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Abstract: A warming climate will intensify the water cycle, resulting in an exacerbation of water
resources crises and flooding risks in the Lancang-Mekong River Basin (LMRB). The mitigation
of these risks requires accurate streamflow and flood simulations. Process-based and data-driven
hydrological models are the two major approaches for streamflow simulations, while a hybrid of
these two methods promises advantageous prediction accuracy. In this study, we developed a hybrid
physics-data (HPD) methodology for streamflow and flood prediction under the physics-guided
neural network modeling framework. The HPD methodology leveraged simulation information from
a process-based model (i.e., VIC-CaMa-Flood) along with the meteorological forcing information
(precipitation, maximum temperature, minimum temperature, and wind speed) to simulate the
daily streamflow series and flood events, using a long short-term memory (LSTM) neural network.
This HPD methodology outperformed the pure process-based VIC-CaMa-Flood model or the pure
observational data driven LSTM model by a large margin, suggesting the usefulness of introducing
physical regularization in data-driven modeling, and the necessity of observation-informed bias cor-
rection for process-based models. We further developed a gradient boosting tree method to measure
the information contribution from the process-based model simulation and the meteorological forcing
data in our HPD methodology. The results show that the process-based model simulation contributes
about 30% to the HPD outcome, outweighing the information contribution from each of the meteoro-
logical forcing variables (<20%). Our HPD methodology inherited the physical mechanisms of the
process-based model, and the high predictability capability of the LSTM model, offering a novel way
for making use of incomplete physical understanding, and insulfficient data, to enhance streamflow
and flood predictions.

Keywords: hydrological modeling; data-driven modeling; physics-guided neural network (PGNN)

1. Introduction

A warming climate is likely to reshape the global hydrological cycle, resulting in an
exacerbation of water resources crises and hydrological hazards. In particular, floods, as
one of the most destructive, widely distributed, and frequently occurred natural disasters,
are expected to introduce growing casualties and property losses [1]. To better prepare for,
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and mitigate, these crises and risks, it is crucial to develop timely and accurate streamflow
and flood forecasting systems.

Currently, process-based hydrologic-hydraulic models and data-driven models re-
resent the two mainstream approaches for streamflow and flood predictions [2]. Process-
based hydrologic-hydraulic models make explicit representation of key hydrological pro-
cesses, including the rainfall-runoff process, flow routing, the interception and infiltration
of precipitation, groundwater process, evapotranspiration, ecological responses, and feed-
backs, etc. Each process is described by equations derived from the physical, phenomeno-
logical, or empirical understandings of the modelers. Various processes are threaded or
coupled under the constraints of conservation laws. While a growing tendency for develop-
ing process-based models is to move from lumped models to spatially-distributed models,
and to incorporate more detailed characterization of formerly overlooked hydrological
processes, this increase in model complexity does not necessarily lead to more accurate
predictions [3]. This dilemma is due to the prevailing parametric and structural uncertain-
ties in the model formulations, as well as the uncertainties of the required high-resolution
input meteorological forcing data. While the community has long realized the impor-
tance of leveraging observational data to calibrate, diagnose, and inform the development
of process-based models, a robust framework for consistently delivering multi-source,
inhomogeneous observational information to process-based models, in order to quan-
tify the models’ aleatoric uncertainties, and reduce the models’ epistemic uncertainties,
is still lacking.

In addition to process-based models, data-driven, machine learning models recently
demonstrated advantageous accuracy for streamflow predictions, and served as an attrac-
tive alternative to process-based models. Machine learning is a set of algorithms, such
as linear regression [4], a support vector machine [5], model tree ensembles [4], and a
neural network [6,7], and is increasingly and extensively used in the field of geosciences.
In contrast to process-based models, machine learning models rely on sample data to make
predictions, without being explicitly programmed to do so [8,9]. This is usually achieved
by optimizing the data feature representation and model parameters to obtain an optimal
objective function value. This ideology allows the data to speak for themselves, hence,
revealing the potential deficiencies of our mechanistic understanding. As a result, machine
learning strongly complements and enriches process-based models, and helps scientists
gain new insights [10].

