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A B S T R A C T

The changing climate is affecting the frozen soil at an unprecedented rate across the Northern Hemisphere.
However, due to sparse ground measurements, the changes of frozen soil and the environmental controls over
the vast cryosphere are still unclear, such as in the Tibetan Plateau (TP). In this study, a process-based model
solely driven by satellite remote sensing data is employed to investigate the spatiotemporal changes of seasonally
frozen ground and permafrost over the entire TP (~3 million km2) during 2002–2016 at a spatial resolution of
1 km. Comprehensive validations against in situ observations of frozen ground types, mean annual ground
temperature, active layer thickness, soil temperature, and frozen depth at 608 boreholes and 109 meteorological
stations demonstrate an overall satisfactory performance of the model in reproducing the spatial pattern and
temporal evolution of the frozen soil in the region. Spatially, land surface temperature (LST; both in-season and
off-season) primarily controls the frozen ground types and frozen depth, with seasonally frozen ground and
permafrost covering ~56% and ~ 37% of the plateau, respectively. The estimated spatial-averaged annual
maximum soil freeze depth (SFD) is ~1.29 m, and the annual maximum active layer thickness (ALT) of per-
mafrost is ~1.85 m. Temporally, ALT shows an overall increasing trend at an average rate of +3.17 cm yr−1,
while SFD exhibits both decreasing (at ~62% areas) and increasing (at ~38% areas) trends in the region. Again,
LST is found to be the dominant factor that controls the temporal changes in both SFD and ALT while pre-
cipitation (i.e., both rainfall and snowfall) plays an important (especially in more arid areas and regions near the
lower limit of permafrost) but secondary role. Our results demonstrate the advantages of the satellite-based
method in frozen soil simulations over large scales with complex topography and landscape and highlight the
important roles of both temperature and precipitation in shaping the frozen soil patterns on the TP or other cold,
dry regions.

1. Introduction

Frozen soil, including the seasonally frozen ground and permafrost,
occupies more than 50% of the exposed land surface in the Northern
Hemisphere (Zhang et al., 1999). The freezing/thawing processes per-
iodically change the hydrothermal properties of ground soil, which
exert influences on the lower atmosphere (Slater et al., 1998; Cheng
and Wu, 2007), hydrological cycle (Wang, 1990; Wang et al., 2009),

and ecosystem functioning (Grosse et al., 2016). Over the past decades,
climate change, characterized by persistent warming, has incurred large
impacts on the global cryosphere, including the Tibetan Plateau (TP)
(Biskaborn et al., 2019; Cheng and Wu, 2007; Ding et al., 2019). Ob-
servations have indicated considerable degradations of permafrost and
seasonally frozen ground on the TP since the 1980s (Wu and Zhang,
2010; Wu et al., 2015). The degradation of frozen soil is further ac-
companied with other environmental issues, such as the decline of

https://doi.org/10.1016/j.rse.2020.111927
Received 29 October 2019; Received in revised form 28 May 2020; Accepted 29 May 2020

⁎ Corresponding author.
E-mail address: yangdw@tsinghua.edu.cn (D. Yang).

Remote Sensing of Environment 247 (2020) 111927

0034-4257/ © 2020 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2020.111927
https://doi.org/10.1016/j.rse.2020.111927
mailto:yangdw@tsinghua.edu.cn
https://doi.org/10.1016/j.rse.2020.111927
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2020.111927&domain=pdf


water table, the drying of near-surface soil, and the reduction in soil
carbon and nitrogen stocks (Baumann et al., 2009; Zhang et al., 2004;
Zhou et al., 2000). In this light, a better understanding of the spatial
and temporal changes of frozen soil and the driving mechanisms is
imperative to achieve sustainable water and ecosystem management
over the plateau region (Karjalainen et al., 2019).

Due to the harsh environment and complex landscape, in situ ob-
servations of frozen soil on the TP are extremely limited, which pre-
cludes the understanding of frozen soil distributions and changes over
the entire plateau (Wang et al., 2006; Wu and Zhang, 2010; Wu et al.,
2013; Yang et al., 2008). In comparison, satellite remote sensing pro-
vides an unprecedented opportunity to monitor the spatially continuous
land surface information across large geographic extents, which has
been proven to be a useful tool for monitoring frozen soil across the
globe (Brucker et al., 2014; Li et al., 2015; Kim et al., 2017; Obu et al.,
2019; Roy et al., 2015; Rautiainen et al., 2016). Compared with In-
terferometric Synthetic-Aperture Radar (InSAR) that usually has a
coarse temporal resolution (typically longer than 5 d; Bianchini et al.,
2018) and passive microwave remote sensing that often contains a
coarse spatial resolution (typically coarser than 10 km; Lyu et al.,
2018), the thermal-band remote sensing data has both shorter temporal
intervals and finer spatial resolutions (e.g., 1 km and 12 h for MODIS
land surface temperature; LST) that are more appropriate for capturing
fine-scale variations of frozen soil properties in mountainous regions
and has hence attracted increasing research interests in recent years
(Ran and Li, 2019; Zheng et al., 2019). For example, remotely-sensed
LST has been incorporated into statistical/empirical and process-based
models to retrieve frozen soil properties (e.g., ground temperature,
permafrost area, seasonally frozen depth, and active layer thickness) in
many previous studies and obtained reasonable accuracies (Langer
et al., 2013; Obu et al., 2019; Shi et al., 2018; Westermann et al., 2015;
Zou et al., 2017; Yi et al., 2018, 2019; Zheng et al., 2019). Compared
with statistical/empirical methods, which are generally more compu-
tationally efficient, process-based models have a more solid physical
base and are able to simulate key relevant processes (Karjalainen et al.,
2019; Wu et al., 2018). Additionally, process-based models are less
contingent on ground observations for model calibration and thus often
have a better transferability to different regions (e.g., Peng et al. (2017)
vs Gao et al. (2018)).

In a previous study, Zheng et al. (2019) proposed a fully remote
sensing-driven, process-based model for frozen soil simulation (i.e.,
geomorphology based ecohydrological model-remote sensing, GBEHM-
RS) and tested the model in a mountainous region (~105 km2) in the
northeast TP. This study will extend the study of Zheng et al. (2019) to
the entire TP (~106 km2), which features a strong elevation gradient
and expands over multiple climatic (i.e., arid, semi-arid, sub-humid,
and humid) and ecological (i.e., forest, shrubland, grassland, alpine
meadow, and desert) zones. Compared with other remote sensing-based
models developed for the pan-arctic region (e.g., Langer et al., 2013; Yi
et al., 2018), GBEHM-RS is superior in its ability to couple soil water-
heat dynamics (Zheng et al., 2019), which is essential for regions where
soil moisture presents large variations both through time and across
space (Westermann et al., 2016), and might be more suitable for regions
with complex climate and landscape, such as the TP. Additionally,
Zheng et al. (2019) mainly evaluated the performance of GBEHM-RS
over seasonally frozen ground. However, the model performance in
simulating permafrost and temporal frozen soil changes are still not
validated.

In addition to knowledge on the spatial and temporal patterns of
frozen soil, it is also of great importance to understand the driving
factors that lead to these patterns (Karjalainen et al., 2019; Smith and
Riseborough, 2002). In theory, frozen soil conditions are primarily af-
fected by large-scale climatic forcings (i.e., precipitation and tempera-
ture) and mediated by several local factors (e.g., vegetation, topo-
graphy, and soil texture) (Ding et al., 2019; Shur and Jorgenson, 2007;
Wu et al., 2015; Yang et al., 2008; Yin et al., 2017). In terms of the

spatial patterns, temperature and precipitation dominantly control
long-term heat and water distributions that determine the large-scale
distributions of ground thermal regimes (e.g., Westermann et al., 2015),
while local factors add further fine-scale heterogeneities to frozen soil
distribution (Karjalainen et al., 2019). On the one hand, temperature is
directly linked with ground thermal status; on the other hand, pre-
cipitation, both as rainfall (Pliquid) and snowfall (Psolid), impacts on the
soil freezing/thawing processes through changing soil water movement
(Kane et al., 2002; Luthin and Guymon, 1974), changing soil thermal
properties (e.g., phase-change heat, heat capacity, and thermal con-
ductivities; Hinkel et al., 2001; Wen et al., 2014), and mediating the
heat exchange between the land and the atmosphere due to the in-
sulation effect of the snow layer (Hardy et al., 2001; Stieglitz et al.,
2003; Yang et al., 2008; Zhang, 2005), respectively. For temporal
changes, changes in climate conditions are presumably the only factors
that could lead to evident changes in frozen soil (Ran et al., 2018), as
topography and soil texture are generally stable at the climatic time
scale and vegetation often co-varies with climate (Zhong et al., 2010).
Unfortunately, despite its importance for predicting future frozen soil
conditions under climate change, the driving mechanisms underlying
the spatial and temporal dynamics of frozen soil over the TP region is
still largely unknown.

