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Mapping global lake dynamics reveals the
emerging roles of small lakes

Xuehui Pi 1,2,3,13, Qiuqi Luo 1,13, Lian Feng 1 , Yang Xu 1,4, Jing Tang5,6,
Xiuyu Liang1, Enze Ma1, Ran Cheng7, Rasmus Fensholt 4, Martin Brandt 4,
Xiaobin Cai 8, Luke Gibson 1, Junguo Liu 1,9, Chunmiao Zheng 1,10,
Weifeng Li2,3,11 & Brett A. Bryan 12

Lakes are important natural resources and carbon gas emitters and are
undergoing rapid changes worldwide in response to climate change and
human activities. A detailed global characterization of lakes and their long-
term dynamics does not exist, which is however crucial for evaluating the
associated impacts on water availability and carbon emissions. Here, we map
3.4 million lakes on a global scale, including their explicit maximum extents
and probability-weighted area changes over the past four decades. From the
beginning period (1984–1999) to the end (2010–2019), the lake area increased
across all six continents analyzed,with a net changeof +46,278 km2, and 56%of
the expansion was attributed to reservoirs. Interestingly, although small lakes
(<1 km2) accounted for just 15% of the global lake area, they dominated the
variability in total lake size in half of the global inland lake regions. The iden-
tified lake area increase over time led to higher lacustrine carbon emissions,
mostly attributed to small lakes. Our findings illustrate the emerging roles of
small lakes in regulating not only local inland water variability, but also the
global trends of surface water extent and carbon emissions.

Lakes play a major role in global hydrological and biogeochemical
cycles1–4 and underpin vital ecosystem functions and services5,6.
However, rapid lake changes have been identified worldwide in
response to changing climate and escalating human activities7–10,
threatening the ecosystem services provided by these lacustrine
habitats. For example, lake desiccation has been observed in some
populated regions due to unregulated water withdrawal, triggering
water shortages, international conflicts, and other societal
consequences7,11,12. Conversely, widespread glacier lake expansions

have been detected due to climate warming-induced snowmelt and
glacial melting13,14.

A spatially explicit understanding of lake size changes is essential
for evaluating the associated ecological, environmental, and societal
impacts. In theory, determining lake dynamics using satellite images is
straightforward, as remotely sensed imagery is available at high tem-
poral frequencies with global coverage. However, terrestrial surface
waters share similar optical features15, and these similarities cause
challengeswhendifferentiatingbetween lakes and riversusing satellite
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signals. A typical example is the recent map of changes in global sur-
face water12, where the respective contributions of lakes and rivers to
the total area or the detected changes remain uncertain. As lentic lakes
and lotic river systems represent distincthydrological andbiochemical
processes16,17, further efforts are warranted to quantify their distinct
roles in these hydrological changes.

Estimates of the global extent of lakes are available from several
existing datasets17–20, but thesewere largely generated using snapshots
of historical imagery and did not consider seasonal and interannual
fluctuations12,18. Previous studies on lake dynamics primarily focused
on medium- to large-sized lakes with well-defined boundaries7,14,21.
Small lakes (defined herein as lakes with an area <1 km2) are more
variable than large lakes due to their high sensitivity to natural wet/dry
transitions and human management activities19,22. Furthermore, small
lakes have a disproportionally large contribution to global lacustrine
systems in terms of their primary productivity23, biodiversity24,25, and
carbon cycle26. However, these available global assessments of eco-
system parameters are usually based on uncertain estimates of the
sizes and distribution of small lakes3,26,27, and few studies have exam-
ined how freshwater biogeochemical cycles are influenced by lake
variation because changes in lake sizes over time have never been
characterized globally. Here, we fill this existing knowledge gap and
map more than 3.4 million lakes and reservoirs with surface area
>0.03 km² (hereafter simply lakes unless otherwise specified) at the
global scale. We used deep learning to identify lakes smaller than the
minimum mapping unit for all global lake datasets that are publicly
available (0.1 km²). We then examined changes in the global lakes over
four decades and discussed the associated implications for lacustrine
carbon emissions.

Results
Determination of global lake extent
The dataset constructed in this study was named GLAKES and is based
on the Global Surface Water Occurrence (GSWO) dataset and a deep-
learning classification algorithm (see Methods and Supplementary
Fig. 1). The GSWO dataset provides the probability of water presence,
which was established using 30m resolution Landsat satellite obser-
vations between 1984 and 2019. Deep learning allows for the disen-
tanglement of lakes from rivers in the GSWO images, and the
integration of high-resolution remote sensing images and deep
learning makes it possible to detect lakes as small as 0.03 km2 (corre-
sponding to ~33 Landsat image pixels), which greatly improves the
minimum mapping unit and mitigates the issues of mis-accounted
small lakes in previous lake datasets that are publicly accessible. Vali-
dation showed high accuracy levels across different size groups in our
dataset (Supplementary Figs. 2, 3, Supplementary Table 1). Our
GLAKES dataset indicates a total lake area of 3.2 × 106 km2 in all-time
maximum (2.2% of the global land area), with 49.8% and 23.6% of the
total number of lakes and total lake area located north of 60°N (Fig. 1),
similar proportions to those reported in previous datasets17,18. We
partitioned lakes into three size groups, small (<1 km2), medium
(1–100 km2), and large (>100 km2); these size groups accounted for
94.39%, 5.56%, and 0.05% of the total number of lakes, respectively,
and 15%, 26%, and 59% of the total lake area, respectively. Including
lakes <0.1 km² in size (1.91 million lakes) resulted in a 30.2% larger
bounded lake area in the small-lake group than that mapped by the
recently published and widely used HydroLAKES dataset17 (Supple-
mentary Figs. 4, 5).