For streamflow forecast in particular, a machine learning model, named long short-
term memory (LSTM) recurrent neural network, demonstrated advantages in streamflow
prediction [11-14]. An LSTM neural network has a hidden layer, using unique gate settings
to regulate information flow for a modeling time series. Kratzert et al.[11] establish a
rainfall-runoff model using LSTM to predict streamflow. Feng et al. [15] introduce data
integration that leveraged recent observations to improve short-term streamflow forecast
using LSTM. Xiang et al. [16] propose a LSTM-seq2seq model, based on LSTM and sequence-
to-sequence (seq2seq) structure, for hourly streamflow prediction, and it shows excellent
predictive ability, and could enhance short-term flood forecast accuracy. Despite the
success of the above-mentioned works, it is worth noting that single data-driven LSTM
streamflow forecast models face challenges if there are no abundant data to facilitate their
training [17,18].

Applying artificial intelligence techniques, in conjunction with physical understanding,
substantially improves simulation effectiveness [19-21]. Recently, several studies use the so-
called theory-guided machine learning approach, combining physical understanding with
machine learning [2,21-24]. The two components of such a combination, based on different
philosophies, complement each other in terms of their inherent strengths and limitations.
While the important hydrological processes involved in physics-models constitute the
black-box feature of machine learning, machine learning techniques may be helpful in
extracting any information left in the residuals of physical models [25-28]. Karpatne
et al. [21] propose a physics-guided neural network (PGNN) by combining a physical
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model with a neural network, and take lake water temperature simulation as an example
to demonstrate the effectiveness of PGNN. The PGNN framework leverages the output of
physics-based model simulations, along with observational features, to generate predictions
using a neural network architecture [21]. Yang et al. [27] integrate the streamflow output
of the global hydrological models (GHMs)-CaMa-Flood model chain, and meteorological
data from the ERA-interim dataset [29], as the inputs of LSTM model, which suggests
that machine learning methods improve model-based flood simulation. To the best of our
knowledge, the PGNN framework has only been used for streamflow simulation at global
scale [27]. To date, any attempt to use the PGNN method for streamflow simulation at
river basin scale is limited, and detailed evaluation of the method is needed to assess the
performance of hydrological simulations from upstream to downstream for watershed
studies. Therefore, this study integrated the physically-based VIC-CaMa-Flood model into
the LSTM of streamflow and flood simulations, using a PGNN framework in the Lancang-
Mekong River Basin (LMRB), an important transboundary river basin in southeast Asia.

The objectives of this study were to: (1) apply a PGNN framework that combined
VIC-CaMa-Flood and LSTM to improve streamflow and flood simulation, and we called
this a hybrid-physics-data (HPD) model; (2) quantify the added value of the physical model
by assessing the feature importance and relative contribution of the physical model and
meteorological inputs.

2. Study Area and Data
2.1. Study Area

The transboundary Lancang-Mekong River, located between 9°60'-33°80" N and
93°50'-108°60’ E, is the longest river in southeast Asia. The length of the LMRB is close to
4900 km, with a drainage area of 795,000 km?, and an annual streamflow at the outlet of
14,500 m3 /s (MRC, 2010). It flows through 6 countries including China, Myanmar, Laos,
Thailand, Cambodia, and Vietnam. It is called the Lancang River in China and the Mekong
River outside China. Streamflow observations at five hydrological stations, namely, Chiang
Saen (CS), Luang Prabang (LP), Vientiane (VT), Mukdahan (MK), and Pakse (PK), were
used in this study. The locations of the hydrological stations are shown in Figure 1.
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Figure 1. The LMRB and locations of the mainstream hydrological stations.
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The peak discharge per unit area of the LMRB is close to the limit value of global rain
flood rivers [30]. Frequent floods pose a major threat to the safety and properties of people
in surrounding countries. In addition, climate change would lead to an upward trend in
the duration, occurrence frequency, and magnitude of floods in the LMRB [31-33], which
warrants accurate simulation and prediction of floods.

2.2. Data

In this study, precipitation data, at a spatial resolution of 0.25°, was derived from a daily
gridded precipitation dataset established by Japan’s Asian Precipitation-Highly Resolved
Observational Data Integration Towards Evaluation of Water Resources ( APHRODITE) re-
search project [34]. Temperature and wind speed data, with a spatial resolution of 0.25°,
were derived from the Global Meteorological Forcing Dataset [35]. The daily streamflow
observation data (Table 1) was obtained from Mohammed et al. [36]. In addition, the
soil data and land cover data were obtained from the Harmonized World Soil Database
(HWSD) [37], and the global land cover data, at 1 km resolution, developed by the Univer-
sity of Maryland [38], respectively. The digital elevation model (DEM) was acquired from
Shuttle Radar Topography Mission (SRTM) elevation data (https://srtm.csi.cgiar.org/,
accessed on 18 August 2020).

