
1.  Introduction
Heat waves (HWs) are expected to become more frequent and intense in the coming decades due to human-in-
duced climate change (IPCC, 2018; J. Wang et al., 2020; Mukherjee & Mishra, 2018; Vogel et al., 2019; Zsche-
ischler et  al., 2018). HWs are projected to have profound effects on human health, with increasing mortality 
and morbidity across the globe (Gasparrini et al., 2017; Mazdiyasni et al., 2017; Scovronick et al., 2018; Wang 
et  al.,  2019). The degree of human exposure to HWs depends not only on the changing climate but also on 
changes in the size and spatial extent of the population (Jones et al., 2015; Mueller et al., 2014). The human 
exposure to future HWs is expected to be exacerbated by the simultaneous increases in both temperature and 
population (King et al., 2018; Trenberth et al., 2015). Therefore, it is important to integrate the influences of 
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exposure. The results reveal that the compounding effects of projected trends in population and HWs will 
significantly escalate the population exposure to HWs. Under the selected SSPs, the total population exposure 
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Plain Language Summary  Climate change will intensify the occurrence and intensity of heatwaves 
(HWs) in South Asia, with severe impacts on the population. Here we estimate the population exposure to 
daytime and nighttime HWs using the Coupled Model Intercomparison Project 6 (CMIP6) models under 
four Shared Socioeconomic Pathways (SSPs). The results show that the projected daytime and nighttime 
HWs will impact around 185–492 and 204–555 million people under the selected SSPs, respectively, with 
the maximum exposure occurring in the Indo-Gigantic Plain. The wide range of populations under different 
SSPs highlights the sensitivity of the population to future SSP decisions. This emphasizes the importance of 
reducing greenhouse gas emissions and adopting sustainable urban planning solutions to minimize the potential 
socioeconomic and health impacts of HWs.
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Key Points:
•	 �The number and extent of heat waves 

(HWs) are projected to increase 
under all the Shared Socioeconomic 
Pathways (SSPs)

•	 �The population exposure to HWs 
ranges from 185 to 555 million 
people-event with the highest 
exposure in the Indo-Gigantic Plain

•	 �Compounding effects of climate 
change and population increase 
substantially aggravate exposure to 
HWs
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climate change and the human population, when estimating the exposure to future HWs (Jones et al., 2015). The 
anticipated human exposure to future HWs is a key component in understanding future vulnerability and risks and 
is fundamental to sustainable planning and mitigation of the adverse impacts of hot extremes.

South Asia (SA) is one of the world’s most populous regions (Figure 1a), with an estimated population of 1.5 
billion (Ullah et al., 2020), and its population is expected to reach 2 billion by the mid-21st century (Jones & 
O’Neill, 2016; Xu et al., 2020). This region is a major hotspot for climate change and future temperature increases 
(Eckstein et al., 2019). The region has experienced major HWs over the past few decades, which resulted in 
substantial human and socioeconomic losses. Several modeling studies have projected that this region is highly 
vulnerable to future HWs and is expected to experience more frequent, intense, and prolonged HWs (Basha 
et al., 2017; Dong et al., 2021; Mishra et al., 2017; Nasim et al., 2018; Rohini et al., 2019; Saeed et al., 2017; 
Vogel et al., 2019). Previous studies showed that even a small increase in temperatures significantly enhances the 
chance of HW-caused mortality in SA (Mazdiyasni et al., 2017). Thus, the increasing prevalence of HWs coupled 
with the high population density could greatly aggravate the vulnerability of the region in the future. Moreover, 
the rapid urbanization, high poverty ratio, and low adaptive capacity of this region could further exacerbate the 
vulnerability to future HW extremes. Thus far, many studies have investigated the underlying mechanisms and 
tendencies of HWs in SA. However, very little attention has been devoted to determining the exposure of the 
population to future HWs in this region. The assessment of the future exposure to HWs is critical in devising and 
prioritizing informed risk reduction and management strategies against potential HW events in SA.

Estimation of the population exposure to future extremes under different climate change and population scenarios 
requires careful consideration of the climate and population factors. Previous studies have used fixed population 
estimates (Bouwer, 2013; Smirnov et al., 2016; Sun et al., 2017) and have overlooked the application of explicit 
population scenarios while quantifying future exposure to climate extremes. For instance, the population expo-
sure was calculated as the frequency of climate extremes in future scenarios multiplied by the current population 
data. This approach is considered inadequate for projecting the future population exposure, as it is greatly influ-
enced by changes in both the climatic and population factors (Jones et al., 2015; Liu et al., 2020). Moreover, most 
earlier studies either used individual global/regional climate models or the old versions of the Coupled Model 
Intercomparison Project (CMIP) models with different combinations of climate change scenarios to quantify 
the projected exposure to climate extremes (A. Wang et al., 2020; Aadhar & Mishra, 2019; Chen et al., 2020; 
King et al., 2018; Li et al., 2018; X. Shi et al., 2021; Zhan et al., 2018). However, few studies have employed 
the recently introduced CMIP6 models to estimate population exposure to climate extremes (Ma & Yuan, 2021; 
Mondal et al., 2021; Zhao et al., 2021). Given the improvements in CMIP6 models and also the recent socioec-
onomic pathways (Gidden et al., 2019; O’Neill et al., 2016; Riahi et al., 2017), we believe updating the previous 
estimates on population exposure is necessary.