Four decades of lake changes
We examined global lake dynamics across three periods (1980–1990s:
1984–1999), 2000s: 2000–2009), and 2010s: 2010–2019) (Fig. 2) by
comparing the water probability-weighted area within lake boundaries
as defined by our GLAKES dataset (see Methods). We gridded global
lakes into 1° × 1° cells and excluded pixels with insufficient satellite

image coverage (particularly those located in eastern Russia and cen-
tral Africa) in early periods in the comparison (Supplementary Fig. 6).

From the 1980–1990s to the 2000s, the global lake area showed a
net increase of 39,784 km2. Lakes and reservoirs fed by glaciers or
permafrost, representing 30% of the worldwide lake area, accounted
for 48% (19,104 km2) of the total increase (Fig. 2); associated expansion
hotspotswere found inpreviouslywell-documented regions, including
Greenland, the Tibetan Plateau, and the Rocky Mountains14. The
remaining 52% increase (20,681 km2) was attributed mostly (75%) to
the expansion of reservoirs outside of glacial or permafrost regions
(Fig. 2). In contrast, declining lake sizes were observed in the western
USA, central Asia, northern China, and southern Australia. These can
be associated with local drought events, anthropogenic water with-
drawals, and/or other reasons;7,11,28,29 most of these locations aligned
closely with highly water-stressed regions reported in the previous
studies30. Overall, 2.5-fold more grid cells contained increased lake
sizes than the number of cells characterized by lake shrinkage.

From the 2000s to the 2010s, although the total lake area
increased, the net area gain represented only 16.3% of that identified
from the 1980–1990s to the 2000s. The substantial expansion of
reservoirs (8802 km2) dominated the total areal increase from the
2000s to the 2010s, which wasmore than twice the amount of natural
lake increases (3362 km2) in glacial or permafrost regions. Over half
(53%) of the global grid cells exhibited inconsistent changes between
the 1980–1990s to the 2000s and the 2000s to the 2010s. For exam-
ple, the lake area has increased in southeastern Australia in the most
recent decade, indicating the potential regional recoveryof these lakes
following the Millennium Drought in the 2000s28,31. Similar change
patterns were also found in northwestern India, suggesting that this
drought-prone regionwas likely to have suffered less fromwater stress
in recent years32. In contrast, large lakes showed a net area decrease of
14,553 km2 from the 2000s to the 2010s, 50% of which was attributed
to the human-induced shrinkage of the Aral Sea in Central Asia7.

Continuous lake expansions and shrinkages throughout the entire
study period were found in 38% and 9% of the global inland lake
regions (i.e., the 1° × 1° grid cells covered with GLAKES), respectively,
leading to an overall net area increase of 46,278 km2 (i.e., ~1.8 times the
size of Lake Erie or approximately the size of Denmark) over the past
four decades, and 56% of the increase was attributed to reservoirs.

The outsized role of small lakes in global lake size variability
Small lakes showed higher long-term temporal variability than large
and medium-sized lakes. The median values of the relative areal
changes in small lakes were +2.9% from the 1980–1990s to the 2000s
and +0.6% from the 2000s to the 2010s; these changes were sig-
nificantly greater than those derived for medium and large lakes
(matched-pair t-test, P <0.05) (Fig. 3a). Such difference in temporal
variability between small lakes andmedian/large lakeswas also evident
even when evaluating under equal relative pixel sizes, as revealed
through a case experiment in TibetanPlateau, which showed that lakes
within the size range of 0.5–1.5 km2 at the resolution of 30m were
found to exhibit a far larger range of the relative areal changes com-
pared to lakes between 50–150 km2 at the 300m resolution (Supple-
mentary Fig. 7). The sizes of 8.6% and 6.8% of small lakes more than
doubled from the 1980–1990s to the 2000s and from the 2000s to the
2010s, respectively. As a result, small lakes supplied a dis-
proportionately large contribution to global lake expansion, repre-
senting 46.2% of the net areal increase from the 1980–1990s to the
2010s (Fig. 3b). In contrast, extreme lake expansions occurred to a
much lesser extent in the larger lake groups andwere observedmainly
in human-impounded reservoirs (Supplementary Fig. 8).

The outsized role of small lakes can be further revealed by ana-
lyzing their contributions to lake size variability. We define variability
as the proportion of absolute areal changes in small lakes within a
given 1° × 1° grid cell (seeMethods). The changes in small lakes showed
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dominant contributions (>50%) in approximately half of the examined
inland regions (49.9% of the grid cells from the 1980–1990s to the
2000s, and 50.1% from 2000s to 2010s) (Fig. 3c), and regions, where
lake variability is dominated by small lakes, were spread across the
entire globe in both low-populated regions and areas with high chan-
ces of human disturbance (Supplementary Fig. 9). Furthermore, dec-
adal lake variations generally increased with regional population
density, and the variation range was much higher for small lakes than
for medium and large lakes, indicating the potential role of human
activities in shaping small lakes.

Updated estimates of lacustrine carbon emissions
Although lakes cover just a small fraction of the Earth’s surface, they
are important emitters of carbon gases26,33,34. A commonmethodology
used to estimate global emissions involves upscaling local measure-
ments to the global scale by multiplying the mean lake-surface fluxes
by the global area. Both CO2 and CH4 fluxes are reported to be influ-
enced by lake size, and the data describing global lake size thus
become crucial when upscaling carbon emissions3,26. With the detailed
mapping of global lakes from GLAKES, we can update the total esti-
mations of CO2 and CH4 emissions from global lakes.

We estimated the CO2 and CH4 emissions from global lakes using
our GLAKES dataset following the method proposed in a previous

study26 (see Methods). We reached a global total estimate of 226 Tg
C yr−1 for CO2 (Fig. 4a), which is smaller than the previous estimate (571
TgC yr−1)26. The difference could be partly due to the use of over-
estimated lake surface area by ref. 26, particularly for small lakes; small
lakes are featured with high emission rates, and the total surface area
from ref. 20 used by ref. 26 is 1.8 times the amount of GLAKES for all
lakes, and 2.9 times greater for small lakes (Supplementary Fig. 4a). For
similar reasons, our estimated CH4 emission (1.4 Tg C yr−1) was also
smaller than that previously estimated26. Nevertheless, our estimating
approachwas from ref. 26, where their results were in good agreement
with several other calculations when different methods or lake surface
area datasets were used3,4,26,27,35–40 (Supplementary Fig. 10). In this
regard, our estimates based on more accurate lake boundaries docu-
mented inGLAKESdataset should be reasonable.Our calculations here
further highlight the disproportionately large contributions of small
lakes to global lake CO2 and CH4 emissions (25% and 37%), given their
small share in the overall areal size of lakes (15%).

