crucial for water re-
source management and sustainable utilization.

Observations made by the Gravity Recovery and Climate
Experiment (GRACE) satellite mission have provided integrated and
accurate measurements in global TWS anomalies since April 2002
(Tapley et al., 2004a,b). By this dataset, global and regional TWS
changes (TWSC) and its relationships with various climatic variables
have been investigated. For example, Based on GRACE data and model

output for 30 basins, Felfelani et al. (2017) investigated the component
contribution ratios of snow water, surface water and subsurface water
to TWSC. Asoka et al. (2017) explored features of groundwater storage
changes in India and highlighted the dominant influence of monsoon
precipitation. Similar studies have also been conducted in Africa to
determine natural and anthropogenic influences on TWSC (Ahmed
et al., 2014). Strong anthropogenic influences (Tang et al., 2013) and
the impacts of climate extremes (flood and drought) on TWSC have also
been evaluated in depth (Khandu et al., 2016, 2015; Leblanc et al.,
2009; Long et al., 2013). However, a global examination of drivers and
their contributions to TWSC is still lacked.

Precipitation (P), as the main input flux of terrestrial water, together
with evapotranspiration (ET) and runoff (R), as two main output fluxes,
play key roles in the global water cycles (Oki and Kanae, 2006; Thomas,
2006). Ignoring anthropogenic influences, these three hydrological
fluxes theoretically dominant global TWSC (Rodell et al., 2004; Syed
et al., 2008). Some studies have attempted to reveal their relationships
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with TWSC at various scales. Syed et al. (2008) evaluated the temporal
and spatial characteristics of Global Land Data Assimilation System
(GLDAS) based TWSC and explored the relationship of P, ET and R on
GLDAS based TWSC. They found that the positive correlation between P
and TWSC occurred in the low latitude, and the relationships of ET, R
and TWSC were negative in the middle and high latitude, respectively.
Mo et al. (2016) explored the temporal variation of GRACE based TWSC
in China, and suggested that changes in P, ET and R contribute 46%,
41% and 32% to TWSC from 2003 to 2013, respectively. Soni and Syed
(2015) evaluated the relationship of the hydrologic flux and TWSC
variation over the four river basins (Ganga, Godavari, Krishna and
Mahanadi basins) in India. They found that the P minus ET played an
important role in the TWSC variation. After considering the flux in-
dividually, they found that P dominated the TWSC over the basins.
Currents studies either qualitatively investigated the relationships of
TWSC with hydrological fluxes at global scale, or quantitatively de-
termined their relationships at regional or basin scale. Few of these
studies have quantified the relative contributions of hydrological fluxes
to TWSC at a global scale, which is critical for understanding TWSC
under a changing climate.

The aims of this study are to examine the responses of TWSC to
precipitation (P), evapotranspiration (ET), and runoff (R) in the global
168 major river basins and to quantify the relative contributions of P,
ET, and R to TWSC in each basin based on hierarchical partitioning
(HP) analysis. To reduce the uncertainties associated with datasets, two
P datasets, three ET datasets, and one observed R dataset were analyzed
here, as listed in Table 1. The performances of different combinations of
P–ET–R datasets in explaining TWSC were also evaluated and com-
pared.

2. Materials and methods

2.1. Study regions

In this study, 168 major river basins, covering 66×106 km2 of
global continents, were selected here for analysis. According to Scanlon
et al. (2017), the criteria for basin selection are that 1) basin area
is> 40,000 km2 and 2) basin radius is> 200 km. The digital map of
the 168 river basins was obtained from the Global Runoff Data Centre
(GRDC; http://grdc.bafg.de) (Fig. 1). In addition, following the aridity
classification of the United Nations Environment Programme, the ar-
idity of each basin was determined by calculating the ratio of 30 yr
(1982–2011) mean P and mean potential evapotranspiration (PET)
(Feng and Fu, 2013) (Fig. 1). The P and PET datasets were obtained
from the Climate Research Union (CRU). PET was calculated by the
Penman Equation (Saylor, 1992).

2.2. Data

2.2.1. GRACE data
The newly released GRACE level–2 Mascon solutions produced by

NASA’s Jet Propulsion Laboratory (JPL) and the Center for Space
Research (CSR) at the University of Texas were used here to estimate
the monthly TWS anomalies (TWSA). The CSR Mascon solution, cal-
culated on equal–area geodesic grids of about 120 km (1° at the
equator), is processed by constraining the original GRACE level–1 data
through the Tikhonov regularization method that effectively depresses
the north-south stripe errors (Save et al., 2016), and is presented on
0.5°× 0.5° grids. The JPL Mascon data are constrained by both GRACE
data and a priori information obtained from the near-global geophysical
models, obtaining the same effect of suppressing corresponding errors
(Watkins et al., 2015). Using downscaling factors calculated by the
Community Land Model (CLM ver. 4.0), the coarse 3°× 3° JPL Mascon
data is then downscaled to 1°× 1° and resampled to 0.5°× 0.5°. De-
tailed descriptions of approaches to processing CSR and JPL Mascon
products can be found in studies by Watkins et al. (2015) and Save et al.
(2016). Here, the monthly TWSA series from Jan. 2003 to Dec. 2011
was averaged from JPL Mascon and CSR Mascon. Missing records for
several months were replaced by averaging the values of adjacent
months (Andrew et al., 2017; Long et al., 2015; Mo et al., 2016).

