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Can IMERG Data Capture the Scaling of Precipitation
Extremes With Temperature at Different Time Scales?
Seyed-Mohammad Hosseini-Moghari! (= and Qiuhong Tang'?*

'Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources
Research, Chinese Academy of Sciences, Beijing, China, *University of Chinese Academy of Sciences, Beijing, China

Abstract This study evaluates the validity of the Integrated Multisatellite Retrievals for Global
Precipitation Measurement (IMERG) in scaling extreme precipitation with temperature (termed scaling factor,
SF). To this end, we use Hadley-Integrated Surface Database (HadISD) data set at 1-hourly, 6-hourly, and
24-hourly scales between 2000 and 2020 over the contiguous United States (CONUS) as a reference data

set. Our findings reveal that IMERG can capture changes in precipitation extremes with the temperature at
6-hourly, and 24-hourly scales, especially over dry regions. The difference between IMERG's SF and HadISD's
SF at 6-hourly scale is less than 0.3%/°C in dry areas. However, IMERG underestimates SF in wet regions,
especially at 1-hourly scale, up to ~5%/°C. It is found that IMERG's performance is dependent on temperature,
particularly at 1-hourly scale. IMERG overestimates extreme precipitations when temperatures are below
5°-11°C while the opposite is true at higher temperatures, indicating the need for considering temperature in
adjusting IMERG.

Plain Language Summary Understanding the scaling rate of precipitation extremes with
temperature can help to estimate precipitation extremes under global warming. However, we do not have

in situ precipitation data in many parts of the world to monitor changes in precipitation extremes with
temperature. The remotely sensed precipitation data sets that are available globally with high spatio-temporal
resolution might be excellent resources to use for this purpose. To discover that, in this study, we evaluated

the performance of the Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) as
one of the newest precipitation data sets for scaling extreme precipitation with temperature over the contiguous
United States. We compared IMERG's results with Hadley-Integrated Surface Database results at 1-hourly,
6-hourly, and 24-hourly scales. Results indicate IMERG has a considerable performance at 6-hourly and
24-hourly time scales.

1. Introduction

Given the thermodynamic Clausius-Clapeyron (CC) relationship, the moisture-holding capacity of the atmos-
phere increases by ~7% per degree of warming (Fujibe, 2013; Trenberth et al., 2003). Assuming the constant rel-
ative humidity, the actual air humidity rises simultaneously (Ali et al., 2021), resulting in heavier precipitation at
higher temperatures (Schroeer & Kirchengast, 2018). This increase in precipitation rate would increase the risk of
flash floods and landslides, threatening socio-economic infrastructures (Fadhel et al., 2018; Fowler et al., 2021).
Therefore, in order to planning and socio-economic decision-making, there is a clear need to understand how the
extreme precipitation responds to an increase in temperature (Ali et al., 2021; Fowler et al., 2021).

Many regional and global studies attempted to estimate the rate of increase in precipitation intensity with rising
temperature (e.g., Ali et al., 2018; Lenderink et al., 2021; Vergara-Temprado et al., 2021; W. Zhang et al., 2019).
This rate, called scaling factor (SF), is affected by many factors such as precipitation duration and type, sea-
sonality, large-scale circulations (Berg et al., 2009; Panthou et al., 2014; Pumo & Noto, 2021). However, stud-
ies generally agree on higher SF in shorter durations (Ali et al., 2021; Fowler et al., 2021; Lenderink & van
Meijgaard, 2008).

Despite the large body of work on the extreme precipitation-temperature relationship, its understanding entirely
remains an open question over many regions due to several reasons, including data availability issue that is, the
low number of observation sites. Under this circumstance, finding a new source of information is vital. Remotely
sensed precipitation data is one potential data source that could be applied in this find (Ali et al., 2021; Fowler
et al., 2021). Nowadays, several institutions work on the precipitation estimation using remotely sensed data
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resulting in various precipitation products with an acceptable spatio-temporal resolution, for example, Tropi-
cal Rainfall Measuring Mission (TRMM; Huffman et al., 2007) Climate Prediction Center morphing technique
(CMORPH.; Joyce et al., 2004), Precipitation Estimation from Remotely Sensed Information Using Artificial
Neural Networks (PERSIANN; Sorooshian et al., 2000). Although, these data show noteworthy potentials in
several fields, for example, drought monitoring, extreme precipitation analysis, hydrological modeling, etc. (Ca-
loiero et al., 2021; DaSilva et al., 2021; Jiang et al., 2021; Le et al., 2020; Liu et al., 2020; Zubieta et al., 2017),
their performance in analyzing the relationship between precipitation extremes and temperature is unknown.