In this study, we projected the spatiotemporal changes in the daytime and nighttime HWs in SA and estimated 
the future population exposure to HW extremes using CMIP6 models under multiple Shared Socioeconomic 
Pathways (SSPs). We further assessed and quantified the relative contributions of the climate and population to 
and their compounding effects on the future population exposure in the study region. We separated daytime and 
nighttime HWs, as warm nights can have significant health impacts and that several studies have highlighted 
substantial increases in nighttime temperatures in the historical data and/or future projections (Mukherjee & 
Mishra, 2018; Panda et al., 2017; Ullah et al., 2019; Z. Shi et al., 2021).

2.  Data and Methods
2.1.  Model Data

The daily maximum (Tmax) and minimum (Tmin) temperature outputs of the global climate models (GCMs) 
were obtained from the CMIP6 data archive (https://esgf-node.llnl.gov/search/cmip6) (Eyring et al., 2016). The 
details of the selected models are listed in Table 1. It is worth mentioning that most parts of SA experience 
extreme temperature and HW episodes during the summer season (Khan et al., 2020; Rohini et al., 2019; Ullah 
et al., 2019). For this reason, we focused on May–September for HW analysis. The GCMs data include data for 
the historical period (1975–2014) and the future period (2061–2100) under four SSP scenarios, that is, SSP1-2.6, 
SSP2-4.5, SSP3-7.0, and SSP5-8.5. We chose this period for our study because the projected average tendencies 
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of Tmax, Tmin, and the population density are likely to be higher in SA under 
the selected SSPs during this period (A. Wang et al., 2020; Liu et al., 2020; 
Mondal et al., 2021).

It should be noted that scenarios SSP2-4.5 and SSP5-8.5 consist of 21 models 
while scenarios SSP3-7.0 and SSP1-2.6 consist of 17 and 16 models, respec-
tively. More details about the available SSPs and the selected CMIP6 models 
for Tmax and Tmin are provided in Table 2. The selection of the GCMs was 
based on the availability of their first simulation variant (r1i1p1f1) for the 
respective scenarios. The new SSP scenarios of CMIP6 are a combination 
of socioeconomic development pathways and forcing levels (Keilman, 2020; 
O’Neill et al., 2016), with an estimated radiative forcing of up to 2.6, 4.5, 7.0, 
and 8.5 W m −2, under the given specific levels of the greenhouse gas concen-
trations by the end of the 21st century (Gidden et al., 2019; Riahi et al., 2017). 
More details about the SSP scenarios are provided by O’Neill et al. (2016). 
Since the CMIP6 models are available at different spatial resolutions; all of 
the selected models were regridded to a common 0.5° × 0.5° grid, using the 
bilinear interpolation technique (Liu et al., 2020; Zhai et al., 2020). In this 
study, the ensemble means of the selected models were used for the respec-
tive scenarios because the multi-model ensemble means are often consid-
ered superior to the use of an individual model (A. Wang et al., 2020; Ullah 
et al., 2020).

2.2.  Population Data

The population distribution in the year 2000 and the future projections for 
2061–2100 under scenarios SSP1, SSP2, SSP3, and SSP5 were used to esti-
mate the future population exposure to different types of HWs in SA (https://
www.cgd.ucar.edu/iam/modeling/spatial-population-scenarios.html) (Jones 
& O’Neill, 2016). The population datasets were resampled into 0.5° × 0.5° 
resolution to match the GCMs (A. Wang et al., 2020; Liu et al., 2020). The 
2000 population distribution data were combined with the historical period’s 
data to estimate the historical exposure (Chen et al., 2020; Li et al., 2018). 
The SSP1, SSP2, SSP3, and SSP5 population projections were combined 
with the respective socioeconomic and forcing scenarios of SSP1-2.6, SSP2-
4.5, SSP3-7.0, and SSP5-8.5, respectively, to estimate the potential changes 
in the population exposure to HWs under each scenario in the study area.

2.3.  Bias Correction

For the bias correction, the additive scaling factor technique was used to 
correct the future projections of the models using the observed data. The addi-
tive scaling factor is a commonly used statistical method that facilitates the 
comparison of observed and simulated impacts during a historical reference 
period and ensures a continuous transition into the future (Liu et al., 2020). 
The scaling factor preserves the sensitivities of the GCMs and the underlying 
trends (Hempel et al., 2013). This method has been widely applied in many 
climate impact studies (A. Wang et al., 2020; Li et al., 2018; Liu et al., 2020).

For daily Tmax and Tmin in each model, a mean correction (MC) additive 
scale was computed from the difference between the observed and simulated 
temperatures during 1975–2014. The MC additive scale was then added to 
the models' future climates to correct the bias.

