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Abstract

When assessing the socio-economic impacts of climate change, it is sensible to

make targeted climate projections for regions of high population density and

economy activity. Much of human activity is concentrated at river basins, yet it

has been difficult to resolve the complex boundaries of these basins in coarse

resolution global climate models. The latest high-resolution observation and

climate projection datasets enable such basin-based evaluations now, and this

study assesses the historical and projected climate changes over three major

river basins in China—the Yellow, Yangtze and Pearl River basins. Based on

CN05.1 dataset, the Yellow River basin has significantly warmed by about

1.8�C over the past five decades, far more than the other two basins. The

change in temperature extremes has been as severe, with the annual maxima

of daily maximum temperatures (TXx) increasing by 1.5�C, and the annual

minima of daily minimum temperatures (TNn) increasing by 2.5�C. Precipita-
tion over the Yangtze River has significantly increased by about 0.2 mm�day−1,
while changes over the other two basins were not statistically significant. The

uncertainty in the change of precipitation was greater than that of tempera-

ture. A selection of simulations from the Fifth and Sixth Coupled Model

Intercomparison Projects (CMIP5 and CMIP6) were validated against the

CN05.1 dataset for the historical period of 1961–2018. Changes in temperature

indices were well-reproduced, but changes in precipitation indices poorly

so. CMIP6 models performed better than the CMIP5 models. Both CMIP5 and

CMIP6 multi-model ensembles (MMEs) projected about 1.0–2.0�C warming

over China and the three river basins by 2015–2050. Both MMEs projected

wetting trends over most parts of China and the three river basins. Both

warming and wetting were projected to accelerate with time, particularly

warming over the Yellow River basin, and wetting over the Pearl River basin.
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1 | INTRODUCTION

Global climate change has attracted worldwide attention
in the recent decades (Kurane, 2010; Tian et al., 2016). In
particular, changes in regional temperature and precipi-
tation can result in significant socio-economic impacts
(Piao et al., 2014; Yu et al., 2014; Wang et al., 2017).
Therefore, it is essential to evaluate temperature and pre-
cipitation changes at regional spatiotemporal scales.

Climate change over China will potentially impact
the largest population in the world. At the same time, cli-
mate projections for China are challenging due to the
diverse regional climates inside its borders
(Li et al., 2018). Most parts of China have experienced
significant warming over the period of 1955–2012 (Jin
et al., 2015). Generally, the warming has been stronger
over the north compared to the south, but there remain
large differences in regional trends (Ge et al., 2013). The
country's population and gross domestic product (GDP)
production is concentrated over three regions, which
national planning typically focuses on. These are the
enormous catchment basins of the Yellow, Yangtze, and
Pearl Rivers, along river lengths of 5,464, 6,300 and 2,320-
km, and covering areas of 752,443, 1,800,000 and
440,000 km2, respectively (Zhao et al., 2011). The Yangtze
and Pearl Rivers have the highest discharges in China, as
well as the highest frequencies of flooding in last several
decades (Yang et al., 2015; Su and Chen, 2019).

There has been significant ecological and environ-
mental damage in the three river basins over the last
30 years. While this was in part to rapid development
(Peng et al., 2017; Omer et al., 2019), climate change and
its impact on hydrological processes has also exacerbated
the situation, for example, accelerated glacial retreat at
the sources of the Yellow and Yangtze Rivers (Bao and
Feng, 2016). Climate change may affect the frequency,
size, location and duration of hydrological extreme events
(Tang et al., 2017; Wang et al., 2018; Wu et al., 2018), and
increased extreme events in China often result in greater
impacts compared to increases of the mean state
(Xu et al., 2019). Hence, climate change over the river
basins has aroused great concern amongst local scientists
(Xi et al., 2018; Xu et al., 2019).

Multiple studies of climate change over different river
basins in China have been carried out in recent years.
Most studies were either based on coarse-resolution earth
system models (Sun et al., 2015; Xu et al., 2019) or did
not differentiate between river basins in different geo-
graphical regions (Bao et al., 2015; Bao and Feng, 2016).
Both observation and model data available in past were
low resolution, and not ideal for analysing climate
change over geographically complex river basins. This
limitation has been overcome with the availability of

high-resolution data from the sixth phase of the Coupled
Model Intercomparison Project (CMIP6) and High-
Resolution Model Intercomparison Project (HighResMIP;
Haarsma et al., 2016). Recent assessment of HighResMIP
results found that the increased spatial resolution
improves model simulation of rainfall in tropical cyclones
(Zhang et al., 2021). Otherwise, the HighResMIP still not
widely used for regional climate change projections over
China.

This study fills in the abovementioned gaps of previ-
ous studies by using output from high-resolution simula-
tions, updating climate projections with CMIP6, and
studying three individual river basins with geographical
climates. Historical and projected changes in three tem-
perature and three precipitation indices over the Yellow,
Yangtze and Pearl River basins are presented below. The
article is structured as follows: Section 2 introduces
the data, and methods used in the study; section 3 evalu-
ates observed and simulated historical climate change,
followed by projected climate change; section 4 presents
the conclusions of the study and discusses some ques-
tions that arose in the study.

