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Abstract
The Tibetan Plateau and its surrounding mountains have an average elevation of 4,400 m and a glaciated area of ∼100,000 km2 
giving it the name “Third Pole (TP) region”. The TP is the headwater of many major rivers in Asia that provide fresh water 
to hundreds of millions of people. Climate change is altering the energy and water cycle of the TP at a record pace but 
the future of this region is highly uncertain due to major challenges in simulating weather and climate processes in this 
complex area. The Convection-Permitting Third Pole (CPTP) project is a Coordinated Regional Downscaling Experiment 
(CORDEX) Flagship Pilot Study (FPS) that aims to revolutionize our understanding of climate change impacts on the TP 
through ensemble-based, kilometer-scale climate modeling. Here we present the experimental design and first results from 
multi-model, multi-physics ensemble simulations of three case studies. The five participating modeling systems show high 
performance across a range of meteorological situations and are close to having ”observational quality” in simulating pre-
cipitation and near-surface temperature. This is partly due to the large differences between observational datasets in this 
region, which are the leading source of uncertainty in model evaluations. However, a systematic cold bias above 2000 m 
exists in most modeling systems. Model physics sensitivity tests performed with the Weather Research and Forecasting 
(WRF) model show that planetary boundary layer (PBL) physics and microphysics contribute equally to model uncertainties. 
Additionally, larger domains result in better model performance. We conclude by describing high-priority research needs 
and the next steps in the CPTP project.
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1  Introduction

One of the largest stores of ice and snow, outside of the 
Arctic and Antarctic is the Tibetan Plateau and surrounding 
mountain ranges, known as the Third Pole (TP) Yao et al. 
(2012). The TP plays a significant role in the atmospheric 
circulation of the Northern Hemisphere Plumb (1985) and 
the global climate system more generally, and is highly sen-
sitive to human-induced climate change Pörtner et al. (2019). 
Additionally, the TP is the headwater region of many major 
Asian rivers including the Indus, Brahmaputra, Ganges, 
Mekong, Yellow, and the Yangtze providing freshwater to 
hundreds of millions of people Zhang et al. (2019). Because 
of the TP’s complex terrain and harsh environment, ground-
based observations are scarce and satellite observations are 
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error-prone Tang et al. (2020), which hampers efforts to 
study regionally important physical processes, systems, and 
the effect of climate change on the TP water cycle. Horizon-
tal resolutions of prevailing global reanalysis datasets are 
generally coarser than 30 km. This is not sufficient to accu-
rately reproduce precipitation over steep topography or aris-
ing from convection and other mesoscale systems that are 
characterized by small-scale variability (see e.g., Maussion 
et al. 2014). As a result, our understanding of the impacts of 
climate change on the TP and downstream regions remains 
incomplete.

One of the main visions of CORDEX (Coordinated 
Regional Climate Downscaling Experiment) is to advance 
and coordinate science and application of regional cli-
mate downscaling through global collaborations Giorgi 
and Gutowski (2015). These regional climate downscaling 
techniques are used to provide higher-resolution climate 
information at regional and local scales that conventional 
global climate models (GCMs) cannot represent. Standard 
dynamical downscaling in CORDEX experiments is done 
at the grid spacing of 12-50 km, and they do indeed add 
value at regional scales in comparison to GCMs (see e.g., 
Torma et al. 2015). However, decreasing the grid spacing of 
regional climate models (RCMs) from 50 km to 12 km does 
not always show a clear benefit (Kotlarski et al. 2014; Prein 
et al. 2016; Hasson et al. 2016).

To solve emerging scientific challenges1 that cannot be 
addressed within the general CORDEX framework, a more 
targeted experimental setup, so-called “Flagship Pilot Stud-
ies (FPS)” were initiated. These are intended to enable the 
CORDEX community to better address a number of the 
challenges in a coordinated way Gutowski et al. (2016). One 
such challenge is to better understand regional and local pro-
cesses and phenomena relevant to climate change that cannot 
be investigated with standard CORDEX simulations and for 
which even higher-resolution simulations are needed Hasson 
et al. (2019). Such phenomena include extreme precipita-
tion producing storms such as mesoscale convective systems 
(MCSs) Clark et al. (2016); Prein et al. (2021), orographic 
precipitation Rasmussen et al. (2011), snowpack dynamics 
Rasmussen et al. (2014), or land-atmosphere coupling Bar-
lage et al. (2021).