Table 1. The five hydrological gauging stations.

Location .
No. Station (abbr.) Country Dral:lka gez )Area RData d
Longitude (°) Latitude (°) m ecor
1 Chiang Saen (CS) 100.117 20.292 Thailand 191,055 1965-2015
2 Luang Prabang (LP) 102.082 19.878 Laos, PDR 273,838 1965-2015
3 Vientiane (VT) 102.620 18.049 Laos, PDR 303,528 1965-2015
4 Mukdahan (MK) 104.743 16.529 Thailand 394,134 1965-2015
5 Pakse (PK) 105.795 15.115 Laos, PDR 550,955 1965-2015
3. Methods

3.1. Physical Model with VIC Coupled CaMa-Flood

The VIC model [39] is a large-scale, distributed-land surface, hydrological model,
based on physical mechanisms. The VIC model mainly considers the physical exchange
processes between atmosphere, vegetation, and soil. Since its development, the VIC model
was widely used, and the model structure continuously improved and optimized. The VIC-
2L model was gradually upgraded to the VIC-3L model, which is widely used nowadays.
The grid-based VIC model simulates land surface hydrological processes following the
principles of energy balance and water balance, and derives various hydrological variables,
including evapotranspiration, infiltration, surface runoff, and baseflow. The VIC model was
repeatedly used in the LMRB [40-42], and obtained good simulation results. In this study,
the grid-based VIC model was used, and the LMRB was divided into a grid of 1288 cells,
with a spatial resolution of 0.25°.

The Catchment-based Macro-scale Floodplain (CaMa-Flood) model is a distributed
global river routing model that calculates flow process effectively in continental-scale
rivers [43,44]. Runoff generated by hydrological models, such as VIC [45] and HO8 [46],
can be the input of the CaMa-Flood model. The code and data of the CaMa-Flood model
are from http:/ /hydro.iis.u-tokyo.ac.jp/~yamadai/cama-flood/ (accessed on 2 November
2020). In this study, the runoff (including surface runoff and baseflow) generated by the
VIC model was taken as the input of the CaMa-Flood model, to obtain the daily streamflow.

3.2. Physics Guided LSTM Model

The PGNN framework leverages the simulation output of the physics-based model
and observational features to generate simulations, using a neural network architecture [21].
LSTM is a special variant of recurrent neural network (RNN), which can learn long-term
dependent information. Compared with RNN, the LSTM model adds a three “gate”
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structure, which effectively removes the short-term dependency bottleneck of RNN. The
LSTM network is mainly composed of four steps:

Step 1: The forgetting gate is used to determine how much previously useless informa-
tion is discarded from the “cell state”. As shown in Equation (1), h;_; represents the output
of the LSTM module at the moment t—1, x; represents the input of the current moment ¢,
and the value range of f; is guaranteed between 0 and 1 through the activation function
(Sigmoid function is generally used).

Step 2: The new information is updated to the “cell state” through the input gate, as
shown in Equations (2) and (3). Equation (2) shows that the storage information (c;) at the
current moment can be obtained through the tanh function, which connects the output
(h¢—1) of the LSTM module at the moment t—1 with the input (x;) at the current moment.
Equation (3) plays the same role as Equation (1), but Equation (3) is designed for the input
information.

Step 3: As shown in Equation (4), this step is mainly to update the “cell state”. The
previous useless information is discarded by multiplying the stored information (c;_1) at
the previous moment by the f; calculated in the first step. The useful information is retained
at the current moment by multiplying the stored information (¢;) at the current moment
with i; calculated in Equation (3). The information of the present moment is the sum of the
previous useful information and the current useful information.