2 | DATA AND METHODS

2.1 | Observation and model outputs

The gridded observation-based dataset CN05.1 was used
for calculating historical climate change and validating
model performance (Xu et al., 2009; Wu and Gao, 2013).
This dataset consists of monthly and daily temperature
and precipitation from the period of 1961–2018 and is
based on observations from 2,416 stations interpolated to
the horizontal resolution of 0.25 × 0.25�.

In this study, eight models participating in the Histor-
ical and RCP8.5 Experiments of the Fifth Coupled Model
Intercomparison Project (CMIP5) (Taylor et al., 2012)
and eight models participating in the High-Resolution
Model Intercomparison Project (HighResMIP) of the
Sixth Coupled Model Intercomparison Project (CMIP6)
were used. Information on the 16 models is provided in
Table 1, and more details can be found at https://esgf-
node.llnl.gov/. The HighResMIP was designed to investi-
gate the impact of horizontal resolution on model bias
and simulated climate variability (Haarsma et al., 2016).
Model outputs were re-gridded to the 0.25 × 0.25� hori-
zontal resolution of CN05.1 using bilinear interpolation.

The CN05.1 period of 1961–2018 was used to bench-
mark historical climate changes, against which the
16 models were verified. For climate projections,
the period of 1995–2014 was used as the baseline, against
which the period of 2021–2035 was compared. The period
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of 1995–2014 was selected as the baseline period since it
has been commonly used in previous studies (Mudryk
et al., 2020; Tokarska et al., 2020).

2.2 | Climate indices

Besides the two mean climate indices of mean tempera-
ture (Tas) and daily precipitation (Pr), four extreme cli-
mate indices were analysed. These were the annual
maxima of daily maximum temperatures (TXx), the
annual minima of daily minimum temperatures (TNn),
the annual maximum 1-day precipitation (Rx1day) and
the maximum consecutive number of dry days (CDD).
Details regarding the indices are provided in Table 2. The
four extreme indices were defined by the Expert Team on
Climate Change Detection and Indices (ETCCDI; Frich
et al., 2002; Shi et al., 2017). Model performance and cli-
mate projection were determined in terms of these six
indices, which represent mean and extreme climate.
Three river basins were chosen for analysis (Figure 1),
each with a different regional climate. The regional tem-
perature and precipitation over each basin were analysed
for all sources.

2.3 | Evaluation method

The CMIP5 and CMIP6 models were evaluated in terms
of their ability to reproduce the spatial distributions and
interannual variations of the six climate indices over
China. Two skill scores were used, the Taylor skill score
(TSS; Taylor, 2001) and the interannual variability skill
score (IVS; Chen et al., 2011). Model skill was evaluated
for the 45-year historical period of 1961–2005.

The Taylor skill score (TSS) was used to evaluate the
spatial distribution of the climatology. Using CN0.1 data
as the reference data, and the score is defined as

TSS=4 1+Rð Þ2= σobs
σcmip

+
σcmip

σobs

� �
1+R0ð Þ2

� �
, ð1Þ

where R is the spatial correlation coefficient between the
reference data and CMIP model output values, and
R0 = 1 is the highest R achievable. σcmip and σobs repre-
sent the spatial standard deviation of the simulated and
observed patterns, respectively. The TSS � 1 threshold
value indicates perfect association between model and
observed, whereas TSS = 0 expresses contrary model per-
formance. This technique has been used in previous stud-
ies such as Xin et al. (2020) and Zhu et al. (2020).

The interannual variability skill score (IVS) was used
to evaluate temporal (interannual) variations in the
models, that is, how well the models reproduced the ref-
erence temporal standard deviation. Using CN0.1 data as
the reference data, and the score is defined as

IVS=
STD0

STDm
−
STDm

STD0

� �2

,

where STD0 and STDm denote the interannual standard
deviation of the reference and the simulations, respec-
tively. IVS is a symmetric statistic that filters out

TABLE 2 Definition of climate extreme indices analysed in this study

Number Indices Descriptive name Definition Units

1 TXx Max Tmax The annual maxima of daily maximum �C

2 TNn Min Tmin The annual minima of daily minimum �C

4 Rx1day Maximum 1-day precipitation Annual maximum consecutive 1-day precipitation mm

5 CDD Consecutive dry days Maximum number of consecutive dry days (when
PR < 1.0 mm)

days

Note: The abbreviations are TX daily maximum temperature, TN daily minimum temperature and PR daily precipitation.

FIGURE 1 The locations of the three major river basins

evaluated in this study: Yellow River basin (yellow shading),

Yangtze River basin (purple shading), and Pearl River basin (green

shading). Red lines indicate the three rivers

4 ZHU ET AL.



interdecadal signals, and smaller IVS values indicate bet-
ter performance of the model simulation.