Therefore, the objectives of this study were to (i) apply GBEHM-RS
to simulate frozen soil across the entire TP and comprehensively eval-
uate the model performance in the region, (ii) map the spatial patterns
of frozen soil over the TP and identify the relative importance of re-
levant drivers leading to these patterns, and (iii) examine the temporal
changes of frozen soil over the TP during 2002–2016 and quantify the
contributions of the controlling factors.

2. Study area and data

2.1. Study area

The TP region with an elevation higher than 2000 m a.s.l (see Fig. 1)
is our study area, which locates between 70°–105°E and 25°–40°N and
covers a total area of 3.35 million km2 (including the glaciers and
lakes). The TP has a typical cold and semiarid climate and a complex
landscape (Supplementary Figs. S1 and S2; Lu et al., 2017). From
southeast to northwest, the vegetation type changes from shrub, alpine
meadow/grassland, to alpine steppe/desert (Feng et al., 2019), the
mean annual LST decreases from +15 °C to −11 °C, and the mean
annual precipitation decreases from over 1700 mm to less than 50 mm
(Tong et al., 2014). For precipitation, Pliquid compromises ~60% of the
total precipitation and is mainly concentrated in the southeast region,
whereas Psolid primarily occurs in the mountain ranges as well as
southern and western margins (Supplementary Fig. S1). In addition,
due to the large elevation range (from 2000 m to above 8000 m a.s.l.),
the TP is also characterized as a mountainous frozen soil region with
the most developed permafrost and seasonally frozen soil in the mid-
and low latitudes (Cheng and Wu, 2007).

2.2. Data

2.2.1. Model inputs
Two sets of model input data are used in this study, including sa-

tellite-based climatic forcing and substrate land surface properties. The
satellite-based climatic forcing includes LST, precipitation, cloud frac-
tion, air temperature, relative humidity, and air pressure, which are
taken from three satellite sensors including (i) Moderate Resolution
Imaging Spectroradiometer (MODIS); (ii) Atmospheric Infrared
Sounder (AIRS); and (iii) Tropical Rainfall Measuring Mission (TRMM).
The second model input dataset consists of topography, vegetation
parameter (i.e., normalized difference vegetation index, NDVI), surface
albedo, soil parameters (i.e., bulk density and weighted percent of sand,
clay, soil organic matter, and gravel), and snow cover that describe the
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substrate properties. A detailed description of the datasets is summar-
ized in Table 1 and can be also found in Zheng et al. (2019). All of these
data were resampled to a 1-km spatial resolution using the nearest in-
terpolation method.

2.2.2. Ground-based measurements
Ground-based measurements of LST and precipitation were col-

lected at China Meteorological Administration (CMA) stations from
2002 to 2015, and ground-based observations of downward shortwave
radiation (SWD), downward longwave radiation (LWD), and surface
albedo (α) were collected at Coordinated Enhanced Observing Period
(CEOP) Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau
(CAMP-Tibet) stations from 2002 to 2004. It is worthwhile noting that
for the total 109 CMA stations within the study region (Fig. 1), only 75
of them have LST and precipitation measurements (referred to as the
CMA group 2 stations in Supplementary Fig. S2). At the CMA stations,
LST was measured using glass liquid thermometers at four times per day
(i.e., 2:00 AM/PM and 8:00 AM/PM, local time) (CMA, 2004), and the
average of the four measurements was used to represent daily mean
LST. In comparison, SWD, LWD, and α were measured at a higher fre-
quency (i.e., hourly) at the eight CAMP-Tibet stations, despite frequent
observation gaps. To eliminate the biases caused by incomplete diurnal
observations, only days with 24-h continuous observations were used.
Compared with the ground-based measurements, the satellite-based
LST and precipitation showed reasonable accuracies in the study region
in terms of both spatial and temporal variations, with LST showing a
mean bias (calculated using the Eq. [A1] in Appendix A) of −0.26 °C
and a root-mean-squared error (RMSE; calculated using the Eq. [A2] in

Appendix A) of 4.04 °C, and precipitation having a mean bias of
6.17 mm month−1 and an RMSE of 26.64 mm month−1 (Supplemen-
tary Fig. S3). In terms of SWD, LWD, and α, the satellite data have also
obtained an overall good accuracy (SWD: mean bias of −21 W m−2,
RMSE of 50 W m−2; LWD: mean bias of 5 W m−2, RMSE of 25 W m−2;
α: mean bias of −0.01, RMSE of 0.04) (Supplementary Table S1).

The model performance in frozen soil simulation was evaluated
using in situ measurements of frozen ground types (i.e., the permafrost
and seasonally frozen ground), active layer thickness (ALT), mean an-
nual ground temperature (MAGT), frozen depth (Df), and soil tem-
perature (Tsoil) at different depths below the surface. Measurements of
frozen ground types, ALT, MAGT, and deep-ground Tsoil profiles were
collected from previously published literature (Cao et al., 2019; Jin
et al., 2009, 2011; Liu, 2015; Liu et al., 2015; Luo et al., 2012a, 2012b,
2018; Qiao et al., 2015; Wu and Zhang, 2008; Wu et al., 2010, 2015,
2017; Xie et al., 2012, 2015; Zhang et al., 2004). In total, 608 boreholes
have records of frozen ground types, of which 425 boreholes were lo-
cated on permafrost and 183 boreholes were distributed on seasonally
frozen ground (Fig. 1). On the permafrost, ALT were collected at 76
boreholes located in the eastern plateau (see Supplementary Fig. S4a),
MAGT were measured at 150 permafrost boreholes with an observa-
tional depth of ~10 m (see Supplementary Fig. S4b) and the deep-
ground Tsoil profiles (from the surface to over 40 m deep) were mea-
sured using thermistor strings at four GTN-P boreholes (i.e., Kunlun-
shan, Beiluhe, Liugongqu, and Wuli; Fig. 1). On the seasonally frozen
ground, observations of Df and Tsoil during 2004–2015 were available at
109 CMA stations that are primarily distributed on the eastern plateau
(Fig. 1). The Df was measured using a frost tube, whose outer iron cover

Fig. 1. Locations of the study area and the observational sites. Symbols in red represent seasonally frozen ground and those in black represent permafrost. The China
Meteorological Administration (CMA) meteorological stations are illustrated as solid squares, the Global Terrestrial Network for Permafrost (GTN-P) boreholes are
depicted as solid triangles, Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau (CAMP-Tibet) stations
are represented with solid pentagons, and the solid dots represent borehole measurements from other sources (Cao et al., 2019; Jin et al., 2009, 2011; Liu, 2015; Liu
et al., 2015; Luo et al., 2012a, 2012b, 2018; Qiao et al., 2015; Wu and Zhang, 2008; Wu et al., 2010, 2015, 2017; Xie et al., 2012, 2015; Zhang et al., 2004). The grey
dotted line circles the study area and the background colour depict elevation. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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was anchored underground and the inner rubber tube was filled with
distilled water. The inner tube was manually pulled outside to measure
the Df at 8:00 AM each day (CMA, 2004). The Tsoil was measured at
eight depths (i.e., 0.05, 0.1, 0.15, 0.2, 0.4, 0.8, 1.6, and 3.2 m) using the
thermistors. Similar to that of LST, the Tsoil at the top five depths were
measured four times a day, whereas the Tsoil at three bottom layers
were only measured once a day (at 2:00 PM) (CMA, 2004).