𝑇𝑇MC = 𝑇𝑇MP + (𝑇𝑇OBS – 𝑇𝑇MH) ,� (1)

Figure 1.  (a) Elevation in South Asia (SA); (b) Spatial distribution of the 
population in SA in 2000; Spatial distribution of the historical (1975–2014), 
(c and e) maximum (Tmax), and (d) & (f) minimum (Tmin) temperature 
climatologies, in SA from the Climate Research Unit (CRU) data and the 
ensemble means of 21 Coupled Model Intercomparison Project 6 (CMIP6) 
models, respectively; Spatial distribution of the historical mean (1975–2014) 
(g) daytime and (h) nighttime heat waves (HWs), in SA from the ensemble 
mean of 21 CMIP6 models.

https://www.cgd.ucar.edu/iam/modeling/spatial-population-scenarios.html
https://www.cgd.ucar.edu/iam/modeling/spatial-population-scenarios.html
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where TMC and TMP are the corrected and projected temperatures, respectively. The TOBS and TMH are the clima-
tological monthly means of the observed and simulated temperatures, respectively. Similarly, (TOBS – TMH) is the 
scaling factor for the month-to-month changes.

The observed Tmax and Tmin datasets of the Climatic Research Unit gridded Time Series (CRU-TS 4.04) with a 
0.5° × 0.5° horizontal resolution (Harris et al., 2020) were used to correct the model bias in SA. The time period 
of the CRU data is from 1975 to 2014, which is in line with the historical period of the models' data.

2.4.  Definition of HWs

The HW risk can be quantified using either the daily Tmax or Tmin and/or Tmean. However, in recent years, the 
daily Tmax and Tmin have been widely used to study daytime and nighttime HW activities in different parts of the 
world (Cowan et al., 2014; Li et al., 2018; Luo & Lau, 2017; Mukherjee & Mishra, 2018; Raei et al., 2018; Ullah 
et al., 2019; Zhang et al., 2020). It is argued that daytime HWs pose serious risks to human health; however, the 
persistent occurrence of nighttime heat stress can further exacerbate human discomfort and pre-existing health 
conditions (Meehl & Ebaldi, 2004; Mukherjee & Mishra, 2018; Panda et al., 2017). Thus, the occurrence of 
consecutive hot days and nights has potential implications for human mortality and morbidity.

HWs have no universal definition and can be defined using either percentile or absolute thresholds (You, Jiang, 
et al., 2017). In this study, we adopted an integrated approach by combining the percentile-based and absolute 
value-based thresholds to define an HW event in the study area (Dosio et al., 2018; Russo et al., 2017, 2019; Xie 
et al., 2020). This approach has been used in previous studies to define HW events in the Indo-Pak sub-continent 
(Rohini et al., 2016, 2019). The percentile-based threshold is defined as the 90th percentile of the Tmax and Tmin 
based on a 5-day window during the historical period (1975–2014) for daytime and nighttime HWs, respectively. 
The 5-day moving window centered on each calendar day is considered to account for the temporal variability 
while producing a reasonable sample size for calculating a realistic percentile value. In addition, we used the 

S. No Model name Country name Horizontal resolution (lon × lat) Reference

1 ACCESS-CM2 Australia 1.9° × 1.3° Bi et al. (2013)

2 ACCESS-ESM1-5 Australia 1.9° × 1.2° Law et al. (2017)

3 AWI-CM-1-1-MR Germany 0.94° × 0.93° Semmler et al. (2020)

4 BCC-CSM2-MR China 1.1° × 1.1° Wu et al. (2019)

5 CanESM5 Canada 2.8° × 2.8° Swart et al. (2019)

6 CMCC-CM2-SR5 Italy 1.25° × 0.9° Cherchi et al. (2019)

7 EC-Earth3 Europe 0.7° × 0.7° Massonnet et al. (2020)

8 EC-Earth3-veg Europe 0.7° × 0.7° Wyser et al. (2020)

9 FGOALS-g3 China 2° × 2.3° Li et al. (2020)

10 GFDL-CM4 USA 2° × 2° Held et al. (2019)

11 GFDL-ESM4 USA 1.3° × 1.0° Dunne et al. (2020)

12 INM-CM4-8 Russia 2° × 1.5° Volodin et al. (2018)

13 INM-CM5-0 Russia 2° × 1.5° Volodin et al. (2017)

14 IPSL-CM6A-LR France 2.5° × 1.3° Boucher et al. (2020)

15 MIROC6 Japan 1.4° × 1.4° Tatebe et al. (2018)

16 MPI-ESM1-2-HR Germany 0.9° × 0.9° Gutjahr et al. (2019)

17 MPI-ESM1-2-LR Germany 1.9° × 1.9° Mauritsen et al. (2019)

18 MRI-ESM2-0 Japan 1.1° × 1.1° Yukimoto et al. (2019)

19 NESM3 China 1.9° × 1.9° Cao et al. (2018)

20 NorESM2-LM Norway 2.5° × 1.9° Seland et al. (2020)

21 NorESM2-MM Norway 1.25° × 0.9° Seland et al. (2020)

Table 1 
Details of the Selected CMIP6 Models
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absolute thresholds of daily climatological Tmax ≥ 35°C and Tmin ≥ 25°C for daytime and nighttime HWs, respec-
tively. Based on these two thresholds, a daytime (nighttime) HW event is defined by the daily Tmax (Tmin) ≥ 90th 
percentile threshold of the historical period daily climatological Tmax (Tmin) of ≥35°C (25°C) for at least 3 consec-
utive days (nights). These criteria were selected carefully to determine the HW events occurring over the conti-
nental plains of SA (Rohini et al., 2016, 2019). The 90th percentile threshold has been widely used by researchers 
to study HW extremes (Cowan et al., 2014; Liao et al., 2018; Perkins & Alexander, 2013; Ullah et al., 2019). 
Moreover, the 35°C (25°C) absolute threshold was used to limit the occurrence of daytime (nighttime) HW events 
over the mountainous region of SA (Rohini et al., 2016, 2019), where the temperature is expected to be well 
below the adopted threshold (Das & Meher, 2019; Dimri et al., 2018; Ullah et al., 2020).