3 | RESULTS

3.1 | Observed historical changes

Figure 2a–c shows the spatial patterns of changes in
annual and seasonal mean temperature (Tas) over China
for the period of 1961–2018. Tas has significantly
increased by more than 1.0�C over most parts of China
(Figure 2a), with significantly stronger warming in win-
ter than in summer (Figure 2b,c). Warming over the Yel-
low River basin was significantly stronger than over the

other two basins. The east part of Yangtze River Basin
alone showed no statistically significant warming in sum-
mer. Figure 2d–f shows the time series of Tas anomaly
over China and three river basins, and despite strong
inter-decadal oscillations, the upward trends were statis-
tically significant. Figure 2g–i shows the increases of
annual, summer and winter Tas over different regions
from 1961 to 2018. Tas over China has increased by 1.7,
2.2 and 1.2�C for the whole year, winter and summer,
respectively. Tas over the Yellow River basin has
increased by 1.8, 2.6 and 1.3�C for the whole year, winter
and summer, respectively. Tas over the Yangtze River
basin has increased by 1.1, 1.5 and 0.6�C for the whole
year, winter and summer, respectively. Tas over the Pearl
River basin has increased by 1.0, 1.3 and 0.7�C for the

FIGURE 2 The observed changes of annual and seasonal temperature during 1961–2018 over the whole of China (grey), the Yellow
River basin (green), the Yangtze River basin (blue), and the Pearl River basin (red). The dotted regions (a–c) significance at 95% confidence

level using the 2-tailed Student's t test. Error bars (g–i) indicate the 95% confidence interval

ZHU ET AL. 5



whole year, winter and summer, respectively. The
warming was the strongest over the Yellow River basin
and weakest over the Pearl River basin.

Figure 3a–c shows the spatial patterns of changes in
annual and seasonal mean precipitation (Pr) over China
for the period of 1961–2018. Pr has significantly increased
in the northwestern and southeastern parts of China and
significantly decreased in the southwestern and northern
parts of China. Pr changes were largest in summer,
reflecting the large baseline monsoon precipitation.
Figure 3d–f shows the time series anomalous of Pr over
China and three river basins. While the upward trend
over the Yangtze River Basin was statistically significant,
the precipitation trends over the Yellow River and Pearl
River basins were not. Unlike mean temperature (Tas)
with clear upward trends over all the study regions, pre-
cipitation trends were not visibly apparent due to their
large inter-decadal variability. The amplitude of inter-
decadal oscillations over the Pearl River basin was

particularly large compared to that over the other two
basins. Figure 3g–i shows the increases of Pr over differ-
ent regions from 1961 to 2018. Pr over China has
increased by about the same 0.1 mm�day−1 for the whole
year, winter and summer. The changes of Pr over Yellow
River and Pearl River basins were not statistically signifi-
cant. Pr over the Yangtze River basin increased by 0.2,
0.2 and 0.5 mm for the whole year, winter and summer,
respectively.

Figure 4 shows the observed changes of extreme tem-
perature (TXx, TNn) and precipitation (Rx1day, CDD)
over China for the period of 1961–2018. Figure 4a–c
shows that the annual maxima of daily maximum tem-
perature (TXx) has significantly increased by 1.2�C over
most parts of China. TXx over the Yellow, Yangtze and
Pearl River basins has increased by 1.5, 1.2 and 1.0�C,
respectively. Like Tas, the increase of TXx was largest
over the Yellow River basin. The increase of TXx over the
Yangtze River basin was about the same as the increase

FIGURE 3 Similar to Figure 2, but for precipitation

6 ZHU ET AL.



over the whole of China, while that over the Pearl River
basin was smaller. Stronger changes were seen in the
annual minima of daily minimum temperatures (TNn),
as shown in Figure 4d–f. The increase of TNn over China
reached 2.8�C, while increases over Yellow, Yangtze and
Pearl River basins reached 2.5, 2.2 and 2.6�C, respec-
tively. While the increases of whole-year Tas and TXx

over the Pearl River basin were the smallest of the three
basins, the increase of TNn was the largest.

Figure 4g–i shows that the annual maximum 1-day
precipitation (Rx1day) over China has significantly
increased by 2.0 mm. However, the local trend of Rx1day
was spatially uneven; Rx1day has increased in the south-
east coastal area, decreased in north, but showed no

FIGURE 4 The observed spatial and temporal variations of extreme indices. (a–c) TXx, (d–f) TNn, (g–i) Rx1day, (j–l) CDD during 1961–
2018. The dotted regions (a, d, g, j) significance at 95% confidence level using the 2-tailed Student's t test. Error bars (c, f, i, l) indicate the

95% confidence interval

ZHU ET AL. 7



obvious trend in the northwest. Almost none of these
local values were statistically significant. Rx1day over the
Yellow River basin showed no statistically significant
increase. Rx1day over the Yangtze and Pearl River basins
has increased by 7.0 and 5.0 mm, respectively. Figure 4j–l
shows that the maximum consecutive number of dry days
(CDD) over China has decreased by 8 days (during the
past 54 years, or 1.5 days�decade−1). Large decreases were
seen over most parts of northwest and northeast China.
CDD over the Yellow River basin showed no statistically
significant decrease, although its 4 days reduction was
large in value. CDD over the Yangtze and Pearl River
basins has reduced by 4 and 1 day, respectively.