Step 4: The output is obtained based on the “cell state”, which is the output gate. First,
Equation (5) is used to determine which part of the “cell state” is the output. Then, the tanh
activation function is used to process the “cell state”, and it is multiplied by the output of
the Equation (5) to obtain the output information (/).

fi = O'(Wf [he—q,x¢] + bf) @)
¢t = tanh(We - [h;—1,x¢] + bc) 2
ir = o (W [he—1,xi] + bi) ®)
¢t = froci_1+itoct 4)

o = 0(Wo - [hy—1,x¢] + bo) )
hy = ot o tanh (c¢) (6)

Here, we applied the PGNN framework, which combined VIC-CaMa-Flood and
the popular deep learning technique, LSTM, to make full use of the advantages of these
two models and, thus, improve the simulation performance of streamflow and flood.
The meteorological variables (including precipitation, maximum temperature, minimum
temperature, and wind speed), and the daily streamflow calculated by the VIC-CaMa-Flood
coupled model, were input into the LSTM model together, which was called the HPD model,
and its model structure is shown in Figure 2. The meteorological variables and the VIC-
CaMa-Flood streamflow correspond to the selected hydrological stations. We set the length
of the input features at 365 days, so the HPD model was used to simulate daily streamflow
in the LMRB from 1966 to 2015. Due to the significant increase in reservoir storage capacity
after 2008 [42], we divided the annual streamflow series into two stages: 1966-2007 (less
impacted period), and 2008-2015 (human impact period). Moreover, we used data from the
less impacted period to verify the effectiveness of the HPD model. Specifically, the daily
streamflow data covering January 1966 to December 1992 were selected as the training
dataset, the daily streamflow data covering January 1993 to December 1997 were selected
as the validation dataset, and the daily streamflow data covering January 1998 to December
2007 were selected as the testing dataset. In addition, in order to verify the effectiveness
and necessity of adding the output of the process-based model into the data-driven model,
we used the individual LSTM model, whose inputs only contained meteorological variables
(precipitation, maximum temperature, minimum temperature, and wind speed), to simulate
streamflow and flood. Moreover, the division of training period, validation period, and
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testing period of the individual LSTM model was consistent with that of the HPD model.
For hyperparameters, the HPD model and the individual LSTM model had the same setting.
The number of stacked LSTM layers was one, and hidden state length was fifteen.

Meteorological forcing data

CaMa-Flood VIC-CaMa-Flood
Runoff
model streamflow

LSTM model

~_

HPD streamflow

Figure 2. The HPD model based on LSTM model and VIC-CaMa-Flood coupling model.

3.3. GBRT for Model Inputs Importance Measurement

The gradient boosting regression tree (GBRT) is an iterative decision tree algorithm,
which constructs a set of weak learners (decision trees), and accumulates the results of
multiple decision trees as the final prediction output. The algorithm effectively combines
the decision tree with the integration idea. The main purpose of feature importance
evaluation using GBRT is to quantify how much contribution each feature makes in each
decision tree, take an average value, and finally compare the contribution between features.
In this study, the meteorological inputs and VIC-CaMa-Flood streamflow were the input
features, and the observed streamflow was the output. In order to be consistent with the
training of the HPD model, we selected the data of the training period to analyze the
importance of input features for streamflow simulation at the 5 hydrological stations using
the GBRT method.

3.4. Evaluation Method

Three indices were selected as flood characteristics in this study, including maximum
annual flow (MAF), the 95th percentile maximum streamflow (Q95), and the 90th per-
centile maximum streamflow (Q90). In addition, simulation performances of the HPD,
individual LSTM, and the VIC-CaMa-Flood model were quantitatively evaluated using
three statistical indicators, namely, Nash-Sutcliffe efficiency (NSE) [47], relative error (RE),
and correlation coefficient (R2) (Equations (7)—(9)). The NSE value was used to verify the
conformity between the measured and simulated values, and its maximum value was 1.
These indicators are defined as follows:

N 2
E (Qobs,i - Qsim,i)
NSE=1- =1 @)
N = 2
lzl(Qobs,i - Qobs)
N N
X Qsimi — X Qobs,i
RE — i=1 i=1 (8)

N
Z Qobs,i
i=1
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N _ _
): (Qohs,i - Qobs) (Qsim,i - Qsim)
R? = =1 ©)
N _ » N _ 2
\/;1 (Qobs,i - Qobs) ;1 (Qsim,i - Qsim)

where Qs ; and Qg ; are the observed and simulated daily streamflow on the i-th day,
respectively; Qs and Q,;,, are the mean values of the observed and simulated daily
streamflow, respectively; and N is the total number of days.