3. Methods

3.1. The GBEHM-RS

The GBEHM-RS is used to simulate the spatial patterns and temporal
changes of frozen soil over the TP during 2002–2016. Here we provide
a brief introduction of GEBHM-RS and more details on the model de-
scription and its parameterizations can be found in Zheng et al. (2019)
and Gao et al. (2018). The GBEHM-RS is a remote sensing version of the
geomorphology based ecohydrological model (GBEHM), which is a
distributed ecohydrological model designed for simulating the coupled
interactions between frozen soil, hydrology, and ecosystem by Yang
et al. (2015). In a previous study, Zheng et al. (2019) modified the
original GBEHM to allow it (i.e., GBEHM-RS) fully adapt to remote
sensing inputs. GBEHM-RS has a coupled parameterization of the heat-
water interactions in the soil layer and snowpack. The heat transfer is
solved using the equation formulated by Flerchinger and Saxton (1989),
the soil water movement is solved based on the Richards equation, and
the snow processes (i.e., accumulation, grain aging, compaction, and
melting) are parameterized based on the approaches proposed by
Anderson (1976), Dai and Zeng (1997), Jordan (1991), and Bartelt and
Lehning (2002). For heat transfer, the upper boundary uses the satellite-
based LST at the interface between the soil or snow (when existed) and
the atmosphere, and the lower boundary adopts a prescribed geo-
thermal flux near the bedrock bottom. The soil water movement is only
simulated within the soil layer, where the infiltration rate at the ground
surface is taken as the upper boundary condition, and the lower
boundary condition is assumed to be a zero-flux condition at the in-
terface between the soil layer and the bedrock. Evapotranspiration and
sublimation are estimated using the maximum entropy production-
based model proposed by Wang et al. (2009). In a previous study,
GBEHM-RS was developed and successfully applied to simulate frozen
soil in the upper Yellow River Basin (Zheng et al., 2019). In the current
study, GBEHM-RS is applied to the entire TP, with a much larger spatial
extent and more complex climate, topography, and landscape condi-
tions.

3.2. Model setup

The study region was divided into 1 × 1 km grid-cells. In each grid,
the modelling domain is from the soil (or snow, when existed) surface
to 70 m below the surface. The underground region was divided into
149 horizontal layers with the thickness of each layer gradually in-
creasing from 0.01 m near the ground surface to 4.0 m at the bottom.
The model was run at a daily time step and the entire simulation period
was from September 2002 to August 2016. To obtain the initial Tsoil,
liquid soil moisture, and soil ice content profiles, the ground measured
Tsoil profiles available at the 41 boreholes (varying from 20 m to 70 m
deep) were firstly interpolated/extrapolated into the entire study region
by applying a multilinear regression assisted with elevation and the
multiyear-mean MODIS LST (Supplementary Text S1). It should be
noted that except for the four GTN-P boreholes, the other 37 boreholes
only provided one-time measurements of Tsoil profiles and hence were
not further used in model evaluation. The geothermal flux at the lower
boundary was then estimated based on the temperature gradient near
the domain bottom for each grid cell. The obtained spatially continuous
Tsoil profiles and lower boundary geothermal flux were applied in a
model spin-up for 20 years (repeatedly driven by the climatic forcingTa
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during September 1st, 2002 – August 31st, 2003), and the initial con-
ditions of Tsoil, liquid soil moisture, and soil ice content were resultants
of the model spin-up.

3.3. Experimental design

Eight independent simulation experiments (i.e., the Base case and
Experimental cases 1–7) were carried out to evaluate the performance of
GBEHM-RS in frozen soil simulation (objective I), to examine the si-
mulated spatial patterns of frozen soil and their controlling factors
(objective II), and to quantify the temporal changes of frozen soil and to
identify their environmental controls (objective III) over the TP (see
Fig. 2). The Base case uses the satellite-based climatic forcing and
provides simulations of spatial patterns and temporal changes of frozen
soil. Then, the model performance is assessed by validating the simu-
lated frozen-ground types, MAGT, ALT, Tsoil, and Df against ground
measurements. In addition, we also performed an uncertainty analysis

on the satellite-based model inputs (i.e., LST, precipitation, SWD, LWD,
and α) by adding a variation range to each input variable and assessing
the model sensitivities to the input variations (see discussion and
Supplementary Text S2). The spatial patterns of seasonally frozen
ground and permafrost are represented by the annual maximum soil
freeze depth (SFD) and the annual maximum active layer thickness
(ALT), respectively. The relative importance of relevant factors (i.e.,
LST, Psolid, Pliquid, SWD, LWD, topography, vegetation, and soil para-
meters) in shaping the spatial patterns of SFD and ALT are quantified
using the gradient boosting regression approach, which is consisted of a
sequence of models and is suitable for assessing the relations between a
predictive variable and driving factors (Breiman, 2001; Karjalainen
et al., 2019) (also see Supplementary Text 3).

In the Experimental cases 1–7, the temporal changes of LST, Psolid,
Pliquid, LWD, SWD, α, and NDVI are respectively neglected by using the
multiyear mean forcing data from 2002 to 2016 for each year. The
differences between the Experimental cases 1–7 and the Base case

Fig. 2. Flow chart of the study. The boxes with grey background list all the external data. The boxes with blue background are modelling experiments. The boxes with
red background are results. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(referred to as Dx, x = LST, Pliquid, Psolid, SWD, LWD, α, and NDVI)
respectively represent the influences of variable x on the temporal
changes of frozen soil (Mao et al., 2015). Then, the model simulated
changes of frozen soil (D) are estimated using a linear combination of
these seven individual differences (Eq. [1]). The relative contribution of
x to the temporal changes of frozen soil (Cx) is quantified as the ratio of
the covariance of D and Dx over the variance of D (Eq. [2]; Zhou et al.,
2017).

∑≈ ⋅ +D β D β
x

x x 0
(1)

=
⋅

C
Cov β D D

Cov D D
( , )

( , )x
x x

(2)

where βx and β0 are fitting coefficients.

4. Results

4.1. Validation of satellite-based simulation of frozen soil

4.1.1. Spatial distributions of seasonally frozen ground and permafrost
In this study, permafrost is defined as the area with Tsoil at any

depth between 0 and 70 m deep remaining at or below the freezing
point (0 °C) for at least two consecutive years, otherwise, the ground is
identified as seasonally frozen ground (with annually freezing and
thawing) or unfrozen ground (with Tsoil remaining positive for the en-
tire period) (van Everdigen, 1998). Fig. 3 depicts the mean spatial
distribution of permafrost and seasonally frozen ground during
2002–2016, with each specific frozen ground type remained longer
than half of the entire simulation period. Compared with the field ob-
servations at the 608 boreholes, the model has obtained a high accuracy
with 86.3% (158/183) of seasonally frozen ground boreholes and
79.1% (336/425) of permafrost boreholes being accurately identified.
For the boreholes that are not accurately identified by the model, they
are almost entirely located near (within a typical distance of ~2 km)
the boundaries between the permafrost and seasonally frozen ground.
In these transition zones, the landscape usually exhibits higher spatial

heterogeneities and changes in frozen ground types mainly occur,
which lead to greater difficulties in the accurate determination of
frozen ground types in these regions (Cao et al., 2019; Obu et al., 2019).

4.1.2. Tsoil and Df over seasonally frozen ground
Statistical results of the comparison between observed and simu-

lated Tsoil at eight observational depths (i.e., 0.05, 0.1, 0.15, 0.2, 0.4,
0.8, 1.6, and 3.2 m) at the 109 CMA stations are summarized in Table 2.
Note that all the CMA stations are located on the seasonally frozen
ground. Results show that GBEHM-RS performed very well in re-
producing observed Tsoil at all depths, with the coefficient of determi-
nation (R2; calculated using the Eq. [A3] in Appendix A) ranging from
0.84 to 0.91, RMSE ranging from 1.61 °C to 3.25 °C, and mean bias
ranging from−0.36 °C to−0.27 °C. In addition to the overall accuracy,
GBEHM-RS also performs reasonably well in capturing the temporal
changes of Tsoil at each depth (Supplementary Fig. S7).

Fig. 3. Spatial patterns of simulated permafrost, seasonally frozen ground, and unfrozen ground in the Tibetan Plateau. The ground-measured frozen ground types at
608 boreholes are also shown for comparison.

Table 2
Coefficient of determination (R2), mean bias, and root-mean-squared error
(RMSE) for simulated daily mean soil temperature (Tsoil) and 7-day-mean
frozen depth (Df) against ground measurements at CMA stations.