Overall, there has been significant warming over most
of China in the past six decades, with warming in winter
stronger than that in summer (Figure 2). The warming
over the Yellow River basin was significantly stronger
than that of over the Yangtze River and Pearl River
basins. Both TXx and TNn has increased significantly,
and the increase of TNn was much larger than that of
TXx. Unlike temperature, the spatial pattern of precipita-
tion change was more complex, with some regions wet-
ting and some drying (Figure 3). The uncertainty in
precipitation change was large, with only a few regions
showing statistically significant changes, mainly wetting.
Precipitation changes over the three river basins were the
same in sign. Pr and Rx1day have increased, while CDD
has decreased. The largest increases of Pr and Rx1day
were seen over the Pearl River basin, but these values
were not statistically significant because the region also
had the largest variability in precipitation.

3.2 | Verification of individual models

The Taylor skill score (TSS; Taylor, 2001) and inter-
annual variability skill score (IVS; Chen et al., 2011)
scores were used to evaluate the simulation of tempera-
ture indices (Tas, TNn, TXx) and precipitation indices
(Pr, Rx1day, CDD) over China for the period of 1961–
2005. The spatial characteristics of China's temperature
and precipitation were generally well-reproduced by most
of the models, in terms of both climate mean and
extreme events. The exceptions were TXx and CDD in
certain CMIP5 models. As a group in general, whether
CMIP5 or CMIP6, temperature was simulated better than
precipitation over China. The CMIP6 models as a group
showed clear improvements over CMIP5 models, particu-
larly for the precipitation indices. The caveat is that the
performances of individual models differ widely within
groups.

Figure 5 shows the TSS of the six climate indices,
used to quantify the models' ability to simulate the spatial

patterns of annual climatological fields. The higher the
value of TSS, the better the simulation. The threshold
value of 0.6 was used to classify if the pattern was well-
simulated.

Figure 5a shows that the spatial distribution of
annual mean temperature over China (Tas) was
extremely well-simulated by all models, with its TSS close
to 1 for all of the CMIP5 and CMIP6 models. TSS of Tas
exceeded 0.95 for two CMIP5 models and five CMIP6
models. These best performers were the CMIP5 models
CCSM4 and EC-EARTH, the CIMP6 model EC-Earth3P,
and the four CMIP6 HadGEM3-GC31 models. We now
discuss TNn before TXx. The TSS of TNn were similarly
high, exceeding 0.8 for all of the eight CMIP5 and eight
CMIP6 models (Figure 5c). The best performers for simu-
lating TNn were MRI-CGCM3, EC-EARTH, EC-Earth3P
and HadGEM3-GC31-HH. In contrast with Tas and TNn,
models show considerable bias in TXx. The TSS of TXx
was lower than 0.6 for every model (Figure 5b). It fell
even below 0.4 for three CMIP5 models and one CMIP6
model. The CMIP6 model in question was
HadGEM3-GC31-LL, the lowest resolution version of
HadGEM3-GC31; the other three versions of -
HadGEM3-GC31 with higher resolutions performed
slightly better. The relatively better performers were the
three EC-EARTH models of EC-EARTH (CMIP5), EC-
Earth3P and EC-Earth3P-HR (CMIP6), as well as CMIP6
model CNRM-CM6-1-HR.

Figure 5d shows that the spatial distribution of
annual mean precipitation over China (Pr) was still well-
simulated, with its TSS exceeding 0.6 for all models.
However, the precipitation was not as well-simulated as
temperature, and the TSS of Pr did not exceed 0.9 for any
model. The best performers for simulating Pr were the
CMIP5 models CanESM2 and EC-EARTH, and
the CMIP6 models of EC-Earth3P and EC-Earth3P-HR.
Figure 5e shows that Rx1day was also well-simulated,
with the exception of two CMIP5 models. The TSS of
Rx1day exceeded 0.6 for all models except the CMIP5
models BNU-ESM and FGOALS-g2. The CMIP6 models
as a group performed better than the CMIP5 models; four
of the eight CMIP5 models had TSS more than 0.1 lower
than the minimum TSS of the CMIP6 models (�0.75).
For all CMIP6 models, the best performers for simulating
Rx1day were CNRM-CM6-1, CNRM-CM6-1-HR,
HadGEM3-GC31-LL and HadeGEM3-GC3-MM. TSS was
lower for the two higher resolution HadGEM3-GC31-HH
and HadGEM3-GC31-HM compared to the two lower
resolution version. Figure 5f shows that CDD was only
well-simulated in three of the CMIP5 models—Can-
ESM2, EC-EARTH and MRI-CGCM3. The TSS of CDD
fell below 0.6 for all other CMIP5 models. In contrast, the
TSS scores for all CMIP6 models exceeded 0.6.
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The CMIP6 models as a group clearly performed better
than the CMIP5 models. The other five of the CMIP5
models had TSS lower than the minimum TSS of the
CMIP6 models. The best performing CMIP6 models for
simulating CDD were the HH, HM and MM versions of
HadGEM3-GC31.