One of the latest satellite-based precipitation products is the Integrated Multisatellite Retrievals for Global Pre-
cipitation Measurement (IMERG, G. J. Huffman et al., 2015). This data set has attracted attention to be applied
in the majority of fields due to its unique features, that is, high spatial (0.1° X 0.1°) and temporal (30 min) res-
olution, full coverage of the globe, available to the public free of charge and without any restrictions, providing
around 20-year data almost without any gap, and relatively short latency (Hosseini-Moghari & Tang, 2020).
These features make the IMERG an attractive alternative for in situ data in assessing the extreme precipita-
tion-temperature relationship. However, before jumping to any conclusions based on the IMERG information, we
should keep in mind that there is no guarantee for the validity of its data. And understanding its error character-
istics and its validity is vital before using that in operational applications. Therefore, this question remains open
that how IMERG performs in scaling extreme precipitation with temperature at subdaily scale. To fill this gap,
in this study, we focus on quantifying IMERG's capability to scale precipitation extreme at 1-hourly and 6-hourly
time scales as well as at the daily scale. To this end, we use HadISD (Hadley-Integrated Surface Database) data
set as a reference for evaluating IMERG performance in different spatio-temporal scales over the contiguous
United States (CONUS). The rest of this paper is structured into three sections. In Section 2, the employed data
and the Methods of the study are presented in detail. The results and discussion are shown in Section 3. At the
end, conclusions are presented in Section 4.

2. Data and Methods
2.1. HadISD Data Set

HadISD is a station-based data set of meteorological variables based on data from the ISD (Smith et al., 2011)
handed out by the Met Office Hadley Centre (Dunn et al., 2012). This data set offers observed subdaily data
for significant parts of the world to study past extremes events (Dunn et al., 2016). HadISD Includes more than
8,000 stations worldwide, mainly over North America and Europe (Molina et al., 2021). This data set embraces
several meteorological variables (see Table 4 in Dunn et al., 2016). Here, we obtained precipitation and dew point
temperature (DPT) data from its current version (version 3.1.1.2020f). Although this data set covers 1931-2020
(for a small proportion of stations), we used HadISD data from June 2000 to November 2020 to be consistent
with IMERG data. We considered only those stations with at least 10 years of data and no less than 1,212 events.

It should be noted that due to the goal of this study, time continuity is not a concern. After applying these filters,
only the number of stations with 1-hr, 6-hr, and 24-hr reports was considerable over North America and some
parts of Europe. Therefore, we consider the CONUS as a case study in this paper. Later, we checked the quality of
the data in terms of outliers, negative value, and consistency in reporting different subdaily scales, for example,
6-hr precipitation events equal or greater than 1-hr events in the same period. Ultimately, from more than 1,200
stations over the US, we have 848 stations at 1-hourly scale, 762 stations at 6-hourly scale, and 627 stations at
24-hourly scale. We did not calculate 24-hr data from 1-hr or 6-hr data because of existing gaps. Therefore, the
number of stations with 1-hr and 6-hr reports is more than 24-hr due to having more events.

2.2. IMERG Data Set

IMERG is a unified algorithm developed by Huffman et al. (2015) to estimate the precipitation based on ob-
servations from Global Precipitation Measurement (GPM) and a multinational constellation of satellite-borne
microwave radiometers. IMERG freely offers 30-min precipitation with a spatial resolution of 0.1° X 0.1° (Skof-
ronick-Jackson et al., 2017). Until the fifth version, IMERG includes only the GPM era. Later, in version 6,
the IMERG was applied on TRMM observations to extend back the starting date from March 2014 to June
2000 (Hosseini-Moghari & Tang, 2020). IMERG includes three types of products, that is, early, late, and final
runs with a time latency of 4-hr, 12-hr, and 3.5 months, respectively (Tan et al., 2019). Currently, the final run
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is adjusted using the Global Precipitation Climatology Centre (GPCC) data set at a monthly scale (Huffman
et al., 2015). There is a possibility of shared stations between GPCC and HadISD data sets resulting in IMERG
and HadISD data sets may not be fully independent. However, due to the fact that the IMERG adjustment is
made at a monthly scale and our analysis is done at daily and sub-daily scales, as well as the much higher spatial
resolution of IMERG than GPCC, we assumed that the possible overlap of the two data sets would not affect the
comparison results. In this study, we obtained 30-min precipitation data from IMERG version 6 final run over the
CONUS from June 2000 to November 2020. Then, we extracted the IMERG data at each station's location and
generated 1-hr, 6-hr, and 24-hr precipitation data from 30-min data for the same periods that each station has data.