2.5.  Estimation of Population Exposure to HWs

The population exposure is the number of HW events multiplied by the number of people exposed to that outcome 
in each grid cell (Jones et al., 2015; Jones & O’Neill, 2016). The change in future population exposure was meas-
ured with reference to the historical period. To minimize the interannual variations, we used the 40-year mean of 
HWs and population to calculate the exposure to each type of HW during both the historical and future periods 
(Batibeniz et al., 2020; Liu et al., 2020). The 40-year average exposure was calculated for each grid cell using 
Equation 2.

𝐸𝐸𝑃𝑃 =

∑40

𝑖𝑖=1
HW𝑖𝑖 × 𝑃𝑃

40
,� (2)

S. No Model name

Tmax Tmin

Historical SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 Historical SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

1 ACCESS-CM2 ✓ ✓ ✓ ✓ ✓ ✓

2 ACCESS-ESM1-5 ✓ ✓ ✓ ✓ ✓ ✓

3 AWI-CM-1-1-MR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

4 BCC-CSM2-MR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

5 CanESM5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

6 CMCC-CM2-SR5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

7 EC-Earth3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

8 EC-Earth3-veg ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

9 FGOALS-g3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

10 GFDL-CM4 ✓ ✓ ✓ ✓ ✓ ✓

11 GFDL-ESM4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

12 INM-CM4-8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

13 INM-CM5-0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

14 IPSL-CM6A-LR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

15 MIROC6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

16 MPI-ESM1-2-HR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

17 MPI-ESM1-2-LR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

18 MRI-ESM2-0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

19 NESM3 ✓ ✓ ✓ ✓ ✓ ✓

20 NorESM2-LM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

21 NorESM2-MM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Note.The ✓ sign indicates the availability of the SSP scenario in the respective model for Tmax and Tmin.

Table 2 
Details of the Available SSP Scenarios for Tmax and Tmin in the Selected CMIP6 Models
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where EP is the 40-year mean population exposure (person-events), i is the ith year of the study period, HWi is the 
annual number of HW events, and P is the simulated population (number of people).

2.6.  Estimation of the Relative Roles of the Exposure Factors

To determine the relative contributions of the climatic and population factors to the HWs exposure, we decom-
posed the changes in the population exposure into the climatic driver (temperature), effects of population 
increase, and their compounding effects, with the sum representing the overall exposure (Jones et  al.,  2015; 
Rohat et al., 2019). The effects of the population were calculated by keeping the climate constant while using 
the number of HW events in the historical period multiplied by the population in each SSP scenario. Similarly, 
the climate effects were calculated by holding the population constant and using the number of HW events in 
each SSP scenario multiplied by the population in the historical period. The compounding effects of both were 
estimated to identify the areas with continuous population growth and frequent HWs under future climate change. 
The changes in the population exposure were decomposed using Equation 3.

Δ𝐸𝐸𝑃𝑃 = HW𝐻𝐻 × Δ𝑃𝑃 + 𝑃𝑃𝐻𝐻 × ΔHW+ Δ𝑃𝑃 × ΔHW,� (3)

where ΔEP is the total change in the population exposure (people/event), HWH is the number of HWs in the 
historical period (events), ΔP is the change in the population from the historical period to the future period 
(people), PH is the population in the historical period (person), and ΔHW is the change in the number of HWs 
from the historical period to the future period (events). Thus, HWH × ΔP is the population effect, PH × ΔHW is 
the climatic effect, and ΔP × ΔHW is the compounding effect (or interaction) between the climate change and 
population change.

3.  Results and Discussion
3.1.  Changes in Historical Population, Temperature, and HWs

The spatial distribution of historical population indicates that the highest population density occurs on the 
Indo-Gigantic Plains (IGP), followed by the southeastern parts of India and the northwestern parts of the Pak-Af-
ghan border (Figure  1b). The IGP extends from the northern-central parts of the Indian Subcontinent to its 
extreme northeastern parts (Biemans et al., 2019), mainly including the northeastern parts of Pakistan, northern 
India, and Bangladesh. This region is located among the three major river basins in SA, namely the Brahmaputra, 
Ganges, and Indus rivers (Biemans et al., 2019; Pathak et al., 2017; Xu et al., 2020). It should be noted that the 
IGP is the most densely populated region of the Indian Sub-continent (Im et al., 2017; Kaskaoutis et al., 2011) due 
to its fertile land, water availability, and high livelihood opportunities (Biemans et al., 2019; Viviroli et al., 2020). 
The complex topography, diverse climatology, distinct geographical location, and fragile socioeconomic condi-
tions further exacerbate the vulnerability of this region to climate change and its extremes (Ramachandran & 
Kedia, 2013; Sen et al., 2017).