The mapping of lake variations during the past four decades
enabled us to examine the changes in CO2 and CH4 emissions from
global lakes throughout the study period (see Methods). Net increases
in carbonemissionswere found from the 1980–1990s to the 2010s,with
+4.81TgC yr−1 forCO2 and+0.03TgCyr−1 forCH4, respectively (Fig. 4b).
Small lakes contributed 45% and 59% to the net increases in lake CO2

Fig. 1 | Spatial distribution of global lakes. Lakes with maximum surface area
>0.03 km2 were mapped, showing a lake count (total number of lakes) and b lake
area density (total lake area/grid area) per 1° × 1° grid cell. The longitudinal and

latitudinal lake profiles summarizing (by 1°) the lake count and lake area are shown
on c and d. Statistics for small (<1 km2), medium (1–100km2), and large (>100 km2)
lakes are presented within each panel of a and b.
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and CH4 emissions over the entire study timeframe, respectively, and
these contributions were similarly high across different periods.

Discussion
We have developed a global lake dataset that comprises themaximum
outlines of 3.4 million lakes over the past four decades. Overall, our
GLAKES dataset shows marked improvements over previous global
lake datasets, considering its advantages in global coverage
(60°S–80°N), high spatial resolution (~30m), long-term changes (four
decades), spatiotemporal consistency (uniform mapping of global
lakes instead of aggregation from different lake datasets), overall
accuracy (overall accuracy >98.7% and MIoUs >88.7%), and the deli-
neation of small lakes (lower limit as 0.03 km2).We have demonstrated
an overall increase in inland lake areas worldwide over the past four
decades.We corroboratedpreviousfindings regarding substantial lake
expansions in glacial and permafrost regions14, whereas we further
revealed that such climate warming-induced changes were not amajor
contributor to global lake dynamics throughout the entire period.
Instead, we demonstrated that human-regulated reservoirs con-
tributed to more than half of the overall areal increases, highlighting
the dominant role of human alterations on global water dynamics41.
Our results also showed a net loss trend in lake area within endorheic
basins (in endorheic basins, water does not flow into any sea); this
result agrees with the findings obtained using GRACE-detected water
storage measurements recorded between 2002 and 201610. However,

our high-resolution mapping revealed the opposite trend when the
desiccated Aral Sea was excluded; under this condition, we found
continuously expanding small lakes in endorheic basins from the
1980–1990s to the 2010s (Supplementary Fig. 11).

Our study alsoprovides an important update toprevious lacustrine
carbon emissions calculations using more accurate lake extents and
offers detailed insights into changes in carbon emissions from global
inland lakes over four decades. Nevertheless, we believed that the
changes in CO2 and CH4 estimated herein represented conservative
values, and the magnitudes of these changes would be higher when
increased lacustrine eutrophication and expanded lakes of smaller size
were incorporated into the gas exchange calculations22,26,27,42,43.

Our detailed mapping of the dynamics of 3.4 million lakes can
potentially be used to better characterize regional-to-global hydro-
logical budgets, as the changes in evaporation and water storage
induced by lake size variability have often been ignored in past
studies44,45. In particular, thewidespread expansion of the lake area can
be synergistically analyzed with global increases in disastrous flood
events46, and the results reported herein provide critical information
for assessing the possibly enhanced flood risks associated with lake
dynamics. In addition, our dataset enabled amore thoroughevaluation
of the causes of the variations in surface water extent that may have
previously been constrained by the completeness or quality of global
lakemapping (especially for small lakes) to gain amorecomprehensive
perception of the impacts of climate change and anthropogenic

Fig. 2 | Lake area changes across different periods (1980–1990s, 2000s, and
2010s).Data were aggregated into 1° × 1° grid cells. The gray areas indicate regions
with insufficient satellite coverage in the earlyperiods; these regionswere excluded

from the analysis. Within each panel, the changes within and outside the glacial or
permafrost regions are also presented, and the contributions of natural lakes and
reservoirs are illustrated.
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Fig. 4 | Impacts of decadal lake changes on carbon emissions. a Total CO2 and
CH4 emissions from global lakes and the proportions derived from different
sized lake groups. The gas emissions were estimated using the method

proposed by ref. 26, by applying our GLAKES dataset. b Net changes in CO2 and
CH4 emissions derived for lakes in different size groups across the three ana-
lyzed time periods.
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activities. Furthermore, our established dataset is essential for quan-
tifying various aspects of aquatic systems (e.g., freshwater species and
nutrient/pollutant cycles) and identifying the potential transitions of
ecosystem functions under climate change47–49. Our findings also
underscore the urgent need for futuremanagement efforts focused on
small lakes, given their crucial roles in regulating local hydrologic
cycles and inland water-related carbon emissions.

Methods
Data sources
We used the Global SurfaceWater Occurrence (GSWO) dataset12 as the
source data to determine the areal extents of lakes. The GSWOdataset
provides global (from 60°S to 80°N) documentation of the location
and frequency of water occurrences over nearly four decades
(1984–2019) and was generated using 30-m-resolution Landsat ima-
ges. Extensive validation of the GSWO dataset was conducted at the
global scale, over the whole study period, and among all Landsat
sensors involved. The results demonstrated the high accuracy of the
surface water delineation in the GSWO datasets (1 < % false water area
detections and <5% missed water area) and, consequently, the ability
to afford comparable, continuous, and consistent mapping spatially,
temporally and across sensors12. In addition, we used theGSWmonthly
water history (MWH) data collection to calculate the occurrence of
water in different periods over the past four decades. The smallest lake
mapped in our study had a surface area of 0.03 km2, corresponding to
approximately 33 Landsat pixels. The GSW dataset was developed by
the EuropeanCommission’s Joint ResearchCentre and canbeobtained
from https://global-surface-water.appspot.com.