2.3. Methods

The binning approach was used to estimate precipitation sensitivity with temperature (Lenderink & van Mei-
jgaard, 2008; X. Zhang et al., 2017). We considered the pairs of DPT and precipitation in wet hours (with precipi-
tation >0.1 mm) to analyze the precipitation-temperature relationship. We sorted the pairs DPT and precipitation
in ascending order by DPT and then put them into 12 bins with an equal number of pairs (Herath et al., 2018).
Also, the stations with less than 1,212 events were excluded from the calculations, that is, no less than 100 events
per bin were considered. Mean DPT and the 99th percentile of precipitation (P99'™") were calculated for each bin.
The first and last bins were excluded from the SF calculation to deal with the specific atmospheric circulation
influence on very low and very high DPT values (Ali et al., 2021). Then, a linear regression (Equation 1) was
fitted to the P99™ and mean DPT vector for each station (Ali & Mishra, 2017; Ali et al., 2018; Bui et al., 2019):

In(P99™) = oDPT + B )
SF = 100 x [exp(a) — 1], )

where DPT is mean DPT (°C), a and f denote slope and intercept of the linear regression, respectively; and SF is
scaling of precipitation with temperature (%/°C). It should be noted that to cap the significant impact of the cool-
ing effect on SF in the tropical area, SFs were calculated based on antecedent DPT (DPT before a precipitation
event) for those stations located in this climate (Hosseini-Moghari et al., 2022; Visser et al., 2020).

We divided the stations into two categories, that is, stations lie in wet and dry regions based on the wet/dry classi-
fication map from Donat et al. (2016). Donat et al. (2016) provided two precipitation-based wet/dry classification
maps based on the total annual precipitation (PRCTOT) and the annual-maximum daily precipitation (Rx1day)
indices. In their map, one cell is considered as a wet (dry) cell if its normalized index (i.e., PRCTOT or Rx1day)
is among the 30% highest (lowest) normalized index values. More information about wet and dry regions can be
found in Donat et al. (2016). Moreover, due to the notable impact of climate on precipitation's scaling with tem-
perature (Panthou et al., 2014), we split the CONUS into four main climatic regions, that is, arid, cold, temperate,
and tropical climate zones based on the Koppen-Geiger climate classification map from Beck et al. (2018) (see
Figure S1 in Supporting Information S1). It needs to be noted that climate is an imprecise proxy for precipitation
types and morphologies that occur in a regime. Indeed, some types of precipitating systems directly and con-
tinuously scale with increasing humidity and temperature, and some do not. Mesoscale convective systems, for
example, do not simply or continuously scale with convective available potential energy because they are also
strongly related to the environmental wind shear and terrain (if any) forcing. Hence, it can be a potential source
for uncertainty and reduce the accuracy of our results. However, it can be assumed that its impact on the results
of both data sets is almost similar; therefore, the comparison would be valid. The number of stations in arid, cold,
temperate, and tropical climates is 177 (148/107), 337 (312/274), 328 (292/242), and 6 (10/4) stations for 1-hr
(6-hr/24-hr) time scale, respectively. We also calculated SFs by randomly removing 25% and 50% of stations in
each climate zone (except tropical) to see how SF is sensitive to the number of stations. Results did not show a
considerable difference indicating the robustness of sample size (see Figure S2 in Supporting Information S1).