In terms of observed and GCM simulated temperature climatologies, the historical distribution of the maximum 
(Tmax) and minimum (Tmin) temperatures exhibits a warming pattern in the central parts of SA, with a maximum 
intensity along the Indo-Pak border (Figures 1c–1f). This region has a hot and dry climate with a desert land-
scape, making it more susceptible to climate extremes. Due to its complex topographic and climatic features, 
the region is considered to be a climate change-prone region. Moreover, the eastern parts of India and the south-
western parts of Pakistan and Afghanistan also have a warm climate. In contrast, the Hindukush Karakorum and 
Himalaya (HKH) ranges have the lowest temperatures, which is attributed to their cold and humid climate. It is 
worth stating that the spatial patterns of both the observed and simulated climatologies are similar; however, 
the intensity of GCMs climatologies is slightly higher (lower) than those of the observed climatologies over the 
plains (mountainous) region of SA. Given the warm and cold biases in the historical simulations of GCMs, we 
could expect similar patterns in their respective future projections, which need to be bias-corrected. Thus, the 
future projections of all CMIP6 GCMs were bias-corrected prior to their use for HWs analysis as described in 
the Methods Section.

The results further show that the frequency of historical daytime and nighttime HWs is high throughout the 
plains areas of SA. However, the highest number of HW events occurred in the IGP, the southeastern coastal belt, 
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and the southwestern parts of Afghanistan (Figures 1g–1h). This indicates that these regions have experienced 
frequent HW events in recent decades. It is vital to mention that these parts of SA are listed among the hottest 
regions of the world and are highly exposed to frequent HWs (Mishra et al., 2020; Mueller et al., 2014; Ullah 
et al., 2019; You, Ren, et al., 2017). In addition, these regions have had a high population density in the histor-
ical period, highlighting their fragile socioeconomic conditions and susceptibility to climate change-induced 
extremes. Interestingly, the HKH region has not experienced any HW event in the historical period, which is 
attributed to the low-temperature tendency in the mountainous parts of SA. Moreover, the absence of HWs in the 
HKH region could be due to the criteria used in this study for defining HW events.

3.2.  Changes in Future HWs

The relative change in HWs indicates that the SA region is expected to experience an increase in the daytime 
and nighttime HWs, with the highest number of HW events occurring in the central, northwestern, southern, 
and northeastern parts under all of the SSP scenarios, relative to the historical period (Figures  2a–2h). The 
distribution of the future HWs exhibits a dipolar pattern, with the maximum number of daytime HWs occurring 
in the northwestern parts of Pakistan and the highest number of nighttime HWs occurring in southern Pakistan, 
northeastern India, and Bangladesh. The rapid increase in the number of HW events in the northwestern parts 
of Pakistan can be attributed to an elevation-dependent increase in temperature since these areas are located at 
relatively high altitudes. Several studies have reported more warming in the northwestern parts of SA than in the 
low-lying plains areas (Pepin et al., 2015; Shen et al., 2021; You et al., 2020). Interestingly, the Indo-Pak border 
is expected to have consistent increases in both the number of daytime and nighttime HWs during 2061–2100, 
relative to the historical period (1975–2014). This part of SA has a desert environment with a hot and dry climate 
and thus experiences recurrent HW episodes. The frequent occurrence of HWs along the Pak-India border affirms 
the increasing trends of Tmax and Tmin in the coming decades.

Surprisingly, the number of daytime HWs is expected to decrease in the southwestern parts of Pakistan under 
scenario SSP1-2.6, followed by SSP2-4.5, and SSP3-7.0, relative to the historical period. Similarly, the number of 
nighttime HWs is likely to decrease in the southwestern parts of Pakistan and southern and eastern coastal regions 
of India under scenarios SSP1-2.6 and SSP2-4.5. The spatial extent of the decrease in the number of nighttime 
HWs is higher than that of daytime HWs. However, the area showing less HWs in the future is significantly 
smaller than the areas pointing to more HWs in the future. It should be noted that the HKH region is not prone to 
extreme HWs compared to some other parts of the region, due to the low-temperature tendency in this region (see 
also the absolute temperature thresholds for the HW definition in the Methods Section).

In terms of frequency, the number of nighttime HWs is likely to be higher than the number of daytime HWs under 
most of the selected scenarios. This uneven pattern of HWs can be attributed to the asymmetric increases in Tmax 
and Tmin, as recent studies anticipate that Tmin is likely to increase at a faster rate than Tmax (Kang et al., 2010; 
Ullah et al., 2020), which would affect the frequency of their extremes in the study area. Moreover, the spatial 
coverage of the future HWs indicates that the daytime HWs will occur in a larger area than the nighttime HWs 
under scenarios SSP1-2.6, SSP2-4.5, and SSP3-7.0. Overall, the results suggest that the numbers and the spatial 
coverages of the daytime (nighttime) HWs are projected to be higher under scenario SSP5-8.5, followed by SSP2-
4.5, SSP3-7.0, and SSP1-2.6 (SSP5-8.5, SSP3-7.0, SSP2-4.5, and SSP1-2.6), relative to the historical period.