Figure 6 shows the IVS of the six climate indices, used
to quantify models' ability to simulate interannual varia-
tion over China. The lower the value of the IVS, the better
the simulation. Different thresholds were used for different
climate indices to classify if interannual variation was
well-simulated. Figure 6a shows that the performance for
mean temperature over China (Tas) varied greatly between

models. Interannual variation was well-simulated by half
of the models with IVS less than 0.1. These were the three
CMIP5 models of BCC-CSM1-1, EC-EARTH and
FGOALS-g2, and five CMIP6 models which were EC-
EARTH3P-HR and the four versions of HadGEM3-GC31.
Simulation was poor for three models with IVS exceeding
0.3, the CMIP5 model BNU-ESM, and two CMIP6 models
CNRM-CM6-1 and EC-Earth3P. Like for the discussion of
TSS, TNn will be discussed here before TXx. Figure 6c
shows IVS of TNn, also with very different performance
between models. Interestingly, the CMIP5 models as a
group performed better than the CMIP6 models. The best
performers were CanESM2, CCSM4, CNRM-CM4 and

FIGURE 5 Skill scores in terms of TSS showing the performance of models (CMIP6 in red, CMIP5 in blue) in simulating annual

climatological fields over China for Tas (a), TNn (b), TXx (c), Pr (d), Rx1day (e) and CDD (f)
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EC-EARTH of all CMIP5 models. The worst performer
was also a CMIP5 model, BNU-ESM with IVS of 0.9. The
relatively better performers were CMIP5 models CNRM-
CM5 and EC-EARTH, and CMIP6 model CNRM-CM6-1.
Figure 6b shows the IVS of TXx, which exceeded 4.0 for
most of the models, indicating that interannual variation
of TXx was poorly simulated. The IVS value of BNU-ESM
was the largest at about 10. The overall poor performance
simulating interannual variation was consistent with the
poor performance simulating spatial distribution, previ-
ously concluded from the TSS results. Figure 6d–f shows
the IVS of precipitation indices. Similar to the temperature
indices, the performance varied greatly between models.
Some models performed well for one precipitation index,

but poorly for another. This indicated large uncertainties
exist when drawing conclusions about precipitation from
individual models.

To intuitively assess the overall performance of
CMIP5 and CMIP6 models over China, the sum of TSS
and IVS across indices are shown in Figure 7a,b, respec-
tively. Since there are six climate indices, a total TSS
closer to 6.0 indicates a better simulation. A smaller total
IVS indicates a better simulation.

From Figure 7a, total TSS exceeded 4.0 for four
CMIP5 models and all eight CMIP6 models. The total
TSS for the CMIP6 models was consistently high, with
scores between 4.5 and 5.0. In contrast, the total IVS var-
ied widely between individual CMIP5 models. Total TSS

FIGURE 6 Skill scores in terms of IVS showing the performance of models (CMIP6 in red, CMIP5 in blue) in simulating temporal

variation over China for Tas (a), TNn (b), TXx (c), Pr (d), Rx1day (e) and CDD (f)
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fell below 4.0 for BCC-CSM1-1, BNU-ESM and FGOALS-
g2, indicating poor performance. From Figure 7b, total
IVS varied widely between individual CMIP5 and CMIP6
models. The best performers (lowest total IVS) were
CMIP5 models CNRM-CM5 and EC-EARTH, and CMIP6
models CNRM-CM6-1 and EC-Earth3P-HR. The com-
bined results of TSS and IVS indicated that in comparison
with observed climatology, the spatial distributions of
temperature and precipitation were well-simulated, but
interannual variations less well so. In view of this vari-
able performance, the multi-model ensemble means
(MME) of CMIP5 and CMIP6 models will be used for cli-
mate projections in the sections below.