To generate the extreme precipitation-temperature curves, inspired by Lenderink et al. (2021), we grouped all
stations with elevation above and below 400 m in each climate zone. This separation helps avoiding artificially
flat curves by dealing with the DPT mixing from different elevations (Ali et al., 2021). Then, we put all data
pairs of precipitation and positive DPT of all stations in a climate zone and an elevation class together to generate
a precipitation-temperature curve based on 12 bins with an equal number of pairs. Due to the low number of
stations in tropical areas, the curves were not plotted for this climate. Finally, in addition to P99™, we analyzed
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Figure 1. Scaling factors (SFs) for the 99th percentile of (a and b) 1-hourly, (d and e) 6-hourly, (g and h) and 24-hourly precipitation from the Hadley-Integrated
Surface Database (HadISD; left column) and Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG; middle column) datasets using dew
point temperature. The right column indicates the difference between IMERG's SFs and HadISD's SFs at (c) 1-hourly, (f) 6-hourly, and (i) 24-hourly time scale. The
pink and black numbers indicate the number of stations/pixels and median of SFs at each time scale, respectively.

changes in the rate of SF for the 50th, 75th, and 95th percentiles of precipitation data from HadISD and IMERG
in different climate zones.

3. Results and Discussion

The spatial distribution of obtained SFs from HadISD and IMERG, as well as the difference between them over
the CONUS was shown in Figure 1. First, we compared HadISD's results with the findings of Ali et al. (2021),
who used the GSDR with more than 3,000 stations for scaling precipitation extremes over the CONUS. Ali
etal. (2021) reported a median SFs of 6.2% and 3.3%/°C for 1-hourly and 24-hourly time scales. Here, we found a
median scaling rate of 7.1% and 3.0%/°C at 1-hourly and 24-hourly time scales. The results of HadISD are similar
to GSDR, and small differences can be related to the different number of stations used. Therefore, HadISD can
be considered as truth for the IMERG assessment.

From Figure 1, in line with Vergara-Temprado et al. (2021), the median of obtained SFs from HadISD at 1-hourly
scale (7.1%/°C) is close to our expectation from the CC relationship, that is, ~7%/°C. However, IMERG sig-
nificantly underestimates SFs over the CONUS at 1-hourly scale, particularly in the east of the CONUS. The
median of IMERG's SFs at 1-hourly scale is 2.1%/°C, well below CC-like scaling. The difference between the
median of obtained SFs from IMERG at 1-hourly, and 24-hourly scales is 0.3%/°C. In comparison, this value is
4.1%/°C for HadISD, indicating that the variation of SFs of IMERG across time scales is significantly less than
HadISD. Indeed, a decrease in SF rates is expected with increasing time scale (as reported in previous studies,
e.g., Ali et al., 2021, Fowler et al., 2021, and Guerreiro et al., 2018). However, this decrease from 1-hourly to
24-hourly scale is not considerable in IMERG's results due to its poor performance in representing the scaling
rate of 1-hourly scale. At the 6-hourly scale, SFs from IMERG have an almost similar pattern to HadISD in the
center and the west of the CONUS, suggesting improvement in IMERG performance compared with the 1-hourly
scale. This improvement continues with increasing time scale, that is, a similar SFs pattern almost over the whole
CONUS (expect the south-east) at 24-hourly scale. The median difference between SFs obtained from IMERG
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Figure 2. Relationship between the 99th percentile of precipitation at 1-hourly, 6-hourly, and 24-hourly time scale and dew
point temperature based on the gauges/pixels at less and above than 400 m elevation in (a and d) arid, (c and e) cold, and

(c and f) temperate climates. The pink numbers indicate the number of stations/pixels in each time scale. The inner color
numbers show corresponding scaling factor to each line. The y-axis has a logarithmic scale. Note the tropical climate was
excluded due to the limited number of stations.

and HadISD is only —1.1%/°C at 24-hourly scale. The reason for the poorer performance of IMREG at 1-hourly
scale can be traced in the way of IMERG adjustment. IMERG final run is adjusted using monthly GPCC data
(Huffman et al., 2015). Therefore, it is more likely that daily data get close to the observation values. However,
an equal percentage of bias correction may be less helpful for hourly time scales, where the distribution of pre-
cipitation plays a vital role.