4. Results and Discussion
4.1. Identification of Streamflow Break Points

Figure 3 summarizes the abrupt change points of the annual observed streamflow
series at the 5 stations from 1965 to 2015, using the Mann—Kendall test [48]. From the
figure, the CS and VT stations have an abrupt change point in 2008. This abrupt change
point might correspond to the rapid increase in reservoir storage capacity in the LMRB
in 2008, due to the construction of two large reservoirs, the Nuozhadu and the Jinhong
reservoirs [42,49]. After 2008, the abrupt change point at the LP station is in 2013, the
abrupt change point at the PK station is in 2014, and there is no abrupt change point at the
MK station. Although there are several abrupt change points before 2008, it is likely there
was an affect due to climate change. Existing studies [42,49,50] also indicate that abrupt
changes occur in 2008 in the LMRB, and the impact of human activities is minor before
2008. Therefore, during the period of 1965-2007, the LMRB is slightly affected by human
activities, and mainly affected by climate change; the period from 2008 to 2015 is the human
impact period.

(a) (b) (c)
3
—TJF
2 ----UB
1
)
0 g
d
-1 5.
_2 ". R
-3
-4 -4 -4
1965 1975 1985 1995 2005 2015 1965 1975 1985 1995 2005 2015 1965 1975 1985 1995 2005 2015
Time(year) Time(year) Time(year)
(d) (e)
3 3
) —TUF =l
2P N ---UB 2t sy
1
@
0 =
o
5| =
-2
-3 -3t
-4 -4
1965 1975 1985 1995 2005 2015 1965 1975 1985 1995 2005 2015
Time(year) Time(year)

Figure 3. Abrupt change detection using Mann—Kendall test at five hydrological stations in 1965-2015:
(a) CS station, (b) LP station, (c) VT station, (d) MK station, (e) PK station. UF, positive sequence
statistics; UB, reversal sequence statistics.
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4.2. The Performance of HPD Model

Figure 4 shows the daily time series of observed and simulated streamflow at the five
selected stations in the testing and human impact period, and Table 2 shows the streamflow
simulation results of the HPD model in the less impacted period (including the training
period (1966-1992), validation period (1993-1997), testing period (1998-2007), and human
impact period (2008-2015)). The NSE values range from 0.91 to 0.96, and the RE values
ranges from —9.6% to 4.5% during the testing period. Previous studies argue that a model
is considered satisfactory when the NSE value is greater than 0.50 and RE value is less than
25.0% [51]. The NSE values are 0.63, 0.62, and the RE values are 11.0%, 20.1% at the CS
and VT stations in the human impact period, respectively. The NSE values are 0.88, 0.93,
and 0.88, and the RE values are 0.1%, 1.9%, and 12.0% at the LP, MK, and PK stations in
the human impact period, respectively. However, compared to the less impacted period,
the simulation performances at the CS and VT stations in the human impact period are
obviously worse than those during the less impacted period, which might be because these
two stations already experienced abrupt change in streamflow in 2008. Since the abrupt
change points at the other three stations appear later, the simulation performance in the
human impact period is still very good.

= 30,000F
2
. 20,000+

10,0001

Streamflow (m

—— observation
—— prediction

1998

2000

2002 2004 2006 2008 2010 2012 2014 2016

Streamflow {m3/s)

2000

2002 2004 2006 2008 2010 2012 2014 2016

Streamflow (m3/s)

ok
1998

2000

2002 2004 2006 2008 2010 2012 2014 2016

MK

3002 2004 3006 3008 2010 2012 7014 2016

ap,000f PK

v \ 4 B o] et

2000

2002 2004 2006 2008 2010 2012 2014 2016

Figure 4. Observed and simulated daily streamflow using HPD model at five hydrological stations
from 1998 to 2015 in the LMRB.
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Table 2. Streamflow performance of HPD model for training, validation, testing, and human impact
period.