2.2.2. Precipitation
Two monthly P datasets were used for analysis, obtained from the

Climatic Research Unit (CRU) (http://data.ceda.ac.uk//badc/cru/)
Time–Series Version 4.00 (defined as PCRU) and the Global Precipitation
Climatology Centre (GPCC) (https://www.esrl.noaa.gov/psd/data/
gridded/data.gpcc.html) (defined as PGPCC), respectively. The PCRU
dataset provides global 0.5° month-by-month precipitation data for the
period 1901–2014 (Harris et al., 2014). The 0.5° PGPCC dataset during
1901–2013 was produced by compiling monthly precipitation ob-
servations from more than 70,000 stations across the world (Schneider
et al., 2014).

2.2.3. Evapotranspiration
In situ ET observations can be obtained only from individual sta-

tions or regional studies. Therefore, large–scale ET investigations still
rely on estimations from satellite observations or simulations from land
surface models. In this study, ET of river basins was derived from three
datasets: (1) the Moderate Resolution Imaging Spectroradiometer
(MODIS) ET product (MOD16A2) (http://files.ntsg.umt.edu/data/
NTSG_Products/MOD16/), (2) ET estimations produced by Jung et al.
(2009) based on in–situ FLUXNET observations (https://www.bgcjena.
mpg.de/geodb/projects/FileDetails.php), and (3) ET products

Table 1
Datasets used in this study.

Variables Product Temporal resolution Spatial resolution Periods

Terrestrial Water Storage (TWS) GRACE RL05 Mascon Solutions (CSR) Monthly 0.5° Apr. 2002–Jun. 2017
GRACE RL05 Mascon Solutions (JPL) Monthly 0.5° Apr. 2002–Jun. 2016

Soil moisture storage (SMS) Global Land Data Assimilation System Monthly 1° 1979–2019
Canopy water storage (CWS) Monthly 1° 1979–2019
Snow water equivalent (SWE) Monthly 1° 1979–2019
Surface water storage (SWS) Monthly 1° 1979–2019

Precipitation (P) CRU time series, TS 4.00 (PCRU) Monthly 0.5° 1901–2014
Global Precipitation Climatology Centre (PGPCC) Monthly 0.5° 1901–2013

Evapotranspiration (ET) MOD16A2(ETMODIS) Monthly 0.5° 2000–2014
ETJung Monthly 0.5° 1982–2011
Global Land Data Assimilation System (ETGLDAS) Monthly 1° 1979–2019

PET CRU time series, TS 4.00 Monthly 0.5° 1901–2014

Runoff Dai (2016) Monthly Basin scale 1901–2014

Global basins database GRDC Shape files
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simulated by the Noah, VIC, CLM and Mosaic models, with forcing by
GLDAS 1.0 (https://hydro1.gesdisc.eosdis.nasa.gov/data/GLDAS/).
The three ET products are identified using the following subscripts:
ETMODIS, ETJung, and ETGLDAS.

The ETMODIS product with a spatial resolution of 0.5° was estimated
using the Penman–Monteith equation (Mu et al., 2011), with inputs
from MODIS retrievals, and provides global monthly ET values from
2000 to 2014. This product has been widely used in research on land
surface ecological and hydrological processes (Luus et al., 2013; Mishra
et al., 2015). The global 0.5° ETJung product covering the period 1982 to
2011 was simulated through a machine learning method, the model
tree ensemble, which is trained with global in-situ FLUXNET observa-
tions (Jung et al., 2009). Based on this dataset, Jung et al. (2010) in-
vestigated the global trend and attributes of ET.

GLDAS provides monthly ET simulations from 1979 to present. The
global 1° ETGLDAS data were averaged from outputs of Noah, VIC, CLM
and Mosaic models, covering the period 2003 to 2011. The accuracy of
the ETGLDAS has been validated by several studies. For example, Khan
et al. (2018) evaluated the uncertainties in ET based on GLEAM,
GLDAS, and MOD16. They found that the three products exhibited
reasonable accuracy compared with in–situ actual evapotranspiration
within Asia. Rodell et al. (2004) compared global ET datasets by clas-
sifying them into four categories: (1) diagnostic datasets, (2) LSM da-
tasets, (3) reanalysis datasets, and (4) IPCC AR4 datasets. The results
revealed that the patterns of mean values are highly congruent across
all categories.