Depth (m) R2 Mean bias (°C) RMSE (°C)

Daily mean Tsoil 0.05 0.88 −0.27 3.25
0.1 0.90 −0.33 2.89
0.15 0.91 −0.35 2.66
0.2 0.91 −0.32 2.50
0.4 0.91 −0.28 2.35
0.8 0.90 −0.36 2.11
1.6 0.88 −0.33 1.81
3.2 0.84 −0.30 1.61
All the depths 0.90 −0.32 2.53
Elevation range (m) R2 Mean bias (m) RMSE (m)

7-day-mean Df 2000–2500 0.43 0.00 0.28
2500–3000 0.57 +0.02 0.31
3000–3500 0.58 +0.02 0.35
3500–4000 0.75 +0.03 0.26
4000–5000 0.67 +0.05 0.42
All the ranges 0.65 +0.04 0.35
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Due to small changes between adjacent days, the assessment of si-
mulated Df is performed on a 7-day-mean basis. Overall, the satellite-
based simulation well reproduces the observed Df, resulting in an R2 of
0.65, RMSE of 0.35 m, and mean bias of +0.04 m (Table 2). To gain
further insights into the model performance in different regions, we
split the CMA stations into five groups along an elevation range, i.e.,
2000–2500, 2500–3000, 3500–4000, 4000–4500, and
4000–5000 m a.s.l. (Table 2). In general, the simulated Df agrees rea-
sonably well with ground measurements for each elevation range, de-
spite relatively larger discrepancies when the measured Df is shallow
(e.g., less than 0.1 m), which can be mainly caused by a small mismatch
in the ending dates of soil freezing and thawing between simulation and
observation (Supplementary Fig. S8). The validity of the model in si-
mulating both long-term trend and inter-annual variability of Df across

elevation ranges is further confirmed by a close agreement between
observed and simulated SFD anomalies (Supplementary Fig. S9).

4.1.3. MAGT, ALT, and deep-ground Tsoil at permafrost
The comparison of measured and simulated MAGT at 150 perma-

frost boreholes is shown in Fig. 4a. Despite a slight warming bias
(+0.49 °C), the simulated MAGT were generally close to these ground
measurements (R2 of 0.65 and RMSE of 0.72 °C) and the simulated
errors at 88% (133 out of 150) boreholes were within±1 °C. To further
evaluate the model performance in simulating the spatial patterns of
permafrost thermal status, we divided all the boreholes into five groups
based on their locations, i.e., the Qilian Mountains (QLM), the source
region of Yellow River (SYR), the central Tibetan Plateau (CTP), the
Aerjin Mountains (AJM), and the west Kunlun and Gaize (WKG) (Figs.

Fig. 4. Comparison of the simulated (Sim) and observed (Obs) mean annual ground temperature (MAGT), active layer thickness (ALT), and deep-ground soil
temperature (Tsoil) profiles at permafrost boreholes. In parts (a) and (b), all the permafrost boreholes are divided into five groups based on their locations, i.e., the
Qilian Mountains (QLM, red), the source region of Yellow River (SYR, magenta), the central Tibetan Plateau (CTP, green), the Aerjin Mountains (AJM, yellow), and
the west Kunlun and Gaize (WKG, blue). The shaded region indicates that the differences between simulated and observed MAGT are within± 1 °C. The black dashed
lines are 1:1 lines and the red lines show the best linear fit. Parts (c)–(f) show the deep-ground Tsoil profiles during the freezing (from October to next April, dashed
line) and thawing (May–September, solid line) seasons at Kunlunshan, Beiluhe, Liugongqu, and Wuli, respectively; note that a logarithmic scale is used for the y-axis.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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S4a and 4a). Within each region, the simulated and observed MAGT are
also close to each other with the mean biases ranging between +0.20 °C
and + 0.77 °C. Fig. 4b shows the comparison of simulated and observed
ALT at 76 permafrost boreholes. Again, our simulated ALT also rea-
sonably follows observation, with an R2 of 0.58, mean bias of −0.1 m,
and RMSE of 0.69 m. These validation results indicate that GBEHM-RS
can capture the spatial patterns of permafrost thermal status in the TP
with reasonable accuracy.

At the four GTN-P boreholes (i.e., Kunlunshan, Beiluhe, Liugongqu,
and Wuli; Fig. 1), Fig. 4c-f compared the simulated and ground-mea-
sured Tsoil profiles during the freezing (i.e., from October to next April)
and thawing (i.e., from May to September) seasons. Compared with in
situ observations, the satellite-based model performs generally well in
reproducing the variations of Tsoil along depth with a typical accuracy
of± 1.0 °C, despite relatively larger biases for near-surface Tsoil at the
Beiluhe and Wuli sites (Fig. 4d and f). For near-surface soil, the mod-
elled Tsoil represents a combination of Tsoil for all landscape covers (e.g.,
water bodies, snow, and vegetation) within the 1 × 1 km domain,
which might differ markedly from the site-level observations. However,
this scale mismatch-induced difference gradually diminishes as the
depth increases. Finally, we used the ground-measured near-surface
(~0.5 m) and deep-ground (~10 m) Tsoil at four GTN-P boreholes to
validate the model performance in simulating the temporal changes of
Tsoil in permafrost (see supplementary Fig. S10). Results show that the
simulated and measured Tsoil dynamics are generally close at both
depths, indicating a reasonable performance of GBEHM-RS in re-
producing the dynamic evolutions of ground thermal regimes of per-
mafrost in the TP.

4.2. Spatial distribution of frozen soil and climatic controls over the TP

4.2.1. Spatial patterns of frozen ground types, liquid soil moisture, and soil
ice content

The multiyear-mean spatial pattern of simulated frozen ground
types (i.e., the permafrost, seasonally frozen ground, and unfrozen
ground) during 2002–2016 is illustrated in Fig. 3. The seasonally frozen
ground covers a total area of 1.83 million km2 (or ~ 56%) and mainly
occupies the lower plains and river valleys in the southern and eastern
TP. The permafrost covers an area of 1.22 million km2 (or ~ 37%) and
is primarily distributed over mountain ranges in the northern and
western plateau. The unfrozen ground covers an additional area of 0.22
million km2 (or ~ 7%) and is mainly located on the southern and
southeast edges of the plateau. Fig. 5 shows the distribution of per-
mafrost fraction (fP, and the fraction of seasonally frozen ground is
100% minus fP) as a function of elevation, LST and Psolid. It is found that
permafrost generally starts to occur at an elevation of ~3600 m a.s.l,
above which, the fP steadily increases at a rate of ~4.4% per 100 m
(Fig. 5a). In comparison, the fP is much more sensitive to changes in LST
around the freezing point. With the increase of mean annual LST from
−0.57 °C to +1.04 °C, the fP decreases sharply from 90% to 10%
(Fig. 5b). For fP of 50%, it corresponds to a mean annual LST of
+0.42 °C, which is close to the threshold (i.e., +0.5 °C) used by Wang
et al. (2006) to delineate the lower limit of permafrost. Additionally, fP
increases with the increase of Psolid (Fig. 5c), especially for regions with
a mean annual Psolid less than ~25 mm yr−1. For regions with a mean
annual Psolid higher than ~25 mm yr−1, the fP only slowly increases
with the increase of Psolid.

In addition to frozen ground types, we also examine the spatial
patterns of annual mean liquid soil moisture and soil ice content for the
top 5 m soil layer, where the soil freezing/thawing processes mainly
occur (Supplementary Fig. S11). Similar to the spatial pattern of Pliquid
(Supplementary Fig. S1), the liquid soil moisture is relatively higher in
the southeast region (> 1.2 × 103 kg m−2) and gradually decreases
towards northwest with the lowest liquid soil moisture found in the
Qiangtang Plateau (0.3–0.6 × 103 kg m−2; Supplementary Fig. S2). In
comparison, soil ice exists in regions with a relatively lower LST and the

spatial pattern of soil ice content is similar to that of the thawing index
(Supplementary Fig. S1), with the annual mean soil ice content within
0–5 m soil column relatively higher in permafrost regions
(> 400 kg m−2) and relatively lower (< 50 kg m−2) in seasonally
frozen ground.

4.2.2. Spatial pattern of mean annual SFD for seasonally frozen ground
Fig. 6a illustrates the spatial pattern of simulated mean annual SFD

over the entire TP during 2002–2016. The simulated SFD varies be-
tween 0.03 m and 5.94 m over the TP and has a mean value of 1.29 m.
The magnitude of SFD shows a strong elevation dependence (Fig. 6b).
Smaller SFDs are obtained along the southern edge of the TP where
elevation is generally lower than 3000 m a.s.l, whereas larger SFDs
primarily locate near the lower limit of permafrost in the central and
northeast plateau with an elevation typically above ~4500 m a.s.l. To
examine the controlling factors of the SFD spatial pattern, we in-
vestigated the relative importance of relevant factors (i.e., LST, Psolid,
Pliquid, SWD, LWD, α, topography, vegetation, and soil parameters) in
shaping the spatial pattern of SFD. We find that the spatial pattern of
SFD is mainly controlled by four climatic factors, i.e., freezing index
(the cumulative negative daily mean LST within a year), thawing index
(the cumulative positive daily mean LST within a year), Psolid, and
Pliquid, whereas other factors only exert minor effects (Supplementary
Fig. S6). Fig. 6c illustrates the relative importance of these four climatic
factors in shaping the SFD spatial pattern along an elevation gradient. It
is found that temperature, in particular the freezing index, dominantly
controls the spatial pattern of SFD at all elevation ranges. However, as
elevation increases, the relative importance of freezing index steadily
decreases, while the relative importance of other factors increases. This
is especially evident for the thawing index, which suggests an increased
impact of LST during the antecedent thawing season on SFD spatial
variations in higher elevated regions.