Station

Less impacted Period

(1966-2007) Human Impact Period

Training Period Validation Period Testing Period (2008-2015)
(1966-1992) (1993-1997) (1998-2007)

NSE

RE NSE RE NSE RE NSE RE

CS

LP

VT
MK
PK

0.93
0.96
0.96
0.98
0.98

0.006 0.90 0.052 0.91 0.045 0.63 0.110
0.007 0.93 —0.006 0.92 0.018 0.88 0.001
—0.008 0.94 —0.051 0.94 —0.021 0.62 0.201
—2x 107 0.96 —0.024 0.93 —0.096 0.93 0.019
0.009 0.98 —0.003 0.96 —0.028 0.88 0.120

Tables 3 and 4 show the observed and simulated flood indicators (include MAF,
Q95, and Q90) in the testing period (1998-2007) and human impact period (2008-2015),
respectively. The RE value of MAF ranges from —19.1% to —8.1%, the RE value of Q95
ranges from —13.9% to —1.1%, and the RE value of Q90 ranges from —8.6% to —1.0%
in testing period, which indicates the HPD model is capable of simulating flood in the
less impacted period. The RE value of MAF ranges from —8.5% to 7.8%, the RE value of
Q95 ranges from —1.1% to 17.2%, and the RE value of Q90 ranges from 4.4% to 26.0% in
the human impact period. The RE values in the human influence period are greater than
those in the less impacted period. Figure 5 shows the scatter plot, regression line, and
performance of the simulated and measured flood at all selected stations in the testing
period and human impact period. All R? values are close to 1. The NSE values are 0.934,
0.822, and the RE values are —9.2%, 18.7% of Q95 in the testing period and human impact
period, respectively. The NSE values are 0.956, 0.646, and the RE values are —7.0%, 26.5% of
Q90 in the testing period and human impact period, respectively. Obviously, the simulation
performance of Q95 and Q90 during the testing period is better than that of the human
impact period. The NSE values are 0.858, 0.871, and the RE values are —13.9%, 3.4% of
MAF in the testing period and human impact period, respectively. Although the NSE
values of MAF are close, the RE value during the testing period is smaller than that during
the human impact period, which indicates that the simulation performance on MAF during
the testing period is better than that of the human impact period. In addition, we find that
the RE values of the three flood indicators simulated by the HPD model during the human
impact period are greater than that during the testing period, which shows that the effects
of human activities on floods decreases after 2008.

Table 3. Flood indicators performance of HPD model for testing period (1998-2007).

Station

MAF (m3/s) Q95 (m3/s) Q90 (m3/s)

Obs

Sim RE Obs Sim RE Obs Sim RE

CS

9855

8803 -0.107 6979 6905 —0.011 5994 5935 —0.010

LpP

15,357

13,174 —0.142 11,288 9723 —0.139 9236 8765 —0.051

VT

16,435

13,771 —0.162 12,605 11,474 —0.090 10,759 10,124 —0.059

MK

30,775

24,897 -0.191 25,026 21,977 —-0.122 21,923 20,203 —0.078

PK

36,164

33,249 —0.081 30,441 28,119 —0.076 27,905 25,519 —0.086
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Table 4. Flood indicators performance of HPD model for human impact period (2008-2015).
MAF (m?/s) Q95 (m3/s) Q90 (m3/s)
Station : : :
Obs Sim RE Obs Sim RE Obs Sim RE
CS 7284 7430 0.020 4894 5411 0.156 4195 4929 0.175
LP 13,890 12,174 —0.085 9932 9826 —0.011 8609 8987 0.044
VT 15,274 14,889 —0.025 10,742 12,593 0.172 9279 11,695 0.260
MK 27,079 26,791 —0.011 22,768 23,965 0.053 19,910 21,214 0.065
PK 34,101 36,752 0.078 27,722 31,296 0.129 24,147 27,228 0.128
50,000 MAF 40,000 Q95 40,000 Q90
NSE =0.858 NSE =0.934 NSE =0.956
RE =-0.139 RE =-0.092 . R]zi =-0.070
2 _ =
= 100007 R7=0.935 y=0.867x - 13303 30,000 30,000 RT=0982  y-0871x+87594
TE 30,000 ZE, "g
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Figure 5. The relationship between measured and simulated flood (i.e., MAF, Q95, and Q90) for all
selected stations in testing period and human impact period. The Nash-Sutcliffe efficiency (NSE),
relative error (RE), and correlation coefficient (R?) are also shown.

The above results indicate that the HPD model satisfactorily simulates streamflow
and flood under climate change, which provides an important technical means for the
future study of changes of streamflow and flood under climate change. For the human
impact period, streamflow and flood affected by human activities decrease. The HPD
model’s performance deteriorates in the human impact period. This is mainly because this
period is not used as training data, as other studies show that, given sufficient training data,
LSTM learns management patterns and simulates streamflow from basins with certain
reservoirs [52].