2.2.4. Runoff
The long-term observed runoff data were obtained from GRDC. As

the majority of basins suffer some proportion of missing data, the
simple method proposed by Dai (2016) was used to fill data gaps.
Correlations were firstly calculated between observed runoff and pre-
cipitation, model-simulated runoff, and the Palmer Drought Severity
Index. Whichever showed the highest correlation coefficient was then
used to fill gaps in the observed runoff data using linear regression. In
total, runoff data for 168 basins were available for the study period
(Jan. 2003–Dec. 2011) (Ozdogan et al., 2010; Sneeuw et al., 2014).

Considering the data availability for all datasets, the period of Jan.
2003–Dec. 2011 was selected for analysis in this study.

2.3. Methods

2.3.1. Calculation of TWSC
The water balance equation in a given basin can be expressed as

follows:

∑ ∑ ∑= − −
− − −

ds
dt

P ET R
t 1

t

t 1

t

t 1

t

(1)

where s is total water storage, ds
dt

is TWSC for a specific period (t), P is
precipitation, ET is actual evapotranspiration, and R is runoff.
According to Eq. (1), it is clear that TWSC is determined by changes in
P, ET, and R. For comparison, TWSC was also calculated by water
balance equation here (TWSCP-ET-R).

TWSA refers to the residual storage at a given time with respect to
the storage at a reference time (Rodell et al., 2009). In addition to the
GRACE based TWSA, the performance of GLDAS based TWSA was also
investigated in this study. The GLDAS based TWSA was calculated as
the sum of the anomalies of individual components, such as Canopy
water storage anomalies (CWSA), Soil moisture storage anomalies
(SMSA), Snow water equivalent anomalies (SWEA) and Surface water
storage anomalies (SWSA), which were determined as the difference of
Canopy water storage (CWS), Soil moisture storage (SMS), Snow water
equivalent (SWE) and Surface water storage (SWS) and the corre-
sponding the average of CWS, SMS, SWE and SWS for the period Jan-
uary 2003 to December 2011, respectively.

The difference of TWSA at the two joint time is named as TWSC
(Moiwo et al., 2012, 2011). Here, the double–difference derivation of
GRACE based TWSA and GLDAS based TWSA were used to estimate
TWSC derived from GRACE and GLDAS based TWSC at a monthly scale
(cm/month) (Long et al., 2014), respectively, as follows:

= ≈ ≈
+ − −TWSC ds

dt
dTWSA

dt
TWSA(t 1) TWSA(t 1)

2Δt (2)

2.3.2. Trend analysis
As a common non-parametric test, the Mann–Kendall rank-based

test is used here to detect trends for TWSC time series (Humphrey et al.,
2016). This method, proposed by Mann (1945) and improved by
Kendall (1975), has frequently been used in trend analysis of hydro-
logical and meteorological variables (Aziz and Burn, 2006; Burn and
Elnur, 2002; Gocic and Trajkovic, 2013). The significance of TWSC
trends was evaluated at p < 0.05.

2.3.3. Partial correlation analysis and autocorrelation test
The response of TWSC to P, ET, and R was examined by partial

correlation analysis, which excludes the influence of other factors on
correlations between two variables. The significance of correlations was
evaluated at p < 0.05. Before running the correlation analysis,
Durbin–Watson statistics (Durbin and Watson, 1971) were used to test
for temporal autocorrelation in the P, ET, R, and TWSC time series, and
then the first-order difference method was applied to eliminate

e

a

d

b

f

Climate
Arid
Semi-arid
Sub-humid
Humid

c

Fig. 1. Distribution of the selected river basins and corresponding climate. a–f indicate the basins selected as case studies (a, Amazon; b, Congo; c, Lena; d, Mississippi
River; e, Yangtze River; f, Murray).
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autocorrelations (Anderson, 1942).

2.3.4. Hierarchical partitioning analysis
HP analysis proposed by Chevan and Sutherland (1991) was used

here to quantify the relative contributions of P, ET, and R on TWSC.
Compared to common methods for determining variable importance
using a single-model, HP measures the importance of each independent
variable with respect to the dependent variable as a percentage con-
tribution to the goodness-of-fit of the multivariate linear regression
model. Hence, it is suggested to provide a robust assessment of variable
importance and can effectively overcome the collinearity problem ex-
isting among two or more explanatory variables. The theory of HP can
be expressed by the following equation (Chevan and Sutherland, 1991):

∑ ∑ ∑= +
= = =

r I J
b 1

N

b
b 1

N

b
b 1

N

b
(3)

where r is the goodness-of-fit between dependent and independent
variables in regression analysis; I and J are the independent and joint
components of r, respectively; and N is the number of independent
variables. In regression analysis, for any independent variable such as
m, rm= Im+ Jm, Im refers to that part of the percentage of the degree of
fitting of m to dependent variables, whereas Jm refers to the remaining
percentage of the degree of fitting of m to other independent variables
(Chevan and Sutherland, 1991). The HP analysis was carried out with R
software. As two P datasets and three ET datasets were available, HP
analysis was performed between TWSC and six different P–ET–R com-
binations.