Unlike SFs that show the overall change of precipitation extremes with increasing the temperature as a single
value, the precipitation extreme-temperature curves illustrate the change of precipitation extremes within the
temperature range. Recall that the curves were not plotted for tropical regions due to the limited number of sta-
tions (see Section 2.3). According to Figure 2, scaling curves obtained from IMERG and HadISD are close at the
daily scale, while their slopes are different at 1-hourly scale. Generally, precipitation extremes from IMERG are
larger than HadISD for temperatures below 10°C, while the opposite is true for precipitation extremes at higher
temperatures. Interestingly, Ali et al. (2021) reported the relatively low intensities for precipitation extremes (be-
low CC-like scaling) over the Europe when DPT is below 10°C. Regardless of the precipitation intensities, the
slope of precipitation extreme-temperature curves from IMERG in most cases (almost in all climates and all time
scales) are close to HadISD, when DPT is below 10°C. It means that IMERG performs quite well, even at 1-hour-
ly scale, within the DPT range below 10°C. Therefore, the poor performance of IMERG shown in Figures 1
and 2 at 1-hourly scale is mainly related to precipitation intensity in above 10°C, not the full range of DPT. This
underestimation at higher temperatures can be partially explained by the fact that the number of short convective
thunderstorms would increase at higher temperatures (Westra et al., 2014); under this circumstance, some events
are likely not captured by satellites because of their limited numbers of overpasses (Tian et al., 2009).

We also examine SFs for other precipitation percentiles, that is, 50th, 75th, and 95th percentiles that all of them
can not necessarily be considered as extreme events. However, this assessment can show the IMERG perfor-
mance in estimating other important precipitation percentiles. Figure S3 in Supporting Information S1 shows
the difference between the median of IMERG's SFs and HadISD's SFs in different climate zones and for differ-
ent precipitation percentiles. Generally, SFs from IMERG are close (at 1-hourly scale) to HadISD or larger (at
6-hourly and 24-hourly time scales) than HadISD for 50th, 75th percentiles, while the opposite is true for 95th
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Figure 3. Distributions of stations in wet (blue) and dry (red) regions based on R1xday and PRCTOT indices along with
boxplot of scaling factors obtained from Hadley-Integrated Surface Database and Integrated Multi-satellite Retrievals for
Global Precipitation Measurement data sets in each region for (a, b, and c) 1-hourly, (d, e, and f) 6-hourly, (g, h, and i)
24-hourly precipitation events. The dashed red line indicates Clausius-Clapeyron like scaling of 6.8%/°C. The blue and red
numbers indicate the number of stations/pixels in wet and dry regions at each time scale, respectively.

and 99th percentiles. IMERG performs better in arid areas, followed by cold regions almost in all time scales and
all percentiles. The absolute differences between the median of IMERG's SFs and HadISD's SFs at all time scales
are roughly less than 1%/°C for 50th and 75th percentiles; however, the differences can reach more than 5%/°C
for 99th percentile at 1-hourly scale.

Figure 3 illustrates SFs from HadISD and IMERG in wet (blue) and dry (red) regions based on Donat et al. (2016)'s
maps (see Section 2.3). From the figure, IMERG shows significantly a better performance in the dry areas, es-
pecially according to R1xday. Although the differences in the 1-hourly scale are still considerable, IMERG at
6-hourly and 24-hourly scales in dry regions perform quite similar to HadISD (see Figures 3c, 3f, and 3i). For
example, the median of SFs in dry areas based on R1xday (PRCTOT) at 6-hourly scale is 5.2 (5.3) and 5.0
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Figure 4. Empirical cumulative distribution function of the 99th percentile of 1-hourly precipitation for entire dew point temperatures range and temperature ranges
below 11°C/5°C and above 11°C/5°C in wet/dry regions based on (a, b, and c) /(d, e, and f) R1xday and (g, h, and 1)/(j, k, and 1) PRCTOT, respectively.

(5.0) %/°C based on HadISD and IMERG, respectively. At 1-hourly scale, IMERG underestimates SFs and the
underestimation in wet areas is higher than that in dry regions. Although underestimation remains in wet areas
at 6-hourly and 24-hourly scales, IMERG does not underestimate SFs in the dry areas, and in some stations, it
overestimates SF rates. It is likely that the poorer results in wet regions are related to the greater variety of precip-
itation types and morphologies in wet regions, including types less likely to scale directly and continuously with
temperature and humidity (see Section 2.3). Based on both indices (i.e., R1xday and PRCTOT), the SFs from
HadISD are higher for wet regions than dry areas at 1-hourly scale, while the opposite is true for 6-hourly and
24-hourly scales. Ali et al. (2021) reported a higher scaling rate at 1-hourly scale for dry areas based on R1xday
globally, mainly due to a generally higher scaling rate over Europe.