4.3. Comparing HPD Model with VIC-CaMa-Flood and Individual LSTM Model

Figure 6 shows the performance of the VIC-CaMa-Flood model, individual LSTM
model, and HPD model in simulating streamflow and flood. The HPD model outperforms
the other two models by a significant margin.
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Figure 6. Comparison of simulations from VIC-CaMa-Flood model, individual LSTM model, and
HPD model for testing period (1998-2007): (a) Distribution of NSE across all stations for daily mean

streamflow; (b) distribution of RE across all stations for daily mean streamflow; (c) distribution of RE
for three flood indicators.

In the streamflow simulation of the VIC-CaMa-Flood model, NSE is above 0.5 at only
one station, while NSE values at the remaining stations are all less than 0.5, and the RE
values are all greater than 40.0%. In the flood simulation of the VIC-CaMa-Flood model,
the RE values are almost all greater than 40.0%. Therefore, the VIC-CaMa-Flood model
does not simulate streamflow and flood well. However, the streamflow obtained from
the VIC-CaMa-Flood simulation, and its meteorological driven data, were input into the
LSTM model (i.e., HPD model), which significantly improves the accuracy of streamflow
and three flood indicators. Therefore, the data-driven model effectively improves the
simulation performance of a physically-based model, which indicates that the data-driven
model plays a role in correcting the simulation deviation of the physically-based model.
This is consistent with conclusion of Yang et al. [27].

In the streamflow simulation of the individual LSTM model, NSE values range from
0.6 to 0.8, and the RE values are all less than 20%. The results of the individual LSTM model
in streamflow simulation are satisfactory. However, in the three flood indicators simulation,
the RE values are barely greater than 20%, which indicates that the individual LSTM model
does not simulate flood well. When we added the VIC-CaMa-Flood streamflow into the
LSTM model, the performance greatly improved. Therefore, we believe that the output of
physical model can be used as a considerably important input feature of data-driven model.

The GBRT model used in scikit-learn [53] has become a widely-used feature impor-
tance ranking method. To further evaluate the relative importance of each contributing
feature, we used the GBRT method to measure the five input features of the HPD model.
From Figure 7, VIC-CaMa-Flood streamflow contributes about 30.0% to the observed
streamflow, while the contribution rates of the other input features (precipitation, max-
imum temperature, minimum temperature, wind speed) are between 16.1% and 19.3%
at the five stations. The VIC-CaMa-Flood streamflow has the largest contribution rate,
indicating that this input feature is more important than the other four inputs. Therefore, a
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machine learning model, in this case LSTM, is significantly reinforced by the input of our
mechanistic understanding, such as simulated streamflow, from a physically-based model.
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Figure 7. Importance of HPD model inputs (pr, precipitation; tmax, maximum temperature; tmin,
minimum temperature; wind, wind speed; VIC-CaMa-Flood streamflow, streamflow simulated by
VIC-CaMa-Flood model) at five selected stations in the training period.

The HPD model proposed in this study not only improves the simulation ability of the
physically-based models, in terms of computational expense and simulation accuracy, but
also enables machine learning to contain a certain degree of the mechanistic understanding.
Combining physical process models with machine learning for modeling makes them
complementary to each other, and strikes a balance between model complexity and data
availability. At the same time, the HPD model is also applicable to other river basins, and
on a global scale [27]. Extremely excellent simulation capabilities make it possible for the
HPD model to guide more effective flood simulation and prediction systems. Moreover, it
may also become an effective tool for studying future flood scenarios under climate change.

There are certain limitations with our HPD model. The limitation is that our HPD
model is applicable to river basins, and on a global scale, but it is not applicable to small
watershed, or on a local scale. However, this study also provides some exploration ideas for
future streamflow simulation on small watershed and on a local scale. Our HPD model in
this study used a large-scale hydrological model (i.e., the VIC-CaMa-Flood model), which
can make full use of topographic data such as DEM, land use, and slope on a river basin
scale to provide useful predictive information for machine learning. Therefore, it remains to
be explored whether topographic data can be integrated into machine learning to improve
streamflow simulation on the small watershed and on a local scale, by considering physical
models applicable to the small watershed and local scale.