The box and whisker plot shows the spread of changes in the regional mean number of daytime and nighttime 
HWs under the selected SSP scenarios, relative to the historical period (Figure 2i). The daytime HWs exhibit 
higher maxima values under all the SSPs relative to the historical period, suggesting that the study region will 
experience frequent daytime HWs in the future. The higher maxima values of daytime HWs can also be affirmed 
from the spatial pattern of HWs since most parts of the SA are likely to be dominated by frequent HWs during the 
daytime. Moreover, the nighttime HWs have high interquartile ranges (IQR) under the selected SSPs; however, 
their minima values are slightly lower (≤0) than daytime HWs. The lower minima of the nighttime HWs can be 
attributed to their decreasing trend since the southern and eastern parts of SA will experience a relatively more 
decline in nighttime HWs than daytime HWs during the study period. Relative to the daytime HWs, the nighttime 
HWs have higher maxima values under SSP3-7.0 and SSP5-8.5 scenarios, indicating a relatively sharp increase  in 
HW events at nighttime than daytime under the said scenarios. These results can be confirmed from the spatial 
pattern of HWs under SSP3-7.0 and SSP5-8.5, where more HWs can be seen at nighttime than daytime, particu-
larly in the central and northeastern parts of SA. Overall, the number and spread of daytime (nighttime) HWs 
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will be higher under SSP5-8.5, followed by SSP2-4.5, SSP3-7.0, and SSP1-2.6 (SSP5-8.5, followed by SSP3-7.0, 
SSP2-4.5, and SSP1-2.6) scenarios.

3.3.  Estimation of Population Exposure to Future HWs

The spatial pattern of the relative population exposure to future daytime and nighttime HWs in SA exhibits a 
high spatial variability under multiple SSP scenarios during 2061–2100 (Figures 3a–3h). The regions with higher 
population exposures (0.25–2.25 million people-event) to HWs are mainly located in the northern parts of SA, 
comprising the IGP region. Within the IGP region, the highest degree of population exposure will occur along 
the northwestern Indo-Pak border and in northeastern India and Bangladesh. It should be noted that these parts 
of SA contain the largest metropolitan cities, including Lahore, Faisalabad, Amritsar, Delhi, Patna, Kolkata, 

Figure 2.  Projected changes in the future (2061–2100) (a–d) daytime and (e–h) nighttime heat waves (HWs) in South Asia from the multi-model ensemble means 
under different Shared Socioeconomic Pathways (SSPs), relative to the historical period (1975–2014); (i) Projected regional mean changes in the daytime and nighttime 
HWs. The box plots indicate the spatial spread of regional mean values for daytime and nighttime HWs under the selected SSPs.
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and Dhaka. It should also be noted that the IGP is one of the world's most populated regions and its rising rate 
of population will continue in the future (A. Wang et al., 2020; Im et al., 2017). Moreover, this region is highly 
sensitive to climate change due to its physical and socioeconomic conditions (Biemans et  al.,  2019; Viviroli 
et al., 2020). Thus, the increase in population accompanied by the prevailing occurrence of HWs may exacerbate 
the population exposure and the magnitudes of the potential risks to human lives and their socioeconomic assets 
in the region (Mishra et al., 2020). Moreover, the central parts of India will also be exposed to future daytime and 
nighttime HWs under most of the SSP scenarios (0.125–1.25 million people-event). The population exposure in 
central India could be due to the compounding effects of climate change and population since this part of SA has 
a relatively low population and experiences a relatively lower number of HW events.

Figure 3.  Projected population exposure to future (2061–2100) (a–d) daytime and (e–h) nighttime heat waves (HWs) in Suth Asia from the multi-model ensemble 
means under different Shared Socioeconomic Pathways (SSP) scenarios, relative to the historical period (1975–2014). (i) Projected regional sums of population 
exposure to daytime and nighttime HWs (i.e., values above each bar in Figure 3i indicate the regional sums of population exposure to daytime and nighttime HWs under 
the corresponding SSP scenarios).
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In contrast, the southwestern parts of Pakistan and India, and the southern and eastern coastal belts of the Indian 
Ocean will experience a decrease (−0.125 million people-event) in population exposure to future HWs under 
scenarios SSP1|SSP1-2.6 and SSP2|SSP2-4.5. The estimated decrease in population exposure will be larger for 
nighttime HWs than daytime HWs. The resultant decrease in the extent of the population exposure in these regions 
can be attributed to the decreasing trend of future HWs, as we find that these regions predominantly exhibit a 
pattern of decreasing daytime and nighttime HWs in the future. It should be noted that the above-mentioned 
areas will experience a positive shift in population exposure under scenarios SSP3|SSP3-7.0 and SSP5|SSP5-8.5, 
which could be related to the effects of population growth and high radiative forcing embedded in these scenarios. 
Interestingly, all of Afghanistan, the southern belt of Pakistan, the HKH ranges, and the southern parts of India 
will not witness a large extent of population exposure, which could be due to the absence of future HW events 
in these regions.