3.3 | Verification of multi-model
ensemble means

The results presented in this section are based on the
CMIP5 and CMIP6 multi-model ensemble means
(MMEs). Figure 8 shows the climatological pattern and

change of the temperature climate indices (Tas, TXx,
TNn) over China for the period of 1961–2005. From
Figure 8a, observed mean temperature (Tas) was higher
over southeast China, lower over northwest and north-
east China, and lowest over the Qinghai-Tibet Plateau in
southwest China. The maximum and minimum mean
temperatures were about 22 and −10�C, respectively.
From Figure 8b,c, this spatial pattern was well-
reproduced by both CMIP5 and CMIP6 MMEs. The mini-
mum Tas was lower in the two MMEs compared to
observation, due to negative bias over the Qinghai-Tibet
Plateau. Figure 8d shows the change of Tas from 1961 to
2005. Both CMIP5 and CMIP6 MMEs underestimated the
warming of Tas over China. For the river basins, both
MMEs underestimated warming over the Yellow River
basin and overestimated warming over the Yangtze
River basin. The CMIP5 MME overestimated the
warming over the Pearl River basin, while the
CMIP6 MME underestimated it.

From Figure 8e, the spatial pattern of the annual
maxima of daily maximum temperatures (TXx) looked

FIGURE 7 Sum scores in terms

of TSS (a) and IVS (b) showing the

performance of CMIP5 and CMIP6

models in simulating climatology and

interannual variation over China for

Tas (green), TNn (blue), TXx

(yellow), Pr (orange), Rx1day (red)

and CDD (pink)
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quite similar to the spatial pattern of Tas. From Figure 8f,
g, the spatial pattern of TXx was well-reproduced by both
CMIP5 and CMIP6 MMEs. Like Tas, TXx was less well-
simulated over the Qinghai-Tibetan Plateau, with
warming overestimated by the CMIP5 MME and under-
estimated by the CMIP6 MME. Figure 8h shows the
change of TXx from 1961 to 2005. Both CMIP5 and
CMIP6 MMEs overestimated the warming over China.
For the river basins, both MMEs overestimated the

warming over the Yangtze River and the Pearl River
basins. The CMIP5 MME overestimated the warming
over the Yellow River basin, while the CMIP6 MME
underestimated it.

Figure 8i–k shows that for the annual minima of daily
minimum temperatures (TNn), both CMIP MMEs agree
well with observation in terms of spatial pattern, but
were biased low over the cool Qinghai-Tibet Plateau and
warm southern China. Figure 8l shows the change of

FIGURE 8 The climatological pattern and change of Tas, TXx and TNn during 1961–2005 over China, calculated from the CMIP5 MME

and the CMIP6 MME. Error bars indicate significance at 95% confidence level using the 2-tailed Student's t test
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TNn from 1961 to 2005. Observed TNn has increased over
China and all three river basins. This increase was clearly
larger than the increase of Tas and TXx. Both MMEs
underestimated this increase, and the CMIP6 MME per-
formed worse.

Figure 9 shows the climatological pattern and change
of the precipitation climate indices (Pr, Rx1day, CDD)
over China for the period of 1961–2005. From Figure 9a,
mean daily precipitation (Pr) over China for the period of
1961–2005 was lower over northwest China and higher

over southeast China. From Figure 9b,c, this spatial pat-
tern was well-reproduced by both CMIP5 and
CMIP6 MMEs. Over dry northwest China, the
CMIP5 MME had a positive bias (wetter), while
the CMIP6 MME matched observation better. Figure 9d
shows the change of Pr from 1961 to 2005. The results
from both MMEs were clearly different from observation.
This was especially so over the Yellow River basin, where
the observed change was negative (but not statistically
significant). Both MMEs produced positive change

FIGURE 9 The climatology distribution and trend of Pr, Rx1day and CDD during 1961–2005 over China, calculated from the

CMIP5 MME and the CMIP6 MME. Error bars indicate significance at 95% confidence level using the 2-tailed Student's t test
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instead. Over the Pearl River basin, the observed
change was positive, but both MMEs produced negative
changes. In this case, none of the results were statistically
significant since uncertainty (confidence interval) was
the largest over the Pearl River basin.

From Figure 9e–g, the spatial pattern of the annual
maximum 1-day precipitation (Rx1day) was well-
reproduced by both MMEs, with no outstanding biases.
Figure 9h shows the change of Rx1day from 1961 to
2005. The results from both MMEs were of the same sign
as the observed change, but had positive biases (wetter).
The bias was especially large for the CMIP6 MME over
the Pearl River basin.

From Figure 9e,f, spatial pattern of the maximum
consecutive number of dry days (CDD) had notable
biases in both MMEs. This occurred mainly over the high
values (drier) over northwest China. The coverage of
these high values was smaller in the MMEs compared to
observation. Similar to the average precipitation, the
model had significant deviation of CDD evolution trend
in different regions of China between the simulation
results and the observed values. From Figure 9g, the
change of CDD from 1961 to 2005 was clearly biased in
the MMEs.

In summary, the CMIP5 and CMIP6 MMEs
reproduced the spatiotemporal characteristics of tem-
perature and precipitation over China, both in terms of
mean and extremes. The spatial patterns of the climate
indices were in good agreement with observation.
From visual inspection, the CMIP6 spatial patterns
appear improved from CMIP5. However, the time
change of the climate indices model showed large
biases for TNn and the precipitation indices. Changes
in the precipitation indices were even of opposite sign
from observation when the analysis was performed for
individual river basins in China. Current earth system
models are relatively reliable for temperature analysis,
but uncertainty is large for precipitation analysis. Pre-
cipitation changes over individual river basins should
not be used.