4.4. The Impact of Human Activities on the Flood

Figure 8 shows the average flow changes and relative changes of the observed and
simulated flood obtained by the HPD model at the five stations (CS, LP, VI, MK, PK)
in the human impact period (2008-2016), compared to the testing period (1998-2007).
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Compared with the testing period, three observed flood indicators (MAEF, Q95, Q90) are
significantly reduced in the human impact period, especially at the CS station. The observed
flood decreases in MAF (—2570.53.03 to —1160.13 m3/s, —6% to —26%), decreases in
Q95 (—2719.33 to —1356.71 m3/s, —7% to —30%), and decreases in Q90 (—3203.10 to
—627.61.61 m3/s, —7% to —30%). The change of observed flood is large (>25%) at the CS
station. The MAF, Q95, and Q90 at the CS station decrease by 26% (—2570.53 m3/s), 30%
(—2085.21 m3/s), and 30% (—1799.33 m3/s), respectively. Both the Jinghong and Xiaowan
reservoirs were under construction during 2005-2007, and the Nuozhadu reservoir was
constructed and put into operation in 2008 [49]. With the construction of the reservoirs,
the flood is affected by both climate change and reservoirs in the human impact period.
The flood simulated by the HPD model at all stations shows consistent changes on three
flood indicators: it decreases at the CS station, while increasing at the LP, VT, MK, and PK
stations. Since the HPD model simulates flood well in the LMRB under climate change,
the flood simulated by HPD is considered to only be affected by climate change, rather
than by human activities. The MAF, Q95, and Q90 at the CS station decrease by 16%
(—1372.64 m3/s), 22% (—1493.82 m3/s), and 17% (—1066.47 m3/s) under climate change,
respectively. The changes of the observed floods at all stations are smaller than the flood
simulated by the HPD model. The construction of reservoirs significantly reduces flood in
the LMRB, which is consistent with the analysis performed by Yun et al. [42].
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Figure 8. Average and relative change of the observed and simulated flood obtained by HPD model at
five selected stations in human impact period (2008-2015) compared with testing period (1998-2007).

5. Conclusions

We developed a neural network model leveraging outputs from a process-based model,
i.e., VIC-CaMa-Flood, and meteorological forcing data to simulate streamflow and flood at
five hydrological stations during 1966-2015 in the LMRB. The results show that our hybrid
physics-data (HPD) methodology delivers advantageous accuracy in streamflow and flood
simulation, outperforming both the pure process-based VIC-CaMa-Flood model and the
pure observational data driven LSTM model, by a large margin. These results suggest the
usefulness of introducing physical regularization in data-driven modeling, and the necessity
of observation-informed bias correction for process-based models. We further developed a
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gradient boosting tree method to measure the information contribution from the process-
based model simulation and the meteorological forcing data in our HPD methodology.
The results show that the process-based model simulation contributes about 30% to the
HPD outcome, outweighing the information contribution from each of the meteorological
forcing variables (<20%). Our HPD methodology inherits the physical mechanism of the
process-base model and the high predictability capability of the LSTM model, offering
a novel way to make use of incomplete physical understanding and insufficient data to
enhance streamflow and flood predictions. We draw the following conclusions based on
the experimental results:

(1) For the streamflow simulation of the HPD model, the NSE values are greater than
0.90, and the RE values are less than 10% in the less impacted period. For flood
simulation of the HPD model, the NSE values are greater than 0.86, and the RE values
are less than 20% in the less impacted period. These simulation results show that
the HPD model simulates streamflow and flood well under climate change, and the
performance is better than that of a pure process-based model or pure data-driven
model. The reasonable integration of a hydrological model and deep learning is
expected to provide accurate streamflow simulation or flood simulation, suggesting
that the physics-guided long short-term memory network model is promising for
hydrological application at basin scale.

(2) Indeep learning, a good simulation model is largely constrained by effective features.
The VIC-CaMa-Flood streamflow contributes about 30.0% to the simulation of the
HPD model, while the contribution rates of other input features are between 16.1%
and 19.3%. Therefore, the streamflow simulated by the physical model is an important
feature for deep learning. This feature is obtained through our current understanding
of the hydrological cycle process, which improves the accuracy of deep learning
simulation, and also makes the data-driven model physically meaningful.

(3) Under climate change, the flood at the CS station decreases by 16-22%, while the
flood at the other four stations show an increasing trend in the period 2008-2015. The
observed floods at all stations are significantly reduced, and observed flood variation
is less than that under climate change. The result implies that the construction of
reservoirs may significantly reduce flood in the LMRB.
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