4.2.3. Spatial pattern of mean annual ALT over permafrost
The multiyear-mean spatial pattern of simulated ALT over perma-

frost during 2002–2016 is shown in Fig. 6d. Over the study region, the
simulated ALT varies between 0.05 m and 10.24 m with an average ALT
of 1.85 m. Similar with SFD, ALT also exhibits a clear elevation de-
pendence, with smaller ALTs distributing in the hinterland of the
Qiangtang Plateau and high-rising mountain tops and larger ALTs oc-
curring in areas near the water bodies and the lower limit of permafrost,
such as the source regions of the Yellow, Yangtze, and Nu Rivers
(Fig. 6d and e). In addition, the same four climatic factors (i.e., the
freezing index, the thawing index, Pliquid, and Psolid) are also found to
primarily control the spatial pattern of ALT (Supplementary Fig. S6).
Among them, the thawing index shows the highest importance in
shaping the spatial distribution of ALT and its importance also generally
increases with elevation (Fig. 6f). In comparison, the other three cli-
matic factors are relatively less important, except for the freezing index
in relatively low-elevation regions.

4.3. Temporal changes of frozen soil and the climatic controls

4.3.1. Temporal changes of frozen ground types, liquid soil moisture, and
soil ice content

The changes in spatial coverages of permafrost and seasonally
frozen ground are assessed by comparing the mean annual distributions
of permafrost and seasonally frozen ground in two sub-periods during
2002–2016, i.e. the first (2002–2007) and last (2011–2016) six years.
This treatment reduces simulation uncertainty at short temporal scales
and provides a more reliable assessment of long-term changes.
Compared with 2002–2007, over the entire plateau area, permafrost
disappears in ~7.5 × 104 km2 (6.0%) regions in the early 2010s.
Evident permafrost degradations are found in the southeast plateau,
covering the source regions of several large rivers, i.e., the Yangtze,
Yellow, Nu, Lancang, and Brahmaputra Rivers (Fig. 7a). In comparison,
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newly formed permafrost is only presented in ~1.3 × 104 km2 (1.1%),
which primarily occurs in the regions between the Yellow and Yangtze
Rivers and around the Karakoram and Gangdise Mountains (Fig. 7a).
With the rapid degradation of permafrost, the soil ice content also ex-
perienced a notable decline during the study period (i.e., at a rate of
~ − 15 kg m−2 yr−1 in the source regions of Yellow and Yangtze
Rivers; Supplementary Fig. S11d). The melted ice provides additional
water supply and leads to increased liquid soil moisture (Supplemen-
tary Fig. S11c). In addition to soil thawing, the increase of Pliquid also
contributes to the increase of liquid soil moisture, such as in the
Brahmaputra River Basin in the south of the TP (see Fig. 1 and Sup-
plementary Figs. S11c vs S12c).

4.3.2. Temporal changes of SFD for seasonally frozen ground
The spatial pattern of the SFD trend during 2002–2016 is shown in

Fig. 7b. Note that the SFD trend is only calculated for regions with a
persistent seasonally frozen ground over the study period (Fig. 7a).
During the simulation period, the SFD trend varies between
−8.92 cm yr−1 and + 3.77 cm yr−1 with a mean value of
−0.50 cm yr−1, indicating an overall small decrease of SFD. Larger
decreases in SFD mainly exist in high elevation regions
(> 3800 m a.s.l.), such as the northern edge of the TP, the regions
between the Tanggula and Nyainqentanglha Mountains, and the
Hengduan Mountains. In contrast, the increases of SFD are most evident
in lower elevation regions, including the southern and western edges of
the TP, the Qaidam Basin, and the northeast TP (Figs. 1 and 7b, and
Supplementary Fig. S2). The spatial pattern of the SFD trend is very
similar to that of the freezing index trend (Supplementary Fig. S12a),
suggesting a predominant role of LST in controlling the changes of
seasonally frozen soil. However, except for a few scattered areas (~9%)
adjacent to the lower limit of permafrost, the SFD trends in other places
are statistically non-significant (p ≥ .05; see Supplementary Fig. S13a).
To further confirm the role of LST on SFD changes, we explore the re-
lationship between changes in SFD and freezing index and find sig-
nificant (p < .05) correlations over most of the seasonally frozen
ground (~66%). Nonetheless, non-significant (p ≥ .5) correlations
between SFD and freezing index are found primarily in regions near the
lower limit of permafrost (e.g., the circled regions 1–4 in Fig. 8a), where

the changes of SFD tend to show significant correlations with changes
of annually accumulated snow depth and annual mean soil water
content (the sum of soil water in both liquid and soil phases within
0–5 m soil column) (Fig. 8b and c), indicating important roles of snow
cover and soil water in the control of SFD temporal changes in these
regions.

We then compared the estimated SFD changes from the Base case
respectively with those from Experimental cases 1–7 to quantify the re-
lative contribution of each driving factor (Fig. 9). Results show that
nearly all of the temporal changes of SFD are controlled by three cli-
matic factors (i.e., LST, Psolid, and Pliquid; Fig. 9a), among which, LST
dominates SFD changes in ~80% of the seasonally frozen ground. This
is most evident in low-elevation areas, such as the Qaidam Basin and
the southeast TP (Fig. 9a, b and e). As elevation increases, the con-
tribution of LST gradually decreases, from over 80% in the low-eleva-
tion areas (2000–2200 m a.s.l) to less than 50% in the high-elevation
regions (> 4800 m a.s.l). In comparison, regions where the changes in
SFD dominantly controlled by Psolid and Pliquid are much fewer. The
Psolid-controlled areas occupy ~12% of the seasonally frozen ground
(Fig. 9c and e) and are mainly located in the Qilian Mountains, the
source regions of the Yellow, Yangtze, and Nu Rivers, and the con-
jectures of Karakoram and Kunlun Mountains. These regions also cor-
respond to places with significant correlations between annually ac-
cumulated snow depth and SFD (the circled regions 1–4 in Fig. 8). This
implies that Psolid exerts impact on the changes of seasonally frozen
ground mainly through its impact on snow cover changes. In compar-
ison, the Pliquid-controlled areas cover ~6% of the seasonally frozen
ground, including the Nyainqentanglha Mountains, the Gangdise
Mountains, the Tanggula Mountains, and the regions around the
Qaidam Basin with a typical arid climate (Fig. 9d and e). Over these
regions, the temporal changes of soil water content generally show
significant (p < .05) correlations with those of SFD, implying that the
impact of Pliquid on frozen soil is primarily through its impact on soil
water content. Moreover, different from the contribution of LST that
decreases with elevation, the contributions of Psolid and Pliquid gradually
increase as the elevation increases, from ~6% and ~ 3% below 2200 m
a.s.l to both higher than 13% above 4600 m a.s.l, respectively (Fig. 9a,
c, and d). Compared with the above three climatic factors, regions

Fig. 5. Changes of permafrost fraction (fp) with elevation, land surface temperature (LST), and snowfall (Psolid). Locations with fp of 10%, 50%, and 90% are indicated
by the orange, green and purple lines, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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where SFD changes are dominantly controlled by the other factors (i.e.,
SWD, LWD, α, and NDVI), are negligibly small and scattered (occupy
~2% of the seasonally frozen ground; see Supplementary Fig. S14).

4.3.3. Temporal changes of ALT over permafrost
The temporal changes of ALT during 2002–2016 and the controlling

factors are also only examined in regions where permafrost is persistent
throughout the entire study period. Different from that of SFD, ALT has
been mainly increasing over the permafrost regions during the study
period. Over the entire plateau, the ALT trend varies between
−34.60 cm yr−1 and + 46.99 cm yr−1, with an average trend of
+3.17 cm yr−1 (Fig. 7c). Additionally, the ALT trends are statistically
significant (p < .05) in over 25% of the permafrost areas (Supple-
mentary Fig. S13b), including the source regions of the Yellow and the
Yangtze Rivers, the southern Qiangtang Plateau, and the Nyainqen-
tanglha Mountains (Figs. 1 and 7c, and Supplementary Fig. S2). These
results suggest an overall rapid degradation of TP permafrost during the
study period.