We used the Randolph Glacier Inventory 6.0 (RGI 6.0) glacier
data50 and ice sheet mass balance inter-comparison exercise (IMBIE)
Rignot data51 to determine the distributions of glacier-fed lakes. The
RGI 6.0 data provide a global inventory of glacier polygons (see
https://www.glims.org/RGI/rgi60_dl.html), and the IMBIE Rignot
dataset includes an additional ice sheet polygon supplemental
dataset representing Greenland (see http://imbie.org/imbie-2016/
drainage-basins/). In addition, we used the permafrost distribution
data provided by the National Snow and Ice Data Center of the
National Aeronautics and Space Administration (NASA) to determine
the locations of permafrost-fed lakes. This dataset provides the
gridded permafrost distribution in percent area in the Northern
Hemisphere52. The gridded permafrost data can be obtained through
the NASA webpage (see https://neo.sci.gsfc.nasa.gov/view.php?
datasetId=PermafrostNSIDC).

The HydroBASINS dataset53 was used to identify endorheic lakes.
HydroBASINS presents consistent and seamless watershed outlines at
different scales (lev01–lev12) according to the Pfafstetter coding sys-
tem,with a global spatial resolution of 15 arc-seconds. In this study, the
lev12 watershed polygons were selected for analysis. In particular,
HydroBASINS offers a variable called Endo to indicate whether each
basin/subbasin is an endorheic basin. The HydroBASINS dataset was
obtained from https://www.hydrosheds.org/page/hydrobasins.

TheGeoreferenced globalDamAndReservoir (GeoDAR) dataset54

was used to distinguish reservoirs from natural lakes. The GeoDAR
dataset, taking advantage of multi-source dam/reservoir inventories,
provides global documentation of reservoirs with detailed attribute
tables andwell-georeferenced spatial locations. TheGeoDARdataset is
available at https://doi.org/10.6084/m9.figshare.13670527.

Weused theGriddedPopulation of theWorld (GPW)dataset55,56 to
investigate the relationship between the human population and lake
area changes. The GPW dataset provides gridded population density
estimations based on proportional allocation models utilizing popu-
lation information gathered across global administrative units. Due to
the long time span of our study, two GPW data versions were com-
bined to establish population censuses reflecting different time peri-
ods. The GPW version-3 data (resolution: 2.5 arc-minutes) were used

for 1990 and 1995, while the GPW version-4 data (resolution: 30 arc-
seconds)were applied for 2000, 2005, 2010, 2015, and 2020. Then, the
GPW data reflecting different years were averaged to represent the
long-term population density status throughout the study period. The
GPW data are accessible through the Socioeconomic Data and Appli-
cations Center (https://sedac.ciesin.columbia.edu).

Mapping global lakes using deep learning
Deep learning has been widely used inmany areas57–60 and is proven to
be a powerful and creative tool in detecting features of interest from
satellite images61–63. A recent inspiring deep-learning application in
remote sensing image processing was documented by Brandt et al.64,
who detected tree crowns by combining the U-Net model with sub-
meter high-resolution satellite images. The U-Net model used in
Brandt et al.64 is a typical semantic segmentation technique that per-
forms pixel-wise classification within an image for precise
segmentation65,66. Compared to conventional classification tasks,
U-Net yields not only the label category of a specific image but also its
corresponding location. Upon the application of U-Net, Brandt et al.64

managed to map more than 1.8 billion non-forest tree crowns (>3m2)
in the West African Sahara and the Sahel, somewhat overturning the
previous stereotype of tree scarcity in these dryland regions. Here, we
modified the U-Netmodel developed by Brandt et al.64 and transferred
its application to global lake mapping. We expect a well-trained U-Net
model to perform well when classifying lakes and rivers using GSWO
images, as lakes and rivers are already highly distinguishable in visual
examinations (Supplementary Fig. 3).

Here, lakes and rivers mainly indicate lentic and lotic water sys-
tems that are visible from space, including both permanent and sea-
sonal waters. Lakes and rivers generally exhibit different features on
GSWO images. Compared to lakes that usually have flat and oval out-
lines, rivers are typically long, meander and narrow in shape, which
makes themdistinguishable inmost cases (see SupplementaryNote 3).
For seasonal water bodies, we implemented more carful examinations
of those located around rivers and meanwhile span a large scale (such
as floodplains), while keeping the small ephemeral water bodies as
lakes. In addition, we also identify tidal flats surrounded by lakes and
parts of wetlands as lakes because they are hard to separate from lakes
via satellite observations67. Here we use parts because wetlands are
usually covered with vegetation during the growing season, and thus
cannot be captured by the GSWO images (or optical remote sensing
images). GLAKES also contains constructed impounded water bodies
(i.e., reservoirs) that are closely related to human activities. Notably,
some agricultural fields are also included in our dataset, although the
proportionmay not be large, and further segregation is under process
(see Supplementary Note 3). Last, we do not take into account lakes
directly connected to the seas as the hydrological conditions and
human interventions are intricate in those regions.