2.3.5. Estimation of uncertainties
TWSA errors in the JPL dataset can be attributed to measurement

errors and leakage errors, which have been provided in associated
products. Errors in the CSR dataset are considered to be the TWSA re-
siduals after the long–term, annual, and semiannual trends have been
removed from the original signal (Scanlon et al., 2017). Standard linear
least–squares regression was applied to decompose the long–term, an-
nual, and semiannual trends from the original signal, details of which
can be found in Wahr et al. (2006) and Hirsch and Slack (1984). The
uncertainty in TWSC is calculated from TWSA according to the error
propagation law in Eq. (1) (Rodell et al., 2004). Details about estimates
of uncertainties can be found in Wahr et al. (2006) and Wiese et al.
(2016). Uncertainties in the three ET datasets, two P datasets, and
TWSC data from two GRACE products were estimated as the standard
deviations (Longuevergne et al., 2010; Pan et al., 2017; Yang et al.,
2015).

3. Results

3.1. Response of TWSC to precipitation, evapotranspiration and runoff

Fig. 2 shows the trend in TWSA variations for the period of Jan.
2003–Dec. 2011 for 168 river basins. A total of 49 basins (p < 0.05)
shown significant increasing trends, including the Yangtze, Mississippi
and Yenisei basins, etc. In contrast, significant decreases in TWSA
(p < 0.05) were observed in 42 basins, such as the Yellow River,
Ganges and Indus basins. This pattern was similar to that reported by,
Rodell et al. (2018), Long et al. (2017), Reager et al. (2016) and
Scanlon et al. (2016), etc. In addition, it was reasonably consistent with
some regional-scale investigations (Ahmed et al., 2014; Asoka et al.,
2017; Tang et al., 2013).

Then, the responses of TWSC to P, ET and R were determined using
partial correlation analysis. Before this analysis, the temporal auto-
correlation in the time series of TWSC, P, ET, and R was first tested.
Significant first-order auto-correlations were observed for all time
series, indicating potential impacts on the results of correlation ana-
lysis. After eliminating auto-correlations by the first-order difference

method, partial correlations between TWSC, P, ET, and R for the period
Jan. 2003–Dec. 2011 were calculated basin by basin. The distributions
of correlation coefficients between TWSC and P presented similar pat-
terns with different P-ET-R combinations (Figs. 3a, S1–S3). Consistent
with Syed et al. (2008), a general positive relationship was observed
between TWSC and P for most basins. Most basins in low latitudes
showed strong positive correlations, including the Amazon, Congo, and
Nile basins, etc. Weaker relationships were observed in mid-latitude
and high-latitude basins. The mean partial correlation coefficient of all
TWSC–P combinations for all the basins was 0.523 ± 0.024.

Significant negative correlations between TWSC and ET were shown
in most mid-and high-latitude basins, especially for the Northern
America (Figs. 3b, S1–S3), such as the Mississippi and Yenisei basins.
However, in the lower–latitude basins, weak positive relationships were
observed, such as in the Amazon basin and Congo basin, etc. The
average correlation coefficient between TWSC and the three ET datasets
for the basins was −0.401 ± 0.043. A general negative relationship
between TWSC and R was observed over most basins, and strong ne-
gative relationships were identified in the northern high latitudes (Figs.
3c, S1–S3). Interestingly, we also found that negative correlation
coefficients between TWSC and R in basins of northern Asia are larger
than those in Northern America. According to the water balance
equation (Eq.1), a negative relationship between TWSC and R can be
expected. However, positive relationships were also observed in some
low latitude basins, such as the Congo basin, Murray basin, Indus basin
and Ganges basin. Although this phenomenon has been reported by
previous studies (Frappart et al., 2013; Soni and Syed, 2015), few of
them had provided the reasons. We speculated this abnormal TWSC-R
relationship should be induced by 1) human associated activities, such
as irrigation practices, construction of channels and dams, etc., which
disrupt water balance within basins; 2) influences from other water
fluxes, such as snowmelt, which cause the covariation of TWSC and R;
3) uncertainties caused by datasets, for example, PCRU-ETJung-R com-
bination suggested a higher stronger positive relationship for TWSC and
R than that of PGPCC-ETMODIS-R combination.

To test the potential uncertainty of correlation analysis caused by
the choice of lengths of time sequence, we also performed the partial
correlation analysis for the periods Jan. 2003–Dec. 2009 (Figs. S4–S6
and Table S1) and Jan. 2005–Dec. 2011 (Figs. S7–S9; and Table S1).
Although these periods differ, comparable correlation coefficients and
patterns were obtained for most of the basins, confirming the basic
relationships of TWSC with P, ET, and R established in this study.