The spatial pattern of ALT trends is similar to that of thawing index
trends (Fig. 7c vs Fig. S12b), with a significant ALT-thawing index

relationship (p < .05) found in ~73% of the permafrost regions, im-
plying a predominant role of LST in controlling permafrost changes.
However, non-significant (p ≥ .05) correlations between ALT and
thawing index are also evident and are mainly distributed in the source
regions of the Yellow and Yangtze Rivers (see circled region 2 in
Fig. 10a) and the Karakoram Mountains (Supplementary Fig. S2). In
these regions, the correlation between the ALT and annually accumu-
lated snow depth and/or annual mean soil water content becomes
significant (p < .05; Fig. 10b and c), implying the potential impacts of
Pliquid and Psolid on permafrost changes.

The contributions of LST, Pliquid, Psolid, and other factors (i.e., SWD,
LWD, α, and NDVI) to the temporal changes of ALT are again, quanti-
fied by comparing the Base case and Experimental cases 1–7. Similar to
SFD, the temporal changes of ALT are also primarily controlled by the
three climatic factors (i.e., LST, Psolid, and Pliquid). Among them, LST
plays a dominant role in controlling the ALT changes in ~80% of the
permafrost region, and the contribution of LST shows a general in-
creasing trend with the increase of elevation (Fig. 11a, b, and e). In
high-elevation regions, such as the western Qiangtang Plateau, the
contribution of LST to the temporal changes of ALT can be greater than

Fig. 6. The mean annual spatial patterns of annual (a) maximum soil freeze depth (SFD) and (d) maximum active layer thickness (ALT) during 2002–2016. Part (b)
shows the distributions of SFD (blue) and seasonally frozen ground area (grey) along an elevation gradient; the solid line indicates the mean value and the shaded
area is the spread of SFD within each elevation zone. Part (e) shows the distributions of ALT (blue) and permafrost area (grey) along an elevation gradient; the solid
line indicates the mean value and the shaded area is the spread of ALT within each elevation range. Parts (c) and (d) illustrate the relative importance of freezing
index, thawing index, snowfall (Psolid), and rainfall (Pliquid) in shaping the spatial distributions of SFD and ALT along an elevation gradient, respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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90% (Fig. 11b). As the elevation decreases, the permafrost area moves
towards the source regions of Yellow and Yangtze Rivers, where the
contribution of LST decreases and the contributions of Psolid and Pliquid
increase. The Psolid-controlled and Pliquid-controlled areas account for

~11% and ~ 6% of the entire permafrost region, respectively
(Fig. 11e). Moreover, the Psolid (Pliquid) -dominated regions roughly
overlap with regions having significant correlations between snow
depth (and soil water content) and ALT (Figs. 11c vs 10b, 11d vs 10c),
which again indicates that the influences of Psolid (and Pliquid) on the
permafrost changes are primarily through their influences on snow
cover (and soil water content) changes. Additionally, the SWD, LWD, α,
and NDVI-controlled areas are very limited (~3% of the permafrost
regions) and their contributions to the temporal changes of ALT are also
generally small (see Supplementary Fig. S15).

5. Discussion

The comprehensive validations against ground measurements of
frozen ground types, MAGT, ALT, Tsoil, and Df approve the reliability of
using process-based model driven by satellite data to reproduce the
ground thermal regime of permafrost and seasonally frozen ground in
the TP region (Figs. 3 and 4, and Supplementary Figs. S7–S10). Using
GBEHM-RS, we quantified the spatiotemporal changes of frozen soil
over the TP since the beginning of the 21st century. Overall, our si-
mulated spatial patterns of frozen ground types, SFD, and ALT are
consistent with previous studies (Cao et al., 2019; Pang et al., 2006;
Peng et al., 2017; Wang et al., 2019a; Wu et al., 2018). To further
evaluate the accuracy of simulated frozen soil, we collected seven
frozen ground maps produced previously during 2002–2016 for the TP
(Obu et al., 2019; Qin et al., 2017; Shi et al., 2018; Wang et al., 2006;
Wang et al., 2019a; Wang et al., 2019b; Wu et al., 2018; Zou et al.,
2017; Supplementary Table S2) and compared them with our estimates.
Based on the validation of the various estimates against the frozen
ground observations at 608 boreholes (see Table S2), we found the
satellite-based maps were more likely to show higher and more con-
sistent accuracy (~80%) in identifying both the permafrost boreholes
and seasonally frozen ground boreholes, whereas the ground-based
maps tended to exhibit a lower accuracy (~65%) in identifying the
seasonally frozen ground boreholes. This finding is consistent with that
of Zheng et al. (2019) in the head regions of the Yellow River, high-
lighting the potential advantage of satellite data in improving the
spatial consistency of frozen soil simulations in the TP. Additionally, the
satellite-based simulations of frozen soil over the TP have a much
higher spatial resolution (~1 km) than those of ground-based ones
(e.g., ~10 km in Qin et al. (2017) and Wu et al. (2018)). Since the TP is
characterized as a mountainous frozen soil region with complex cli-
mate, topography, and landscape conditions, the satellite-based simu-
lations with a higher spatial resolution are able to better capture the
local spatial variabilities of ALT and SFD (Zhao and Li, 2015).

Consistent with previous findings in the TP and other frozen soil
regions (e.g., the Northern China and high latitude Northern
Hemisphere; Frauenfeld and Zhang, 2011; Park et al., 2013; Peng et al.,
2017; Zhang et al., 2005), our results also demonstrate the predominant
role of the freezing (thawing) index in controlling the large-scale spatial
variability of SFD (ALT). However, as moving towards the transition
zones between permafrost and seasonally frozen ground, the im-
portance of thawing (freezing) index of the antecedent season in
shaping the SFD (ALT) spatial pattern becomes increasingly evident
(Fig. 6c and f), which has been commonly neglected in previous SFD
and ALT estimations (e.g., Frauenfeld and Zhang, 2011; Wang et al.,
2019a; Peng et al., 2018). In principle, the freezing and thawing in-
dexes respectively represent the cooling and warming ability of the
climate (Westermann et al., 2015). When the freezing (thawing) index
is much larger than the thawing (freezing) index, the freezing (thawing)
index would completely counteract the influences of antecedent
thawing (freezing) index, causing the ground thermal condition in the
permafrost (seasonally frozen ground) to evidently deviate from the
freezing point before the subsequent thawing (freezing) season, i.e., the
ground memory of historical heat in the near-surface region is com-
pletely erased (e.g., Zou et al., 2017). Such regions are almost entirely

Fig. 7. Changes of the permafrost and seasonally frozen ground areas as well as
the trends of the annual maximum soil freeze depth (SFD) and the annual
maximum active layer thickness (ALT) during 2002–2016. ‘PF’ and ‘SFG’ denote
permafrost and seasonally frozen ground, respectively.
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distributed far from the lower limit of permafrost (Supplementary Figs.
S1b vs S1c). Within these areas, using freezing (thawing) index alone
may obtain reliable SFD (ALT) estimates (Fig. 6c and f). Since the
ground observations are usually located far from the lower limit of
permafrost, it is thus not surprising that previous estimations of SFD
and/or ALT without considering thermal conditions of the antecedent
season are also generally satisfactory compared with ground observa-
tions (Peng et al., 2017; Wang et al., 2019a; Wu and Zhang, 2010).
However, for regions near the lower limit of permafrost, the freezing
and thawing indexes become equal and their net cooling (or warming)
effects would accumulate, which may result in a much larger SFD or
ALT (e.g., Ding et al., 2019). Without considering these two tempera-
ture indexes in the antecedent season would thus underestimate the
magnitude and spatial variations of SFD (ALT) in regions near the lower
limit of permafrost, which could partly explain the fact that our esti-
mated SFD (ALT) varies much more rapidly than freezing (thawing)
index (Figs. 6 vs S1) and is also much deeper (by ~1 m) than previous
estimates over these areas (Ding et al., 2019; Pang et al., 2006; Peng
et al., 2017; Wang et al., 2019a; Wu et al., 2010). In the TP, the places
near the lower limit of permafrost overlap the source regions of many
large rivers (Figs. 1 and 3) and are very sensitive to climate change
(Zhang et al., 2004). Therefore, accounting for thermal conditions of
the antecedent season so that to obtain a more accurate estimation of
the frozen soil status in these areas is particularly important for un-
derstanding the interactions between the frozen soil, climate, eco-
system, and water cycles in the TP (Cheng and Wu, 2007; Jin et al.,
2009; Zhao et al., 2019).