3.4 | Near-term climate projections

Climate projections of temperature and precipitation over
China were calculated from the CMIP5 and
CMIP6 MMEs. The RCP8.5 scenario was used for the
CMIP5 models, while the CMIP6 models were taken
from the HighResMIP experiment. The HighResMIP
experiment was compared against RCP8.5 because its
emissions were based on RCP8.5; hence, the CMIP5
RCP8.5 simulations and the CMIP6 HighResMIP simula-
tions were most comparable.

Figure 10 shows the projected changes of temperature
indices (Tas, TXx and TNn) for the period of 2015–2050.
From Figure 10a–c, Tas will increase significantly over
all of China. From the CMIP5 MME, the increase
over cool northwest China will be larger than over warm
southeast China. In contrast, the CMIP6 MME showed
uniform warming throughout China. From Figure 10c,
Tas over China will increase by 1.4 and 2.0�C, from the
CMIP5 and CMIP6 MME, respectively. From
the CMIP5 MME, Tas over the Yellow, Yangtze and Pearl
River basins will increase by 1.5, 1.4 and 1.0�C, respec-
tively. From the CMIP6 MME, the values will be 2.2, 2.0
and 1.7�C, respectively. The projected warming was
clearly stronger from the CMIP6 MME compared to the
CMIP5 MME.

From Figure 10d–f, TXx will also increase signifi-
cantly over China. From the CMIP5 MME, TXx will
increase by more than 1�C over most of China. The
CMIP6 MME predicts a stronger increase of more than
2�C over most of China. From Figure 10f, TXx over
China will increase by 1.5 and 2.2�C, from the CMIP5
and CMIP6 MME, respectively. From the CMIP5 MME,
TXx over the Yellow, Yangtze and Pearl River basins will
increase by 1.4, 1.3 and 1.0�C, respectively. From the
CMIP6 MME, the values will be 2.1, 2.3 and 2.0�C,
respectively.

From Figure 10g–i, the spatial patterns of TNn
change were clearly different between CMIP5 and
CMIP6 MMEs. The CMIP5 MME showed significant
increases over northwest and northeast China.
Increases over central and south China were not statisti-
cally significant. The CMIP6 MME show significant
increases over most of China. Increases over some
regions exceeded 5�C. From Figure 10i, the TNn over
China will increase by 1.0 and 2.2�C, from the CMIP5
and CMIP6 MME, respectively. From the CMIP5 MME,
TNn over the Yellow, Yangtze and the Pearl River
basins will increase by 0.4, 0.6 and 0.5�C, respectively.
From the CMIP6 MME, the values will be 2.6, 2.0 and
1.6�C, respectively.

Figure 11 shows the projected changes of precipita-
tion indices (Pr, Rx1day, CDD) for the period of 2015–
2050. From Figure 11a–c, the spatial patterns of Pr
change were similar in the two MMEs, showing increases
(wetting) over most of China. Over south China, the
CMIP6 MME predicted a larger increase than
the CMIP5 MME. From Figure 11c, Pr over China will
increase by 0.15 mm from the CMIP5 MME. From the
CMIP5 MME, Pr over the Yellow, Yangtze and Pearl
River basins will increase by 0.16, 0.2 and 0.34 mm,
respectively. The values from the CMIP6 MME were
almost the same as the CMIP5 results, with only the pro-
jected increase over the Pearl River basin being much
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larger at 0.66 mm, reflecting the differences over south
China.

From Figure 11d–f, the spatial patterns of Rx1day
change were also similar in the two MMEs, except over
the Pearl River basin in south China. From Figure 11f,
Rx1day over China will increase by 4 and 5 mm, from
the CMIP5 and CMIP6 MME, respectively. From the
CMIP5 MME, Rx1day over the Yellow, Yangtze and Pearl
River basins will increase by 4, 6 and 10 mm, respec-
tively. From the CMIP6 MME, the values will be 5, 7 and
17 mm, respectively.

From Figure 11g–i, the CMIP5 and CMIP6 MMEs dis-
agree over the sign change of CDD over south China.
The CMIP5 MME predicted a decrease (wetter) while the
CMIP6 MME predicted an increase (drier).
The CMIP6 MME also predicted a much stronger
decrease of CDD (wetter) over northwest China. From

Figure 11i, CDD over China will decrease by 3.0 days
from both MMEs. From the CMIP5 MME, CDD over the
Yellow, Yangtze and Pearl River basins will decrease by
2.0, 0.5 and 2.0 days, respectively. From the
CMIP6 MME, CCD will decrease over the Yellow River
basin by 4.0 days, but increase over the Yangtze and Pearl
River basins by 1.0 and 3.0 days, respectively. The sign
difference in changes over the Yangtze and Pearl River
basins reflected the disagreement between the two MMEs
over south China.