3.2. The relative contributions of precipitation, evapotranspiration, and
runoff to TWSC

Based on the HP analysis, the relative contributions of P, ET, and R
to TWSC were determined for each basin for different P–ET–R dataset
combinations. Table 2 lists all values of averaged explained variance
(r2) for multivariate regression models of different P–ET–R combina-
tions as well as the corresponding independent contributions of P, ET,
and R to TWSC. In spite of the marked differences between the data
sources, the six models built from different P–ET–R combinations pre-
sent comparable values of r2, approximately 0.614 ± 0.024, sug-
gesting the relatively strong performance of models in explaining
TWSC. The maximum r2 value (0.638) was given by the model built
between TWSC and PGPCC–ETJung–R combination. In addition, the
spatial distributions of r2 for each model show similar patterns (Figs. 4
and S10). The higher values of r2 were concentrated in several low-
latitude basins, such as the Amazon, Nile, Parana, Yangtze, and Congo
river basins, whereas relatively low values of r2 were observed in high-
latitude basins, such as the Mississippi basin and Lena basin, etc.

In addition, the r2 and the relative contribution of P, ET and R to
GLDAS based TWSC were also quantified (Figs. S14–S17). The spatial
pattern of the degree of explanations of P, ET, and R to GLDAS based
TWSC (Fig. S14) were similar to that of TWSC derived from GRACE
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Fig. 2. The trend of TWSA variations for the 168 analyzed basins.
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Fig. 3. Partial correlations of TWSC with P (a), ETMODIS (b), and R (c). Correlation coefficient of± 0.189 indicates a significance level of 0.05.
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(Figs. 4 and S10), but the averaged degree of explanation
(r2= 0.631 ± 0.05) was slightly higher than the later over global 168
basins. This is not surprising because GLDAS based TWSC is estimated
strictly following the water balance equation, and incorporates climate
and vegetation information overlapping with datasets used in this
study. After differencing the r2 of GRACE based TWSC and GLDAS
based TWSC (Fig. S18), we also found that the r2 of GLDAS based TWSC
was underestimated in some basins, such as the Congo basin, Indus
basin, Ganges basin and the northern of Mississippi basin, etc. It may be
related to the absence of ground water storage in GLDAS LSMs (Scanlon
et al., 2019; Syed et al., 2008) or the uncertainties of GLDAS caused by
deficits of LSMs or uncertainties of climate forcing data (Syed et al.,
2008).

For all 168 basins, the average relative contributions of all P-ET-R
combination to GRACE based TWSC were 42.6% ± 2.81%,
43.2% ± 2.7%, and 14.2% ± 1.9%, respectively. The similar spatial
patterns were shown for different P-ET-R combinations (Figs. 5,
S11–S13). Taking PCRU-ETMODIS-R as an example (Fig. 5), we found that
P has a larger contribution in low-latitude basins, especially in tropical
basins, such as the Amazon and Congo river basins. In contrast, a larger
contribution of ET was identified in mid and high latitudes, such as for
the Mississippi, Mackenzie, Yenisei, and Lena river basins. Compared
with P and ET, R has a smaller contribution to TWSC. A larger con-
tribution of R was identified in mid and high latitudes than in low la-
titudes, especially for the Yenisei, Lena, and Ob basins. An interesting
phenomenon was that although larger contributions of ET and R to
TWSC are observed in mid and high latitudes than in low latitudes, the
largest contributions of ET are observed in Northern America and in
Europe, but for R in northern Asia.

HP analysis was also performed for the periods Jan. 2003–Dec. 2009
(Table S2, Figs. S19–S22) and Jan. 2005–Dec. 2011 (Table S3, Figs.
S23–S26). No apparent differences were observed, either for the re-
lative contribution of P, ET, and R to TWSC, or in their spatial patterns,
compared with the results for the period Jan. 2003–Dec. 2011, sug-
gesting few influences of the choice of study period on our results.

3.3. The relative contributions of precipitation, evapotranspiration, and
runoff to TWSC for different climatic regions

We further investigated the relative contributions of P, ET, and R to
TWSC in order to explore their impacts under different climate regions
(Table S4, Figs. 6 and S27). All basins were classified into 5 group ac-
cording their corresponding aridity index, such as the arid basins, semi-
arid basins, sub-humid basins, humid basins in the mid- and high-lati-
tudes (more than 30° or 30° S) and humid basins in the low latitudes
(30° S to 30° N). The largest r2 values of regression models between
TWSC and different P–ET–R combinations were found for basins in sub-
humid regions, indicating a high degree of explanation of P, ET, and R
to TWSC in these regions. The lowest r2 values are found in humid
basins in mid- and high-latitudes. Except for humid regions in low la-
titudes where the relative contribution of P was lower than that of ET,
the average relative contribution of P, ET, and R can be arrayed as
P > ET > R. ET in humid regions was limited mainly by energy rather
than by water conditions (McVicar et al., 2012; Rodell et al., 2011; Troy
et al., 2011). This may explain the observed larger contribution of ET
compared with P in humid basins in low latitudes with high tempera-
ture and solar radiation.