Regarding the temporal changes of frozen soil, we find that SFD
shows both decreasing and increasing trends and the ALT exhibits an
overwhelming increasing trend across the TP during 2002–2016. The
rapid increases of ALT imply a notable degradation of permafrost on the
TP, which is consistent with recent findings that temperature rising
induced by the anthropogenic greenhouse gas emissions has been
triggering the serious degradation of permafrost over the entire
Northern Hemisphere (Biskaborn et al., 2019; Guo et al., 2020).
Moreover, our study also found an evident asymmetric warming trends
during the freezing and thawing seasons over the TP (i.e., a larger
warming trend in summer than in winter; Supplementary Fig. S12).
This is consistent with Guo et al. (2019) for 2001–2015 but different
from other studies during earlier periods (e.g., before 2000) when
winter experiences the largest warming trend among the four seasons
(e.g., Wu et al., 2013). During recent decades, the seasonal warming
pattern on the TP has been shifting from a dominant winter warming to
a dominant summer warming, which is primarily caused by an en-
hanced snow-albedo feedback (Guo et al., 2019). Climate models pro-
ject that the climate warming over the TP is going to continue towards
the end of this century (Su et al., 2013), and if this asymmetric warming
trend pertained or further intensified, a more pronounced summer
warming is anticipated, which can result in a higher increasing rate of
ALT and more serious permafrost degradation in the region.

In addition to temperature, we also highlight the contributions of
Psolid and Pliquid to the temporal changes of frozen soils in the TP during
2002–2016. Our results suggest that Psolid exerts impacts on SFD
through its impacts on snow cover (Figs. 8b and 9c). Due to the low

Fig. 8. Regions with significant (p < .05) and non-significant (p≥ .05) correlations between the changes of annual maximum soil freeze depth (SFD) and changes in
(a) freezing index, (b) annually accumulated snow depth, and (c) annual mean soil water content (the sum of soil water in both liquid and soil phases within 0–5 m
soil column) over seasonally frozen ground.

G. Zheng, et al. Remote Sensing of Environment 247 (2020) 111927

12



thermal conductivity (~0.2 W K−1 m−1), the snow cover is a typical
strong thermal insulator that would prohibit the exchange of heat be-
tween the atmosphere and the soil surface (Hardy et al., 2001; Zhang,
2005). Moreover, the snow insulation effects have both warming and
cooling effects, depending on the phenology of snow cover (Fang et al.,
2019). For example, as time transits from thawing (freezing) seasons to
freezing (thawing) seasons, the presence of snow cover could effectively
reduce heat release from (heat absorption by) the soil surface and thus
keep the soil surface warmer (colder) than the snow-free surfaces (Fang
et al., 2019; Ling and Zhang, 2003; Stieglitz et al., 2003; Yang et al.,
2008). The negative correlations between snow depth and SFD within

the Psolid-controlled regions shown in Figs. 8b and 9c imply a primary
warming effect of snow insulation over the TP. In supplementary Fig.
S16, we compared the MODIS LST, simulated soil temperature at 5 cm
deep (Tsoil, 5cm), and observed Tsoil, 5cm during winter seasons at the
CMA stations and find a close agreement between simulated and ob-
served Tsoil, 5cm, both of which are higher than the MODIS LST by ~1 °C
when snow cover presents. However, such a discrepancy largely di-
minishes over snow-free surfaces Since MODIS LST measures the snow
surface temperature over snow-covered surfaces, a higher Tsoil, 5cm than
the MODIS LST further confirms the insulation effect of snow cover on
the underlying soil surfaces over seasonally frozen ground in the TP.

Fig. 9. Relative contributions of LST, Psolid, Pliquid, and other factors (sum of SWD, LWD, α, and NDVI) to the temporal changes of annual maximum soil freeze depth
(SFD). Part (a) shows the relative contributions of LST, Pliquid, Psolid, and other factors along the elevation gradient. Parts (b)–(d) show the spatial patterns of the
relative contributions by LST, Psolid, and Pliquid, respectively. Part (e) shows the locations of dominant controlling factors.
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In comparison, despite a nearly zero winter Pliquid, Pliquid in ante-
cedent seasons could still show notable controls on SFD changes in arid
regions of the southern plateau and the Qaidam Basin (Fig. 9d and e,
and Supplementary Fig. S2). In arid regions, the relatively drier soil
generally has a larger potential to hold infiltrated water and thus an
abnormal large Pliquid may be stored long enough in the soil to exert
impacts on SFD in the following freezing season (Liang et al., 2015).
This may also explain the weak relationship between SFD and Pliquid in
the high-latitude regions, where the climate is generally more humid
than that of the TP (Frauenfeld and Zhang, 2011). Additionally, the
replenishment of soil water through antecedent Pliquid could increase
the phase-change heat and thermal conductivities, which respectively
have a negative and a positive effect on the growth of SFD (Stefan,
1891). The phase-change heat steadily increases with soil water con-
tent, whereas the increase of soil thermal conductivity is much faster
when the soil water content is low (smaller than ~0.2 m3 m−3) and
gradually slows down as soil water content increases (Tarnawski and
Leong, 2000). As a result, the soil water content-induced phase-change
effect could be weak in relatively dry regions but is likely to dominate
over the thermal conductivity effect in more humid environments. This
may partly explain the negative correlations between SFD and soil
water content in the circled region 3 (relatively wet), and positive
correlations in places between the circled regions 3 and 4 (relatively
dry; Fig. 8c).

In terms of ALT, our results also suggest that Psolid and Pliquid exert
impacts on the ALT temporal changes through their respective impacts
on snow cover and soil water content (Figs. 10 and 11). However,

different from SFD, the correlations between snow depth and ALT show
different signs in Psolid-controlled regions (i.e., negative in the
Nyainqntanglha Mountains and the Karakoram Mountains and positive
in the source regions of the Yellow and Yangtze Rivers; Fig. 10b). This
result implies different mechanisms in the control of ALT by Psolid in
these two areas. For regions near the southern boundaries of the plateau
(i.e., the Karakoram Mountains and Nyainqentanglha Mountains), the
permafrost is mainly located on mountain tops with a long snow cover
duration (> 6 months, Supplementary Fig. S17; also reported by Pu
et al., 2007). The existence of snow cover insulates the atmospheric
heating during the thawing season, which cools down the ground and
leads to a negative snow depth-ALT correlation (Ling and Zhang, 2003).
By contrast, in the central plateau (including the source regions of the
Yellow and Yangtze Rivers), the thawing season is commonly free of
snow and the snow cover during freezing seasons mainly warms the soil
surface by preventing heat release from the soil layers (similar to the
snow insulation effects on SFD changes), which prompts the growth of
ALT (Wu et al., 2015). Consequently, a positive correlation between
snow depth and ALT is found in these regions. Within the Pliquid-con-
trolled area, Pliquid shows an overall increasing trend during the study
period (Supplementary Fig. S12), which enhances infiltration that
brings more heat from the near-surface to deeper layers near the
thawing front and consequently prompts the growth of ALT. This result
is consistent with observations by Wu et al. (2015) in these regions and
by Hinkel et al. (2001) in Alaska, who reported that precipitation in-
crease is mainly responsible for the rapid increase of ALT. However,
since the permafrost degradation enhances the downward movement of

Fig. 10. Regions with significant (p < .05) and non-significant (p ≥ .05) correlations between the temporal changes of annual maximum active layer thickness
(ALT) and changes in (a) thawing index, (b) annually accumulated snow depth, and (c) annual mean soil water content (the sum of soil water in both liquid and soil
phases within 0–5 m soil column) over permafrost.
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near-surface liquid soil moisture to deeper layers (Cheng and Wu, 2007;
Zhao et al., 2019), soil water content generally decreases in the top 5-m
soil layer and increases in deeper layers (Supplementary Fig. S18),
which partly explain the negative correlations between ALT and soil
water content within the top 5-m soil column (Fig. 10c).