Building upon a fully convolutional neural network68, the U-Net
model is composed of various hierarchical convolution layers that are
widely used in the semantic segmentation field for feature
detection60,66,69, vital for the extraction and segmentationof lakes from
rivers. The convolution layer extracts features from an image in the
previous layer and results in a less redundant output image called a
feature map. Generally, the features learned by convolution layers
transition from simple to more abstract ones as the level of the con-
volution layers increases60,70,71, and these features are determined by
the convolution kernels (i.e., an array of weights) that are learned
automatically through backpropagation. Except for convolution lay-
ers, there are various structures that are also essential in the modified
U-Net architecture of Brandt et al.64, including activation function
(enabling nonlinear classification), batch normalization (stabilizing
and accelerating the training process), pooling (reducing data
dimension and computation complexity), up-convolution (restoring
the size of feature maps for precise localization) as well as
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concatenation (combing the higher-level feature map with a lower-
level one to better learn representation). In addition, the U-Net model
adopts the overlap-tile strategy, which makes it possible to perform a
seamless segmentation for large images without losing information
about the divided border regions66. This makes U-Net particularly
applicable to our goal of pixel-wise lake classification through GSWO
images on a global scale. The specific structure of U-Net model is
presented in Supplementary Fig. 1, Supplementary Table 2, and Sup-
plementary Note 1.

The first step in deploying a deep-learning model is to prepare
reliable labels for the training, validation, and test sets. In this study,
lake labels were generated through an automatic extractionmethod
followed by manual modification by combining several existing
datasets, including the GSWO dataset, the Global River Widths from
Landsat (GRWL) database16, the OpenStreetMap Water Layer
(OSMWL) dataset72, and the HydroLAKES polygon dataset17. We
used the GSWO map to mask land pixels and exclude low-
confidence water pixels (some of which may be caused by the
inherent classification errors of GSWO) with <5% occurrence (i.e.,
<5% of the Landsat observations were classified as water during the
past four decades). Notably, in floodplains, the occurrence thresh-
old was set to 30% instead of 5% to capture the ‘core’ portions of
lakes and segment these portions from the larger-scale floodwaters
(periodically occurring over a long time but lasting for less than one
season (i.e., 25% occurrence) each year). We used the OSMWL and
GRWL masking products to exclude ocean and river pixels. Since
the GRWL dataset was developed using a limited set of Landsat
images and was thus inadequate for representing the full coverage
of rivers (this limitation is also applicable to the river data provided
by OSMWL), we visually confirmed that all river masks used to
prepare our labels were correct. Moreover, we gave higher priority
to lakes that had already been detected in the HydroLAKES database
by ensuring that the lake pixels within the HydroLAKES polygons
would not be affected by the overlying river/ocean mask. Finally,
extensive visual examinations were performed from one sample
region to another, where some lakes in hydrologically complex
regions were given more attention, such as those in the large river
basins and floodplain regions. Manual corrections were performed
mainly on the following two situations: (1) river residuals resulting
from the absent coverage of the corresponding river masks and (2)
river-connected lakes that required further division from river
channels. Of all sample polygons, Case 1 polygons frequently
occurred, which could take up ~10% of the total lake samples and
thus require careful inspection. On the contrary, the percentage of
Case 2 polygons was minor (far less than 1%). Ultimately, we would
like to ensure that all extracted lake boundaries (i.e., the lake mask
vectorization) matched well with the water/land interfaces isolated
on the GSWOmaps. Notably, the lower size limit of the samples was
set as 0.03 km2, according to our visual observations. The main
objectives were to exclude small polygon residuals generated dur-
ing this sample extraction procedure and to screen out small iso-
lated agricultural fields.

We delineated a variety of globally distributed sample regions
with varying sizes to create lake labels (Supplementary Fig. 2). Lakes
in floodplains showed distinctive patterns compared to those in all
other lake regions in the water-occurrence images; thus, we trained
two separate deep-learningmodels (referred to as Floodplain Model
and Normal Model, respectively) to extract these data better. In
addition, visual explorations of the water-occurrencemaps revealed
several types of sample regions that presented different features
(Supplementary Fig. 3). Specifically, we observed (1) relatively static
lakes that exhibited high/moderate water occurrence (HO); (2)
highly dynamic lakes with relatively low water occurrence (LO); (3)
lakes spanning large spatial scales that were challenging to interpret
using models due to the relatively large sizes of the lake objects

relative to the sizes of the modeled patches (LL); (4) lakes located
alongside rivers that required more attention to be distinguished
from rivers (AR); and (5) lakes within floodplains that often com-
bined to form lake clusters (WF). Our sample regions were deli-
neated and divided into these five different types based on visual
observations. It should be noted that the region type was only
representative of the major hydrological features of the lakes within
the sample region bound, where lakes with distinctive patterns may
also co-exist. Then, these five sample region types were pro-
portionally allocated (stratified random sampling) to the training
(60%), validation (20%), and test (20%) sets to ensure that the
model’s global representation of different lake patterns was
balanced. In practice, not all five categories of sample regions were
included in the Normal Model and Floodplain Model. Specifically,
the Normal model consisted of types 1 (HO), 2 (LO), 3 (LL), and 4
(AR), since type 5 (WF) was not the target of the Normal Model. On
the other hand, the Floodplain Model was made up of types 1, 3, 4,
and 5. The reason why types 1, 3, and 4 were included for model
interpretation was that the main patterns described by types 1, 3,
and 4 were also observable within the regions defined by type 5,
while type 2 was excluded because of the relatively high occurrence
threshold (i.e., 30%) applied for the Floodplain Model. In summary,
we delineated 754 sample regions for the Normal Model and
445 sample regions for the Floodplain Model; these region sets
contained 90,512 and 71,170 lake labels, respectively. As seen in
Supplementary Fig. 2a, the logarithmic sizes of these sample regions
were approximated to a normal distribution, where the majority
were on the order of magnitude of 102–103 km2, with a median area
of 5.91 × 102 km2 for the Normal Model and 5.69 × 102 km2 for the
Floodplain Model. The major principles considered when selecting
samples included the selection of samples from different regions
globally, the coverage of all typical hydrological conditions, and
ensuring balance in the numbers of the five major region types.