Averaging all P–ET–R combinations (Table S4, the largest con-
tribution of P to TWSC was observed in the humid basins of the middle
and high latitude, and the smallest contribution was found in arid ba-
sins. ET has the largest contribution to TWSC in humid basins of the low
latitudes, but presents the lowest contribution in humid basins of the
middle and high latitude. The contribution from R is relatively small,
and larger value was observed in arid basins.

Shown in the Fig. S28 was the r2 and the relative contributions of P,
ET and R to TWSC in individual basin for different climate areas, re-
spectively. We found that the r2 and the relative contributions of P, ET
and R to TWSC for individual basin were generally consist with the
average for different climate areas.

3.4. Relative contributions of precipitation and evapotranspiration to TWSC
in some typical basins

To confirm the above findings, we selected six river basins (the
Amazon basin, Congo basin, Lena basin, Mississippi river basin, Yangtze
basin, and Murray basin) (Fig. 1) to further investigate the relationship
between TWSC, P, ET, and R. Fig. 7a-f shows the seasonal cycle of
TWSC, P, ET, and R, averaged from all datasets in the six basins. The
water balance based TWSCP-ET-R was also calculated and compared with
GRACE based TWSC. We observed a general coherent seasonal cycle
between these two TWSC curves for all the selected basins, suggesting a
basic reliability of our result. However, there are also some discernable
differences in the variation of TWSC amplitude in some basins, such as
for the Lena basin and Murray basin, etc. The differences can be due to

Table 2
Results of HP analysis with different combinations of P, ET and R datasets.

P-ET-R
combinations

r2 RC of P (%) RC of ET (%) RC of R (%)

PCRU-ETMODIS-R 0.620 42.7 40.8 16.5
PCRU-ETJung-R 0.637 38.9 46.9 13.3
PCRU-ETGLDAS-R 0.589 45.4 42.3 12.3
PGPCC-ETMODIS-R 0.620 43.3 40.5 16.2
PGPCC-ETJung-R 0.638 39.7 46.2 14.1
PGPCC-ETGLDAS-R 0.580 45.6 42.3 12.1
Average 0.614 ± 0.024 42.6 ± 2.81 43.2 ± 2.7 14.2 ± 1.9

PCRU ETMODIS-
(%)

-R

Fig. 4. The global distribution of r2 of multivariate regression models in global basins based on PCRU–ETMODIS–R dataset combinations.
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several aspects, such as the influence of snowmelt in the Lena basin
(Dettinger and Diaz, 2000; Hirschi et al., 2006; Velicogna et al., 2012),
the uncertainties in datasets used for the TWSCP-ET-R calculation (Soni
and Syed, 2015; Syed et al., 2009), etc.

In the Amazon basin (Fig. 7a), according to HP analysis, the relative
contributions to GRACE based TWSC were 77.7% ± 2.79% for P,
18.1% ± 3.0% for R, and 4.2% ± 3.1% for ET. This can be confirmed
by the higher consistency of the seasonal cycle of TWSC and P, the
lower magnitudes of the seasonal cycle for R, and the negligible sea-
sonal change observed for ET. In the Congo basin (Fig. 7b), the seasonal
patterns of TWSC, P, and ET are similar, but TWSC seems to be driven
mainly by P because of greater magnitude of P. This is consistent with
the result of the larger contribution of P to TWSC (71.9% ± 10%)
compared with those of ET to TWSC (16.4% ± 4.8%) or of R to TWSC
(11.7% ± 5.3%). In the Lena basin (Fig. 7c), we observed an opposite
seasonal cycle between TWSC and P/ET/R. In light of previous in-
vestigations (Dettinger and Diaz, 2000; Hirschi et al., 2006; Velicogna
et al., 2012), the season cycle of TWSC in the Lena basin is highly relied
on the runoff peak in the May or June, which was mostly related to the

(a)

R

(b)

(c)

PCRU (%)

ETMODIS(%)

(%)

Fig. 5. The global distribution of relative contributions of PCRU, ETMODIS, and R in explaining TWSC.