The results further demonstrate that the degree of population exposure and its spatial extent is expected to be 
higher for nighttime HWs than for daytime HWs under the selected scenarios, relative to the historical period. 
The heterogeneity in the degree and extent of the population exposure to the different types of HWs could be 
possible outcomes for the maximum number of nighttime HW events in the study area. Moreover, the asymmetric 
increases in Tmax and Tmin may influence the degree of exposure because it is projected that Tmin will increase at a 
higher rate than Tmax in the study region (Ullah et al., 2020), which would intensify the occurrence of nighttime 
HWs than daytime in the future. Furthermore, the highest degree of population exposure to daytime and nighttime 
HWs occurs under scenario SSP3|SSP3-7.0, followed by SSP2|SSP2-4.5, SSP5|SSP5-8.5, and SSP1|SSP1-2.6. 
The scale of the exposure under these scenarios can be attributed to the combined effects of population, urbani-
zation, and radiative forcing since the selected scenarios are embedded with a sharp rise in population and rapid 
urbanization coupled with a high radiative forcing under the given level of greenhouse gas concentrations (Gao 
& O’Neill, 2020; Jing et al., 2020; Jones & O’Neill, 2016).

The regional sums indicate that there will be an increase in population exposure to daytime and nighttime 
HWs under all of the SSP scenarios with the highest exposure under scenario SSP3|SSP3-7.0, followed by 
SSP2|SSP2-4.5, SSP5|SSP5-8.5, and SSP1|SSP1-2.6 (Figure  3i). The degree of the population exposure to 
daytime HWs is higher under scenarios SSP2|SSP2-4.5 while that of the nighttime HWs is higher under scenarios 
SSP1|SSP1-2.6, SSP3|SSP3-7.0, and SSP5|SSP5-8.5. The differences in the population exposures to daytime and 
nighttime HWs under the selected scenarios could be the result of the variations in the numbers of daytime and 
nighttime HWs. Relative to the historical period, the total estimated population exposure to daytime HWs in SA 
is 185, 389, 492, and 336 million people-event under scenarios SSP1|SSP1-2.6, SSP2|SSP2-4.5, SSP3|SSP3-7.0, 
and SSP5|SSP5-8.5, respectively. Similarly, the total population exposure to nighttime HWs is 204, 360, 555, and 
360 million people-event under scenarios SSP1|SSP1-2.6, SSP2|SSP2-4.5, SSP3|SSP3-7.0, and SSP5|SSP5-8.5, 
respectively. These results are in line with the spatial distributions of the population exposures to daytime and 
nighttime HWs under the selected SSP scenarios.

Though the present study estimated future population exposure to daytime and nighttime HWs in SA; however, 
it has some limitations that need to be addressed in the forthcoming studies. This study did not employ the soci-
oeconomic and demographic characteristics of the population (i.e., income, education level, and age), which 
may affect the degree of risk posed by HWs in the study region (Chambers, 2020; Gasparrini et al., 2017; Jones 
et al., 2015; Watts et al., 2019, 2021). Moreover, this study used the total population of the study area, without 
considering the urban and rural differences, which may also affect the extent of exposure, as urban sites are likely 
to be at higher risk of HWs (Batibeniz et al., 2020; Rohat et al., 2019; Scovronick et al., 2018; Wang et al., 2019). 
We believe that future studies estimating population exposure will be based on more refined socioeconomic and 
demographic classifications. Currently, many studies are focusing on exposure to climate extremes but there is no 
uniform definition of exposure yet. Some studies have used the method of multiplying extreme events and popu-
lation numbers to estimate the population exposure to climate extremes (Batibeniz et al., 2020; Jones et al., 2015; 
Mondal et al., 2021). Some studies have defined exposure as the area experiencing climate extremes exceeding 
the danger threshold for a given time period (Sun et al., 2019; Zhang et al., 2018), while some have considered 
the intensity-area-duration method of disaster events to reflect the changes in exposure (A. Wang et al., 2020; 
Wen et al., 2019; Zhao et al., 2021). Due to the different definitions, the estimation of population exposure and 
the socioeconomic impacts of climate extremes are also different. Therefore, there is a need for a more scientific, 
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rational, sound, and uniform definition of population exposure to extreme events that takes into account the 
hazard, exposure, and vulnerability aspects to adequately reflect the socioeconomic impacts of disasters.

3.4.  Changes in Exposure Factors

In terms of the underlying roles of the exposure factors, the interactions between population and climatic factors 
are likely to play a more prominent and intensifying role in escalating population exposure to HWs in SA than their 
individual effects. The results show that the compounding effects of both drivers will exacerbate population expo-
sure to both daytime and nighttime HWs under SSP3|SSP3-7.0, followed by SSP2|SSP2-4.5, SSP5|SSP5-8.5, and 
SSP1|SSP1-2.6 scenarios (Figures 4a and 4b). Overall, the relative contribution of the compounding effects on 
population exposure to daytime (night-time) HWs will be 236, 156, 100, and 53 (270, 137, 103, and 56) million 
people-event, under SSP3|SSP3-7.0, SSP2|SSP2-4.5, SSP5|SSP5-8.5, and SSP1|SSP1-2.6 scenarios, respec-
tively. This indicates that the combination of anthropogenic and climatic factors is likely to be more significant in 
the future and may result in the frequent occurrence of daytime and nighttime HWs, with serious consequences 
for the study region. The major role of the compounding effects in population exposure to HWs can be attributed 
to the concurrent impacts of high population density and rapid urbanization coupled with high concentrations of 
greenhouse gas emissions under the selected SSP scenarios. It should be noted that the SSP2, SSP3, and SSP5 
are embedded with the effects of high urbanization rate, rapid population growth, and high radiative forcing, 
respectively (Jones & O’Neill, 2016; Murakami & Yamagata, 2019; Riahi et al., 2017).