In general, the size of sample regions was too large for the U-Net
model to analyze the lake features within the region boundaries.
Instead, a variety of patches (with a fixed size of 512 × 512 pixels) were
randomly generated within each sample region, and the lake patterns
within the patches were extracted and interpreted by the model. In
addition,weapplied the same localnormalizationmethod fromBrandt
et al.64 for each patch (Supplementary Note 1).

According to our own research objectives, we made some
essentialmodifications to the U-netmodel proposed by Brandt et al.64.
First, we enlarged the patch sizes of the input images (i.e., training
labels) from 256× 256 pixels (based on submeter-spatial-resolution
satellite data) to 512 × 512 pixels (based on the 30m-spatial-resolution
Landsat data) to enhance the capability of the model to capture the
characteristics of large lakes. Additionally, the distance-weighted map
between gaps used in the initial model for the segmentation of par-
tially overlapped objects64,66 was not considered in our loss function
since we did not face this issue when using GSWO maps as the input
images. In termsof the selectionof hyperparameters,wekept the same
type of loss function and optimizer as those used in the originalmodel
butmade substantial changes to some other hyperparameters, such as
batch size, epoch numbers, and iteration numbers (see all important
hyperparameters documented in Supplementary Note 1), according to
trial-and-error results. Likewise, we used the loss error for model
selection (i.e., the model yielding the lowest loss error value using the
validation labels was selected). In addition, we also introduced the
mean intersection over union (MIoU) to assistmodel evaluation (which
was not used in Brandt et al.64). MIoU is a widely used image seg-
mentation performance indicator that fully considers true positives
and false negatives73. The IoUof each classwas calculated as the areaof
overlap divided by the area of union between the labels and predic-
tions of that class. Then, the IoU fromdifferent classeswas averaged to
estimate MIoU.
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After the selection for the final Normal and Floodplain Model,
predictions were obtained for each 512 × 512-pixel patch in each GSWO
map, resulting in a raw global lake classification map. Then, several
postprocessing procedures were conducted to further enhance the
classification accuracy. We first overlaid the OSMWL and GRWL
masking products to exclude ocean and river pixels, similar to the
procedure followed to prepare the labels. This step was necessary
because our model performed well when distinguishing lakes from
small rivers but exhibited some limitations with regard to oceans and
large rivers, mainly induced by the relatively small patch size (i.e.,
512 × 512 pixels) used for training. For coastal lakes, we further exclu-
ded lake polygons that directly intersected with the 10m buffer of the
global ocean boundaries defined by the OSMWL dataset; next, more
detailed manual corrections were performed on near-coastal regions.
For rivers, we minimized the residuals caused by the incomplete cov-
erage of the GRWL and OSMWL river masks using the area ratio of the
polygons representing the same lake before and after the application
of the river masks (Supplementary Fig. 12). In general, if the area ratio
was close to 1, only a small portion of the polygon was masked by the
predefined river maps, indicating that the polygon was more likely to
be a river-connected lake than a river. In contrast, if the ratio was close
to 0, indicating that a large portion of the polygon was masked, this
polygon could be considered to comprise the residuals of rivers (due
to incomplete masking) at a higher confidence level. In practice, we
excluded polygons with area ratios <0.8 (if these polygons were not
within the boundaries of the HydroLAKES polygons) and conducted
manual corrections on almost all large river basins to reduce such
residual errors.

Except for these postprocessing procedures, the lakes from the
Normal Model and the Floodplain Model were combined to gen-
erate our final version of global lake polygons (referred to as the
GLAKES dataset). Specifically, given that both the Normal Model
and Floodplain Model yielded lake predictions at global coverage,
we applied predefined river buffer zones to determine whether the
extracted lake polygons from the Normal Model or Floodplain
Model should be used for our final GLAKES dataset. Specifically, for
buffer zones flagged as “floodplain”, lake polygons (within these
buffer zones) extracted from the Floodplain Model were selected as
a part of GLAKES dataset, while the corresponding outputs from the
Normal Model were discarded. In contrast, for all remaining areas
(including buffer zones flagged as “normal” and areas outside the
river buffer zones), lake polygons from the Normal Model were
included in our final dataset. The basic principle for the determi-
nation of the exact flag (“normal” or “floodplain”) for each buffer
zone is to measure the extent of seasonally flooded non-lake and
non-river waters within the buffer zone. A 1 km buffer was applied to
each vectorized polygon of global rivers documented in the GRWL
Mask V01.01 product (https://zenodo.org/record/1297434#.
YrvEzj5ByUk). Within each buffer, the area of seasonally flooded
non-lake and non-river waters was calculated by summing the area
of all GSWO pixels with occurrence <75% (to exclude the permanent
and near-permanent water), except for those already being defined
as rivers (by GRWL mask) and lakes (by rasterized HydroLAKES
polygons). Finally, buffer zones where the ratio of their containing
flooded area to the corresponding buffer area exceeded the flood-
ing threshold were flagged as “floodplain”. In this study, the flood-
ing threshold was set as 0.1 through trial and error.

Similar to the generation of samplepolygons, onlypredicted lakes
with maximum surface water area >0.03 km2 were included in our
GLAKES dataset and were applied in further analysis. We partitioned
the global lakes into three size groups (small: <1 km2, medium:
1–100 km2, large: >100 km2) to estimate the numbers and area of lakes
in different size groups (Fig. 1) and to further examine the varying
change patterns in lake sizes and carbon emissions during the past
decades (see below).

Accuracy assessments and comparisons with previous global
lake datasets
Weused independent test labels to further evaluate ourmodifiedU-Net
model. Notably, the Normal Model and the Floodplain Model were
evaluated separately. We visually inspected how well the predicted
patches matched the corresponding labels (Supplementary Fig. 3) and
calculated error matrices to assess the accuracies of the predictions of
different lake size groups at the pixel level. Overall, the mapped lake
extents exhibited high accuracy levels in both the lake count and lake
area for Normal Model and Floodplain Model (Supplementary Fig. 2b),
and the predicted lake areas showed overall accuracies >98.7% and
MIoUs >88.7% (Supplementary Table 1). Meanwhile, a slight and sys-
tematic underprediction of label area could be observed in our models
(withPercentBias (PBIAS) <0),while themagnitudeof PBIAS in termsof
label count was smaller compared to that of label area.