Both CMIP5 and CMIP6 MMEs predicted significant
increases in mean temperature (Tas) and extreme tem-
peratures (TXx, TNn) over most of China, with CMIP6
predicting larger increases. The MMEs also predicted
increases in precipitation (Pr) and extreme precipitation
(Rx1day) over most of China, especially over the Pearl
River basin. Again, CMIP6 predicted larger increases.

FIGURE 10 The projected changes of Tas, TNn and TXx during 2015–2050, calculated from the CMIP5 MME and the CMIP6 MME, for

the whole of China, the Yellow River basin, the Yangtze River basin and the Pearl River basin. Error bars indicate the 95% confidence

interval
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The local changes in precipitation indices were mostly
not statistically significant, but regional statistics were
mostly significant except for changes of CDD over indi-
vidual river basins. Although the two MMEs were in
agreement on the sign change of the climate indices, the
many of the predicted quantitative values were statisti-
cally different between CMIP5 and CMIP6.

4 | CONCLUSION

Historical changes of temperature and precipitation over
the Yellow River, Yangtze River and Pearl River basins
were evaluated using the high-resolution observation-
based dataset CN05.1, eight models from Historical and
RCP8.5 experiments in CMIP5, eight models from the
HighResMIP experiment in CMIP6 and the CMIP5/6
multi-model ensemble means (MMEs). CN05.1 was used

to assess the performance of the CMIP5/6 simulations.
Climate projections up to the year 2050 were then evalu-
ated using the CMIP5 and CMIP6 MMEs.

From the observation-based CN05.1 dataset, most
part of China has warmed significantly over the period of
1961–2018, with more severe warming in winter. Tem-
perature over the Yellow River basin has increased by
about 1.8�C, greater than the other two basins. Precipita-
tion has increased significantly over the northwestern
and southeastern regions of China, but decreased signifi-
cantly over the southwestern and northern regions of
China. Precipitation over the Pearl River basin has
increased by about 0.4, 0.35 and 0.8 mm�day−1 for the
whole-year, in winter and in summer, respectively,
greater than the other two basins. The extreme high and
low temperatures have increase significantly which are
stronger than the mean temperature over China and the
three main river basins. The Rx1day has increased

FIGURE 11 Similar to Figure 10, but for Pr, Rx1day and CDD
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slightly with the most significant upward trend that has
happened over Pearl River basin, and the CDD has
decreased. The uncertainty in the change of precipitation
was greater than that of temperature.

Most of the CMIP5 and CMIP6 models reproduced
the changes of temperature indices better than changes
of precipitation indices. The use of MMEs improved the
estimations of both temperature and precipitation.
The CMIP6 models performed better than the CMIP5
models, especially for temperature changes over the
Yangtze River and the Pearl River basins, as well as pre-
cipitation changes over the Yellow River and the Pearl
River basins. However, this may be due to improvements
of the CMIP6 models, the higher resolution of the
HighResMIP selection of CMIP6 models, or simply the
selection of individual models in the CMIP6 set. At this
point we do not know which is outside the scope of this
study without analysing the detailed performance of indi-
vidual models.

Both CMIP5 and CMIP6 MMEs projected warming
over the whole of China and the three river basins in the
next few decades, with stronger warming projected by
the CMIP6 MME, which predict about 2.0�C warming
over the whole China and the three river basins during
2021–2050. Both CMIP5 and CMIP6 MMEs projected
wetting over the whole of China, but disagree on the spa-
tial pattern of change. The largest disagreement occurred
over the Pearl River basin. The CMIP5 MME projected
significant wetting during 2015–2050, but the
CMIP6 MME projected (nonsignificant) drying during
2015–2050.

When assessing the socio-economic impacts of cli-
mate change for China, it is sensible to make targeted cli-
mate projections for regions of high population density
and economy activity, rather than make combined pro-
jections over socio-economically and climatically diverse
regions. Much of human activity is concentrated at river
basins, yet in the past it has been difficult to resolve the
complex boundaries of these basins in coarse resolution
global climate models. New high-resolution CMIP6
experiments and the observation-based CN05.1 dataset
have now enabled such basin-based evaluations, as was
demonstrated in this study. However, there is obvious
uncertainty in the projections for the precipitation over
the three river basins. Uncertainty in future emissions,
internal variability of the climate system and model
response are three main sources of uncertainty. It is
important to make sure that the different sources of
uncertainty are identified when using CMIP models to
conduct climate projection. Different responses to the
same forcing can emerge due to different processes and
feedbacks as well as due to the parameterization used in

the different models (Zelinka et al., 2020). In addition,
there are uncertainties exiting in the interpolation for
outputs from CMIP models to the grid of the observation
data with 0.5 × 0.5� through bilinear interpolation. The
authors recommend further evaluation of precipitation
projections either with more ensemble members, more
models or dynamical downscaling with regional models.
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