Figure S4 in Supporting Information S1 shows the precipitation extreme-temperature curves in wet and dry
regions. Similar to Figure 2, IMERG shows a different behavior at low and high temperatures in both regions.
In wet (dry) areas, an overestimation of extreme precipitation is evident in IMERG data when the temperature
is below 11-12°C (5-6°C), while the opposite is true for higher temperatures. Figure 4 illustrates the three em-
pirical cumulative distribution functions (eCDF) for IMERG and HadISD extreme precipitation in each region
corresponding to the entire temperature range, low temperatures, and high temperatures for 1-hourly time scale
and Figures S5-S6 in Supporting Information S1 are for 6-hourly and 24-hourly time scales, respectively. The
systematically overestimating and underestimating extreme precipitation at low and high temperatures is clear in
the eCDFs, and the rate of underestimation is larger than overestimation, particularly in wet regions. It indicates
that we would not be able to adjust IMERG with a conventional bias adjustment. The temperature should be
considered in adjusting IMERG data with a higher adjustment ratio for higher temperatures. The development of
such an adjustment approach is behind the scope of this study.
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4. Conclusions

In this study, we used HadISD datasets to evaluate IMERG performance in scaling precipitation extreme with
the temperature at 1-hourly, 6-hourly, and 24-hourly scales time scale over the CONUS. Based on our findings:

e IMERG can be an alternative for observed precipitation at 6-hourly and 24-hourly time scales, particularly
over the west of the CONUS. However, in most cases, using IMERG data for scaling precipitation extremes
at 1-shourly scale, especially over the east of the CONUS, leads to underestimation of scaling rate. Therefore,
applying IMERG at 1-hourly scale should be done with caution. Moreover, IMERG performance increases
with increasing the time scale.

e IMERG's performance is considerably better in the dry areas. IMERG performs pretty similarly to HadISD
at 6-hourly and 24-hourly scales in dry regions. For example, at a 6-hourly time scale, the difference between
the median of SFs from IMERG and HadISD is less than 0.3%/°C for stations that lie in dry areas. However,
underestimation of SFs over wet areas exists at all time scales.

e There is a transition in IMERG's precipitation extremes estimations around 10°C over significant part of the
CONUS (vary between 5° and 11°C in dry and wet regions). The IMERG estimates precipitation more than
HadISD in DPT below 10°C and vice-versa for DPT above 10°C. The slopes of precipitation extreme-tem-
perature curves from IMERG and HadISD are almost similar within DPT below 10°C and diverge at higher
temperatures indicating that the poor performance of IMERG at 1-hourly scale is not related to the full range
of temperature. It indicates the dependency of IMERG performance to the temperature suggesting that differ-
ent adjustment ratios should be considered for adjusting IMERG data in low and high temperatures.

¢ Generally, the best performance of IMERG is seen in arid areas followed by cold regions. Moreover, IMERG,
roughly with a maximum 1%/°C difference with HadISD, performs better in lower percentiles, that is, 50th
and 75th percentiles, than higher percentiles. The rate of SFs based on IMERG is larger than the HadISD ones
in the lower percentiles, while the opposite is true for upper percentiles.

The results of this study highlight the great potential of IMERG precipitation product as an alternative to in
situ data for scaling precipitation extremes at 6-hourly and daily time scales. However, further improvement is
recommended in adjusting IMERG data at 1-hourly scale. If the available sub-daily datasets like HadISD were
used to adjust IMERG, it could enhance the applicability of this valuable data set at an hourly scale. Finally, it is
worth mentioning that there are several other remotely sensed precipitation products available at sub-daily scale,
such as the PERSIANN family, CMORPH, and GSMaP (Global Satellite Mapping of Precipitation; Kubota
et al., 2007). Comparison and combination of these products may lead to a comprehensive understanding which
is left to future studies.
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