Apart from temperature and precipitation, the impacts of other
factors on the control of spatial and temporal patterns of frozen soil are
generally very small. Previous studies suggest that frozen soil simula-
tions are also sensitive to changes in vegetation coverage (e.g., Li et al.,
2019). On the one hand, enhanced vegetation growth under warming in
temperature-limited regions induce a cooling effect that potentially

impacts the underground freeze-thaw processes (Shen et al., 2015). On
the other hand, changes in vegetation coverage directly affect soil water
status and may consequently affect frozen soil status. Nevertheless, our
results do not show a notable vegetation control on frozen soil patterns,
partly because the cooling effect of vegetation greening has already
been reflected in the observed LST in our model. Additionally, the
impacts of vegetation change on soil water dynamics are unlikely to be
significant, because the vegetation on the TP is generally thin and short
with shallow roots, and the temporal trends in vegetation coverage are
also generally small and non-significant (Supplementary Fig. S19)
during the study period. It is thus not surprising that changes in NDVI

Fig. 11. Relative contributions of LST, Psolid, Pliquid, and other factors (sum of SWD, LWD, α, and NDVI) to the temporal changes of annual maximum active layer
thickness (ALT) in permafrost regions. Part (a) shows the contributions of LST, black, Pliquid, Psolid, and other factors along the elevation gradient. Parts (b)–(d) show
the spatial patterns of the relative contributions by LST, Psolid, and Pliquid, respectively. Part (e) shows the locations of dominant controlling factors.
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only exert a very minor impact on frozen soil changes in our simulation
(Supplementary Figs. S14 and S15).

Finally, there are also uncertainties and limitations associated with
our study. First, the radiation-based MODIS LST were validated against
the thermometer-based LST measurements at the CMA stations as done
in several previous studies (e.g., Wu and Chen, 2005; Yang and Yang,
2006), since the ground-based measurements of upward longwave ra-
diation were not available at these stations. Due to the probably large
uncertainties of LST observations at the CMA stations (Liang, 2001) and
the theoretical differences between the radiation-based and thermo-
meter-based approaches in measuring LST (CMA, 2004; Wan and
Dozier, 1996), some discrepancies (i.e., RMSE = 4.04 °C) existed be-
tween the two LST datasets (see Fig. S3). Second, despite the advantage
of spatial consistency and temporal continuity, satellite-based forcings
are found to have evident biases compared with ground observations
(Langer et al., 2013; Ma et al., 2016). Such biases may be transferred to
the simulated results and consequently lead to uncertainties in the
model outputs (Langer et al., 2013). Here, we conduct an uncertainty
analysis to investigate the impacts of biases in satellite data (i.e., LST,
precipitation, SWD, LWD, and α) on the simulated SFD and ALT (Sup-
plementary Text S2 and Fig. S20). We find that except for few regions
near the boundaries between permafrost and seasonally frozen ground,
the impacts associated with the uncertainties are generally small.
Averaged over the entire TP, biases in LST (−0.26 °C), precipitation
(+6.17 mm month−1), SWD (−21 W m−2), LWD (+5 W m−2), and α
(−0.01) lead to a change in simulated SFD by +0.08 m, −0.01 m,
+0.01 m, 0.0 m, and − 0.01 m, and a change in simulated ALT by
−0.08 m, 0.0 m, 0.0 m, 0.0 m, and 0.0 m, respectively. Third, the
geothermal flux is estimated from the deep-ground Tsoil measurements
at limited boreholes (mainly along the highway/railways in the central
plateau; Cao et al., 2019; Ran et al., 2018), which may result in un-
certainties in the lower boundary conditions, especially for the western
and southern plateau where the observation of Tsoil is extremely rare
(Shi et al., 2018). The uncertain lower boundary condition may also
partly account for the increasing cold bias along depth in our Tsoil si-
mulation at CMA stations (Table 2). Forth, the TP is characterized as a
mountainous frozen soil region, where the topography and landscape
show great spatial variabilities (Zhao and Li, 2015). Since the CMA
stations are mainly located in mountain valleys where the surface
properties are likely to vary substantially within one MODIS pixel (i.e.,
~1 × 1 km), it may partly explain the difference between modelled and
observed Tsoil (Df) at the CMA stations. In addition, despite an overall
good performance of our model in identifying the frozen ground types,
the uncertainties are especially evident near the lower limit of perma-
frost (roughly within 2 km), where frozen ground types may vary
greatly within a short distance (< 1 km) (e.g., Wu et al., 2017). In such
regions, accurate discrimination of frozen ground types requires data at
much finer spatial resolutions (Luo et al., 2019). Last but not least, in
the attribution of temporal frozen soil changes, the experimental design
(by examining the difference between modelling experiments) could
not fully capture the nonlinear interactions among climatic factors
(Mao et al., 2015; Zhu et al., 2016). As a result, the sum of our esti-
mated contributions of climatic factors is generally less than 100%
(Figs. 9 and 11). All these issues need to be addressed to further im-
prove our understanding of the spatiotemporal changes of frozen soil
and the driving mechanisms over the TP in future studies.

6. Conclusion

In this study, a process-based, satellite-driven model (GBEHM-RS) is
employed for frozen soil simulation at an unprecedented high spatial
resolution (1 × 1 km) over the TP region with complex climate, to-
pography, and landscape conditions. Following comprehensive model
validations, the spatial and temporal patterns of frozen soil during
2002–2016 are quantified and the driving mechanisms are investigated.
Major conclusions are summarized below:

1) Validated against observations at 608 boreholes, GBEHM-RS has
obtained a reasonable performance in identifying the locations of
seasonally frozen ground (at ~86.3% boreholes) and permafrost (at
~79.1% boreholes). Moreover, in both seasonally frozen ground and
permafrost, GBEHM-RS satisfactorily captures the spatial pattern
and temporal changes of ground thermal regimes against measured
Tsoil and Df at 109 CMA stations (TsoilR2 ranges between 0.84 and
0.91, mean bias ranges between −0.36 °C and −0.27 °C, and RMSE
ranges between 1.61 °C and 3.25 °C at eight depths, and
DfR2 = 0.65, mean bias = +0.04 m, and RMSE = 0.35 m), MAGT
at 150 permafrost boreholes (R2 = 0.65, mean bias = +0.49 °C,
RMSE = 0.72 °C), ALT at 76 permafrost boreholes (R2 = 0.58, mean
bias = −0.1 m, and RMSE = 0.69 m), and deep-ground Tsoil pro-
files at four GTN-P boreholes (with mean biases within±1.0 °C
from 0 m to over 40 m deep).

2) Over the entire TP, the seasonally frozen ground and permafrost
respectively occupy an area of 1.83 (~56%) and 1.22 (~37%)
million km2. The permafrost is primarily located on the northern
and western plateau with a higher elevation and larger soil ice
content (> 400 kg m−2 within 0–5 m soil column), whereas the
seasonally frozen ground is mainly distributed across the southern
and eastern plateau where elevations are relatively low. The pla-
teau-averaged SFD (ALT) is 1.29 (1.85) m and its spatial patterns are
mainly controlled by the LST during the freezing (thawing) season.
However, the influences of LST during antecedent seasons on frozen
soils (i.e., thawing index for SFD and freezing index for ALT) gra-
dually increase as regions moving towards the boundaries between
the permafrost and seasonally frozen ground, leading to much larger
magnitudes and higher spatial variabilities of SFD and ALT (> 5 m)
than other regions.

3) During 2002–2016, ALT shows an overwhelmingly increasing trend
across the plateau at an average rate of +3.17 cm yr−1, and SFD
exhibits both increasing (at ~38% areas) and decreasing trends (at
~62% areas) across the plateau. The differences between the tem-
poral changes of SFD and ALT are mainly caused by the asymmetric
warming trends during the freezing and thawing seasons. In addi-
tion, Pliquid is found to impact on the temporal changes of SFD,
especially in arid regions (e.g., the Qaidam Basin and the southern
plateau), and both Pliquid and Psolid show notable impacts on the
temporal changes of ALT, especially in the source regions of the
Yangtze and Yellow Rivers.

To conclude, our study demonstrates the validity and advantages of
the satellite-based method in frozen soil simulations over large scales
with complex topography and landscapes and emphasizes the im-
portance of both temperature and precipitation in the control of frozen
soil changes. The modelled frozen soil maps are process-based, well-
validated estimates, when combined with other estimates using dif-
ferent methods/model inputs, may help us to achieve a more robust
quantification and a greater understanding of the spatial and temporal
patterns of frozen soil in the TP.
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Appendix A. Evaluation criteria, i.e., mean bias, root-mean-square error (RMSE), and coefficient of determination (or multiple correlation
coefficient, R2), are calculated as
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where ‘Sim’ denotes simulated results, ‘Obs’ denotes ground observations, N is the size of a data sequence, i indicates the data order, x is the average
value of x.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2020.111927.
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