Arid Semi-arid Sub-humid Humid-L Humid-M&H
0

20

40

60

80

100

R
2

an
d

R
C

of
P,

ET
an

d
R

(%
)

Basin number
r2

ET
P
R

0

20

40

60

80

100

B
as

in
nu

m
be

r

Fig. 6. Average r2 values and the corresponding relative contributions of P, ET,
and R to TWSC in basins under different climate regions. The black bars denote
the uncertainties. In addition, Humid-L refers to humid basins in the low lati-
tude areas (30° S to 30° N) and Humid-M&H refers to humid basins in the
middle and high latitude (30–90° N and 30–90°S).
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snowmelt and runoff. The relative contributions of P, ET and R are
17.1% ± 1.06%, 46.4% ± 1.67% and 36.6% ± 2.1% in this basin,
respectively. For Mississippi river basin (Fig. 7d), the lowest value for
TWSC corresponding to the highest value for ET occurred in July, im-
plying a dominate influence of ET on seasonal TWSC. This can be
confirmed by a 84.3% ± 1.1% contribution of ET on TWSC concluded
by this study. Kebede et al. (2014) study suggested that, in this basin,
70% of the yearly rainfall occurred before the growing season, and
groundwater extraction for irrigation is needed to meet the crop water
need. Irrigation related ET increase may cause the lower TWSC in the
summer. In the Yangtze basin (Fig. 7e), TWSC is controlled mainly by P,
with a contribution of 69.0% ± 1.2%. In the Murray basin (Figs. 7f,
S29), the relative contributions of P, ET, and R were 37.9% ± 6.1%,

33.9% ± 16.7% and 29.0% ± 18.2%, respectively. The peak of
GRACE based TWSC occurred in June, corresponding to the lowest ET
and a peak of P. There seems to be no seasonal cycle of R. This is be-
cause, compared with P and ET, the annual R is very small (0.62 cm/yr)
(Hirschi et al., 2006) (Fig. S29). The relative high contribution of R
(29.0% ± 18.2%) may be caused by the uncertainty in datasets. We
found that different combinations of P-ET-R datasets generate a wide
range of values of R’s contribution to TWSC (Table S4).

4. Discussion and conclusions

We comprehensively investigated the trends of TWSA and the re-
lationships of TWSC with P, ET, and R for the period of Jan. 2003 to
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Dec. 2011 for 168 major river basins in this study. The spatial patterns
of trends in TWSA showed good agreement with investigations at global
and regional scales (Ahmed et al., 2014; Hassan and Jin, 2016; Mo
et al., 2016; Scanlon et al., 2017). Consistent with the results of pre-
vious investigations, the TWSA showed the increased trend in the
Amazon basin (Chen et al., 2010), in Africa basins such as the Zambezi
and Niger (Forootan et al., 2014; Hassan and Jin, 2016; Ramillien et al.,
2014), and in Australia basins such as the Lake Eyre and Murray basins
(Fasullo et al., 2013). The TWSA increases should be mainly attributed
to the increases of precipitation (Han et al., 2019; Long et al., 2017;
Reager et al., 2016). In addition, human-induced surface water storage
change is also found to promote TWS (Long et al., 2017). For example,
the water impoundment of the Three Gorges Reservoir was suggested to
increase TWS in the central Yangtze river basin (Long et al., 2015).
Decreases in TWSA were observed for 42 basins. Some substantial re-
ductions in TWSA correspond well with regional studies of the
groundwater depletion due to the water demand through pumping
exceed the water supply through recharge (Scanlon et al., 2012), such
as in the North China Plain (Feng et al., 2013; Huang et al., 2015) and
the Indus basin in northern India (Chen et al., 2014; Long et al., 2016;
Rodell et al., 2009; Tiwari et al., 2009), which indicated the strong
impacts of anthropogenic activities. Furthermore, the melting of con-
tinuous perennial snow and glacier due to climate warming is also an
important driver of TWSA decreases (Chen et al., 2017; Henn et al.,
2018; Long et al., 2017). For example, Chen et al. (2017) suggested that
the depletion of TWSA for the period 2003–2014 in the upper Brah-
maputra River basin may be due to shrinking of the snow and glacier.
Similar conditions were also found in some basins in the northern
America, such as the Yukon basin and Mackenzie River basin (Jacob
et al., 2012; Long et al., 2017).

According to the water balance equation, TWSC should be de-
termined by changes in P, ET, and R, disregarding any disturbances by
human activities. P, as the only input flux to the terrestrial water sto-
rage, shows a generally positive relationship to TWSC. The influence of
P on TWSC could be further attributed to large–scale atmospheric cir-
culation (Reager et al., 2016). For example, a robust positive TWSC–P
relationship has been found in ENSO–impacted areas (Fasullo et al.,
2013; Sun et al., 2016), such as the Murray basin. ET and R act as a
negative flux in the terrestrial water balance, show a negative impact
on TWSC, with the most robust impacts being found in mid-and high-
latitude basins, such as the Mississippi, Lena and Yenisei basins. These
findings are roughly consistent with the results of a global investigation
performed by Syed et al. (2008), which explored the drivers of GLDAS
based TWSC. Their study suggested that TWSC in high latitudes is
forced by snowmelt–runoff, while P dominates TWSC in the tropics, and
ET drives TWSC in mid-latitude basins. In contrast to their study, we
observed less positive relationships between TWSC and ET and R par-
ticularly in low latitudes, which seems to be more reasonable according
water balance equation, implying a higher uncertainty of GLDAS based
TWSC than that of observed TWSC.