In terms of the accuracy among different lake sizes, the omission
errors (i.e., lakes classified as non-lake areas) were relatively high for
small lakes (23.5% for Normal Model and 21.2% for Floodplain Model)
compared to those obtained for medium and large lakes. It is note-
worthy that the setting of the predefined cutting threshold (0.03 km2)
for lake samples should probably be responsible for such kind of issue
(see Supplementary Note 3). Nevertheless, the commission errors (i.e.,
non-lake areas classified as lakes)weremuch smaller than the omission
errors among all lake size groups, indicating that our mapped lake
extents appeared to represent conservative estimations. Indeed, the
lake change analysis was performed only within the boundaries
defined by our GLAKES dataset (see below); therefore, the associated
impacts of the classification errors (particularly the omission errors)
should be limited. In addition, we further examined the model per-
formance from the following perspectives: (1) polygon-based assess-
ment at different size scales; (2) performance in small lakes with a finer
division of size range; (3) performance among five different region
types; and (4) the spatial distribution ofmodel performance across the
globe (see Supplementary Note 2, Supplementary Figs. 13, 14, and
Supplementary Tables 3–5 for detailed information).

We further compared the areas and numbers of lakes in our lake
database (i.e., GLAKES) with the corresponding values reported in sev-
eral previously established global lake datasets17–20 (Supplementary
Fig. 4a). TheGlobal Lakes andWetlandsDatabase (GLWD)developedby
Lehner et al.18 is a combinationof several global or regional lakedatasets
(see GLWD documentation). The dataset is organized into three levels,
focusing on large water body polygons, smaller water body shorelines,
and the rasterized extents of potential wetlands. Based on the Shuttle
Radar Topography Mission Water Body Data74 (for most lakes between
56°S and 60°N), CanVec75 (for themajority of North American lakes), as
well as other lake datasets (see HydroLAKES documentation), the most
widely used global lake database HydroLAKES17 was developed, along
with intensive automated and manual corrections. The HydroLAKES
dataset contains ~1.42million individual lake polygonswith surface area
>0.1 km2. Downing et al.19 focused on the scaling relationships and size
distributions of lakes; these factors were tested in different regions and
integrated into a global Pareto distribution model to extrapolate the
global lake extent. By using the GeoCoverTM program circa 2000 based
on Landsat 7 images in combination with a corresponding water-
extraction algorithm, Verpoorter et al.20 developed the GLObal WAter
BOdies database (GLOWABO), which contains 117 million lakes with the
area of the smallest lake polygons set at 0.002 km2. In this study, we
made amore detailed spatial comparison using the latest version of the
global lake dataset (i.e., HydroLAKES) at both the 1° × 1° grid scale
(Supplementary Fig. 4b) and thepixel-level scale (Supplementary Fig. 5).
Note thatwhatwecomparedherewas actually the lake areaboundedby
the lake polygons of each dataset (if provided). The explicit meaning of
what the lake polygons represent (average/maximum/snapshot extent)
may be different since they were all generated from different methods
and with different objectives.
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Comparing only lakes with area >0.1 km², the total numbers and
area of lakes contained in GLAKES are similar to those of lakes con-
tained in the HydroLAKES dataset (Supplementary Fig. 4a). However,
the inclusionof 1.91million extra smaller lakes (<0.1 km2) inour dataset
resulted in a lake area of 1.05 × 105 km2 (30.2%) larger than that indi-
cated by the small-lake group in the HydroLAKES dataset17. Moreover,
we found a substantial number of missing lakes in eastern Canada and
Scandinavia in our dataset compared to HydroLAKES, as well as lake
overestimations with varying degrees in other regions, such as Siberia
and major river floodplains (Supplementary Figs. 4b, 5). These dis-
crepancies could be raised for many reasons, either to be responsible
for the inherent limitation of the GLAKES or otherwise HydroLAKES.
One example is the inability of GLAKES (orGSWO) to capture lakes that
are seasonally ice-covered throughout the year and heavily vegetated
in the remaining month, which is typical for some small and shallow
lakes in places such as the Canada Shield. The large values of GLAKES
could also be partially explained by the inclusion of some agricultural
fields (used to be lakes) or accidentally large floodplains. In contrast,
for HydroLAKES the constraint of its composing dataset (e.g., MODIS
MOD44W water mask and SRTM Water Body Data) in detecting small
lakes may be the possible reason for the lake underestimation in some
regions. Overall, both GLAKES and HydroLAKES have their own
strengths and limitations in terms of lake coverage, but what distin-
guishes GLAKES is its global consistency (not mosaic from different
datasets), higher resolution (better characterizes water/land inter-
face), the reflection ofmultidecadal lake extent (not snapshot on short
time period) as well as the inclusion of smaller lakes (<0.1 km2). This is
significant for the long-termmonitoring of the lake surface water area
dynamics. As a comparison, the Global Lake area, Climate, and Popu-
lation (GLCP) dataset provides annual time series lake surface area
records from 1995 to 2015 for all HydroLAKES polygons76. Never-
theless, GLCP faces the same limitations asHydroLAKES in termsof the
lake size limit and spatial consistency. Besides, since the HydroLAKES
polygons did not represent the maximum water extent, a fixed buffer
zone around lakes was generated in GLCP for area estimation, which
might result in fallaciously inclusion of water coverage that did not
belong to the target lakes or missed detection of water area due to the
insufficient coverage of the buffer outlines. On the other hand, large
discrepancies were found between the estimates obtained using
GLAKES and several other previously reported estimates18–20 (Supple-
mentary Fig. 4a), especially for small lakes (the relative differences
reached >50%). The overestimation of Downing et al.19 is likely due to
the reason that the statistics derived for lakes <0.1 km2 were not
determined from explicit lake mapping but from extrapolated values.
In contrast, the overestimation of the GLOWABO dataset20 probably
resulted from the inclusion of non-lake polygons such as rivers, given
that the disentanglement of lakes from rivers was never mentioned in
their documentation. As for Lehner and Döll18, similarly, their estima-
tion of small lakes may be constrained by the underlying data sources
composing GLWD.