Irrespectively, the contribution of the climate in population exposure to daytime HWs is greater under 
SSP2|SSP2-4.5 (72 million people-event) than SSP3|SSP3-7.0 (64 million people-event) and SSP5|SSP5-8.5 (67 
million people-event). The higher climatic effect on population exposure to daytime HWs under SSP2|SSP2-4.5 
could be linked to a slight increase in the exposed area in southern parts of India (Figures 2b and 3b). In contrast, 
the role of population effects in escalating the exposure to daytime HWs is greater than that of the climatic effects 
under the SSP3|SSP3-7.0 scenario, which can be attributed to the inclusion of the population influence since this 
scenario is considered to have a high population growth than the rest of the SSPs (Chen et al., 2020; Jones & 
O’Neill, 2016).

In the case of nighttime HWs, the role of climate in population exposure to nighttime HWs is slightly higher than 
that of both drivers under SSP5|SSP5-8.5 (109 million people-event), which could be the possible outcome of 
radiative forcing and concentration of the greenhouse gas emissions, since this scenario has high radiative forcing 
and greenhouse gas emissions effects (Gidden et al., 2019; O’Neill et al., 2016; Riahi et al., 2017). Similarly, the 
contribution of climatic effects (93 million people-event) in population exposure to nighttime is slightly higher 
than the population effects (85 million people-event) under SSP3|SSP3-7.0, which can be attributed to the joint 

Figure 4.  Decomposition of the changes in the effects of the exposure factors and their sums on (a) daytime and (b) nighttime HWs in the future (2061–2100) under 
different SSP scenarios, relative to the historical period (1975–2014). The error bars indicate the standard deviations of the respective exposure factors.
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effects of high HWs number and population since this scenario is embedded with a high population growth rate 
(Batibeniz et al., 2020; Jones & O’Neill, 2016; Liu et al., 2020).

It should be noted that the current GCMs do not fully resolve the climatic effects of urbanization. However, the 
SSP scenarios considered the effects of urbanization in terms of greenhouse gas emissions, which influence 
the large-scale climate resolved by the GCMs. The new SSPs are developed by integrating climate forcing and 
socioeconomic conditions (Gidden et al., 2019; O’Neill et al., 2016). For instance, SSP2-4.5 and SSP3-7.0 are 
embedded with the effects of high urbanization rate and rapid population growth, respectively (Gao & Pesar-
esi, 2021; Jones & O’Neill, 2016; Riahi et al., 2017). Thus, the influence of urbanization and population coupled 
with radiative forcing could affect the large-scale climatic conditions resolved by the CMIP6 GCMs. Similar 
results were also reported in this study, where urbanization and population coupled with radiative forcing have 
significant impacts on HWs and population exposure under SSP2-4.5, SSP3-7.0, and SSP5-8.5.

Our results are in line with the results of previous studies (Batibeniz et  al.,  2020; Chen et  al.,  2020; Jones 
et al., 2015; Liu et al., 2020) conducted in different parts of the world, including our study region. Overall, the 
results suggest that the population of the study region is highly vulnerable to the risks imposed by the projected 
daytime and nighttime HWs under the selected SSPs. Moreover, the increasing role of the joint effects of anthro-
pogenic and climatic factors in population exposure under different SSPs highlights the need for proper popula-
tion planning, sustainable urban planning, the mitigation of greenhouse gas emissions, and adaptation measures 
in order to minimize human exposure to HWs in the study region.

4.  Conclusions
In this study, the projected population exposure in southern Asia to daytime and nighttime HWs during 2061–
2100 under multiple SSP scenarios was estimated, relative to the historical period. It was found that the study 
area is most likely to experience a rise in the numbers of daytime and nighttime HWs, with the highest frequency 
occurring in the central, northwestern, southern, and northeastern parts of SA under all of the SSP scenarios. The 
frequency and spatial extent of the nighttime HWs will be higher than those of the daytime HWs under scenario 
SSP5-8.5, followed by SSP3-7.0, SSP2-4.5, and SSP1-2.6. Similarly, the projected population exposure to HWs 
is likely to be high in the IGP and central parts of India under all of the SSP scenarios. The estimated exposure 
and its extent will be greater for the nighttime HWs than for the daytime HWs under scenario SSP3|SSP3-7.0, 
followed by SSP2|SSP2-4.5, SSP5|SSP5-8.5, and SSP1|SSP1-2.6. In terms of relative importance, the projected 
changes in the population exposure to all types of HWs in SA are mainly influenced by the compounding effects 
of both drivers, followed by climatic change and projected population increases under the selected SSP scenarios. 
The prominent role of the combined effects of anthropogenic and climatic factors in population exposure under 
the different SSP scenarios highlights the need for reducing anthropogenic greenhouse gas emissions, sustainable 
urban planning, and climate change adaptation measures in order to minimize human exposure to future HWs.
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