Simple correlation analysis could not represent the true contribu-
tions of hydrological fluxes to TWSC. Hence, more importantly, we
quantified the relative contributions of P, ET, and R to TWSC using
multivariate regression models and HP analysis. Averaging the degree
of explanation of 168 basins for all P–ET–R combinations, we found
that P, ET, and R explained more than 60% of TWSC, suggesting the
dominant influence of the hydrological fluxes to TWSC. This was sup-
ported by Reager et al. (2016), which suggested that long–term or
large–scale TWSC is controlled mainly by natural factors. In addition,
we considered that the remaining (unexplained) may be due to the
influences of groundwater withdrawals, return flow, snowmelt, and
human activities (Döll et al., 2012). Furthermore, we observed a con-
trasting pattern of the r2 between low-and high-latitude basins. The
higher values of r2 are concentrated in several low-latitude basins, such
as the Amazon, Nile, Parana, Yangtze, and Congo river basins, whereas
relatively low values of r2 are observed in high-latitude basins. The

lower r2 in some high-latitude basins, such as Yenisei basin and OB
basin, might be due to the influence of snowmelt on TWSC (Troy et al.,
2011). In addition, some basins, such as the Mississippi basin, experi-
enced strong human activities, and the lower r2 could be attributed to
the groundwater extraction which has not been reflected in the cur-
rently used water budget components (Kebede et al., 2014; Zhang et al.,
2017).

Furthermore, we observed contrasting patterns in the contributions
of P, ET, and R to TWSC between low-and mid-high-latitude basins. In
low-latitude basins, especially the tropical basins, P has a larger con-
tribution to TWSC compared with those of ET and R, whereas in mid-
high-latitude basins, ET and R has a larger contribution compared with
that of P. This pattern is roughly consistent with previous investigations
at basin scales. For example, in the tropical Amazon basin, we observed
a dominant influence of P on TWSC, and lesser contributions of R and
ET, in agreement with the results of Crowley et al. (2008). At the
continental scale, we observed that P dominated TWSC in South
America and Africa, as previously reported by Liu et al. (2006) and
Hassan et al. (2016), respectively.

In particular, our result suggests the largest relative contribution of
ET to TWSC are mainly located in basins in the Northern America, such
as the Mississippi basin, Columbia basin, Mackenzie basin and Yukon
basin, etc. According to previous investigations (Milly and Dunne,
2001; Neal et al., 2002; Walter et al., 2004), in addition to climatolo-
gical dimension, ET change in some basins strongly influenced by the
human activities. For example, in the Mississippi basin, due to the in-
conformity for the period of rainfall and the crops production, irrigation
plays an important role to avoid the crops losses (Kebede et al. (2014).
Irrigation practices through groundwater extraction promote the soil
water content, and thereby enhance the ET (Ozdogan et al., 2010;
Snipes, 2005). This should be the main reason for the large contribution
ET to TWSC in this basin. In addition, relative large contribution of R to
TWSC are mainly found the northern Asia as reported by Hirschi et al.
(2006) and Zhang et al. (2017). Dettinger and Diaz (2000) and Hirschi
et al. (2006) referred that the runoff in the northern Asia, such as the
Lena basin, Yenisei basin and Volga basin, is mainly generated by the
snowmelt.

The results of this study is essential for the understanding of the
natural attributions of TWSC and have implications for forecasting TWS
dynamics under future climate change. It should be noted that un-
certainties still exist. First, multi–sourced datasets of P and ET were
used in this study. Although all P–ET–R combinations showed similar
capabilities for explaining global TWSC, apparent differences were
identified at the scale of climatic regions and basins, indicating the
influences of uncertainties between different datasets. The accuracy of
products for ET is questioned (Khan et al., 2018; Liaqat and Choi,
2017). Second, the GRDC runoff data suffers from serious data missing
in some basins. The reconstructed runoff using a simple linear regres-
sion method should inevitably have some uncertainties. In recent years,
satellite altimetry technique has been developed to retrieve surface
water (Getirana and Peters-Lidard, 2013; Papa et al., 2010; Sneeuw
et al., 2014). For example, Sneeuw et al. (2014) estimated runoff using
an empirical functional relation between water level estimated by sa-
tellite altimetry and the measured runoff at the gauge stations, and
suggested this satellite based method outperformed traditional hydro-
logical and hydro-meteorological approach methods. Therefore, sa-
tellite altimetry can be applied to fill runoff data in our future studies.
Third, we found that P, ET, and R explain only a small proportion of
TWSC in several high-latitude basins, implying the influences of
snowmelt, groundwater, and permafrost thaw, as reported in previous
studies (Döll et al., 2012; Landerer et al., 2010; Syed et al., 2008).
Lastly, the lagged effects of P and ET on TWSC were also ignored. For
example, the lagged response of TWSC to changes in P in the Amazon
basin have been widely reported (Azarderakhsh et al., 2011). These
issues are to be considered in our future investigations.
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