Analyzing lake size changes over four decades
We estimated the water probability-weighted area, compared the
water probability-weighted area among different periods (i.e.,
1980–1990 s, 2000s, and 2010s), and investigated the significance of
small lakes onglobal lake dynamics. Theprobability-weighted lake area
(Arealakepw ) was calculated as follows: Arealakepw =

PðAreapixel *WOpixel),
where theAreapixel is the area of eachpixel (i.e., 900m2) constrained by
the lake boundary defined in our GLAKES dataset and WOpixel is the
correspondingwater occurrence (WO) in each pixel. For each period, a
WOpixelvaluewas calculated using the samemethod as that outlined by
Pekel et al.12 by normalizing the number of water presence (Nw) inci-
dences against the number of valid observations (Nvo) within a period.
In practice, both Nw and Nvo can be derived using the GSW MWH data
collection. In the MWH dataset, each pixel was assigned to one of the

three values (0: no data, 1: non-water pixel, and 2: water pixel); for each
pixel within a given time period, we estimated Nw as the number of
images corresponding to a value of 2 and set Nvo as the number of
images corresponding to pixel values >0.

We aggregated the probability-weighted areas into 1° × 1° grid
cells and calculated their relative changes between different periods
(Fig. 2). We further examined the relative contribution of small lakes
to lake variability within each grid cell (Fig. 3). The relative con-
tribution was defined as the proportion of absolute area changes
identified in the small-lake group (i.e., |ΔAsmall | ) to the total areal
changes (i.e., |ΔAsmall | + |ΔAlarge+medium | ) identified within a grid cell
(i.e., |ΔAsmall | / (|ΔAsmall | + |ΔAlarge+medium | )). Notably, grid cells with
insufficient satellite coverage in each period (fewer than 30, 20, and
20 valid observations in the 1980–1990s, the 2000s, and the 2010s,
respectively) were excluded from the cross-period comparison (i.e.,
grid cells in eastern Russia and central Africa) (Supplementary Fig. 6).

Lake changes under different geographic conditions
To investigate the associations between lake areal changes and popu-
lation density, we averaged the GPW population density data within
each 1° × 1° grid cell. We then compared the gridded lake area changes
among different population classes; we conducted two types of com-
parisons: (1) all lakes and (2) only small lakes (Supplementary Fig. 9).

We identified glacier-fed lakes as lakes that spatially intersected
with the 1 km buffers surrounding the glacier polygons obtained from
the RGI 6.0 and IMBIE Rignot datasets, following the same method as
ref. 14. It should be noted that the main focus of this method is lakes
experiencing recent detachment from glaciers within a few decades or
large supraglacial lakes that are highly distinguishable on long-term
satellite observations. Likewise, a spatial intersection approach was
applied to identify lakes that received water supply from permafrost
(i.e., intersection with selected 0.1° × 0.1° grids whose inside perma-
frost coverage was >10%, determined by using permafrost distribution
data sourced from the National Snow and Ice Data Center) (Supple-
mentary Fig. 6f). Similarly, we used the GeoDAR dataset to recognize
the location of global reservoirs and conducted the same intersection
approach to distinguish reservoirs from natural lakes in our GLAKES
dataset. In total, we extracted 24,514 reservoir polygons in our dataset,
accounting for 16.9% of the global lake area. The numbers of small,
medium, and large reservoirs are 17,301, 6813, and 400, respectively.

To determine endorheic and exoreic lakes, we used the informa-
tion provided in the HydroBASINS dataset. Basins with the ‘Endo’
variable attribute >0 were considered endorheic basins; thus, all lakes
falling into these regions were considered endorheic lakes.

Estimation of lacustrine carbon emissions and changes
Following the method outlined by Holgerson and Raymond26, we
classified our lake dataset into seven logarithmic size classes and used
the estimates of the size-dependent mean flux estimates26 directly to
calculate the CO2/CH4 emissions. We first multiplied the mean CO2/
CH4 flux by the total area of lakes (in all-time maximum) classified to
estimate the total gas emissions for each size class and subsequently
calculated the total emissions for global lakes.We repeated this stepby
using the upper/lower bounds of the flux values to estimate the ranges
of global lacustrine CO2 and CH4 emissions. We also estimated the
carbon gases emitted from global lakes in different periods
(1980–1990s–2010s) as well as the corresponding emission changes
over time. Similar to the procedures described above, we combined
the size-dependent CO2/CH4 fluxes with the probability-weighted lake
area to estimate global lake carbon emissions for each period.

Uncertainty and limitations
Several uncertainties and limitations should be acknowledged in this
study, both during the process of lake mapping along with related
change analysis of lake area and carbon emissions. In lake mapping,
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these could be further categorized into the following major sources:
lake definition, auxiliary datasets, U-Net model, and postprocessing.
The temporal change of probability-weighted lake area among differ-
ent time periods, otherwise, may be influenced by seasonal lake
dynamics. As for the estimation of global carbon emissions as well as
their long-termchanges, the accuracy of our results was closely related
to the representativeness of the average emission rates used for global
upscaling, the impacts of lake dynamics at shorter timescales, and the
quantification of emissions through different pathways (for CH4).
Please see Supplementary Note 3 for detailed information.

Data availability
The entireGLAKESdataset and labels used to train theU-Netmodel are
available under the accession code: https://doi.org/10.5281/zenodo.
7016548.

Code availability
The code associated with the training and validation of the U-Net
model, and the prediction of global lakes by using the trainedmodel are
also accessible through the same link documented in data availability.
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