Over recent years, climate simulations with a grid spacing 
around 5 km and less are emerging over different regions of 
the world and underline the importance of explicit treatment 
of convection in climate models Prein et al. (2015). Such 
kilometer-scale models typically do not use deep convection 
parametrizations, which are large sources of uncertainty in 
climate simulations Mooney et al. (2017). An increase in 

the resolution and explicit treatment of convection has led 
to major improvements in the simulation of precipitation 
(Kendon et al. 2012; Prein et al. 2013; Ban et al. 2014; Prein 
et al. 2015), clouds (Hentgen et al. 2019), snow cover (Ikeda 
et al. 2010; Rasmussen et al. 2011, 2014; Liu et al. 2017; 
Lüthi et al. 2019), and local wind systems like sea-breezes 
(Belušić et al. 2018). In addition to better performance, such 
simulations also show differences in the climate change sig-
nal when compared to coarser-resolution models (Kendon 
et al. 2014; Ban et al. 2015; Kendon et al. 2019; Prein et al. 
2021).

Recent studies employing kilometer-scale models over 
the TP region have shown its potential in resolving local 
processes in complex terrain such as valley winds and their 
interactions with large-scale forcing. Resolving such pro-
cesses at a kilometer or sub-kilometer scale realistically 
reproduces the diurnal and seasonal cycle characteristics, 
lapse rate, the spatial distribution of climatic variables, pre-
cipitation frequency and intensity, and water vapor transport 
towards the TP Karki et al. (2017); Lin et al. (2018); Li et al. 
(2021); Karki et al. (2020); Sugimoto et al. (2021).

Until recently, convection-permitting studies were typi-
cally performed with only one model and for one region. 
However, in the last years, multi-model high-resolution, 
ensemble simulations started to emerge. For instance, Ken-
don et al.Kendon et al. (2019) presented a twelve-member 
ensemble of km-scale projections (spanning three 20-year 
periods) providing an initial estimate of uncertainties at km-
scales and sampling the uncertainty in the model physics 
of the driving model but not in the km-scale model itself. 
One of the first multi-model km-scale was produced within 
the CORDEX FPS on Convective Phenomena over Europe 
and the Mediterranean (Coppola et al. 2020). Ban et al.Ban 
et al. (2021) presented a set of 23 simulations conducted 
with 6 different regional climate models over the greater 
Alpine region. The results are encouraging, as they confirm 
previous findings of a large reduction of biases in precipita-
tion diurnal cycle and heavy precipitation. Furthermore, they 
indicate that the uncertainties in climate simulations might 
decrease by using km-scale models compared to coarser-
resolution models (Ban et al. 2021; Pichelli et al. 2021).

Motivated by the previous studies, the Convection-Per-
mitting Third Pole (CPTP) CORDEX-FPS, was initiated 
in 2019 to provide high-resolution climate information for 
the TP region. The main goal of CPTP is to enhance our 
understanding of the current and future water cycle and its 
extremes over the TP region. The first phase of the program 
is to assess the skill of km-scale regional models concern-
ing the simulation of convection, precipitation, and snow-
fall over the TP region. The second phase will see decadal 
current and future climate simulation runs within the next 
three years.1  A list can be found here: https://​cordex.​org/​exper​iment-​guide​lines/​

flags​hip-​pilot-​studi​es/.

https://cordex.org/experiment-guidelines/flagship-pilot-studies/.
https://cordex.org/experiment-guidelines/flagship-pilot-studies/.
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In this study, we present the results of the first phase 
of this project. We conducted three reanalysis-driven case 
experiments that represent important meteorological phe-
nomena associated with the TP - an MCS, a heavy snow-
fall event, and a Monsoon case—with a multi-model and 
multi-physics ensemble. The main motivation for these 
case studies was to set up and test the models in differ-
ent weather situations over the TP. The simulations were 
performed over a relatively large common region shown 
in Fig. 1, with a grid spacing of less than 5 km. Some 
of the models were run for the first time at such a high 
spatial resolution over this region. This paper provides 
an overview of the experimental design and the model 
performance in simulating precipitation and near-surface 
air temperature. More detailed analyzes of the presented 
case study simulations are currently performed and will be 
published in separate manuscripts.

The objectives of this study are the following: 

1.	 Evaluating various high-resolution models over the TP 
under various weather conditions and atmospheric pro-
cesses.

2.	 Assessing major sources of model performance uncer-
tainties, and

3.	 Improving the performance of numerical models for 
future high-resolution climate runs over the TP.

2 � Data and methods

2.1 � Description of selected cases

We selected three cases for our modeling tests that span a 
wide variety of atmospheric processes, seasons, and impacts.

2.1.1 � MCS—July 2008

MCSs are important features of convective precipitation 
over the TP (e.g. Sugimoto and Ueno 2010; Kukulies et al. 
2021). On July 18, 2008, a mesoscale Tibetan Plateau Vortex 
(TPV) formed in the western part of the TP, traveled east-
ward, moved off the TP, and then traveled north-eastward to 
the coast of the Yellow Sea (Feng et al. 2014; Curio et al. 
2019). When the TPV reached the eastern TP, it triggered 
an MCS at the eastern edges of the TP and produced a sub-
stantial amount of convective precipitation in the Yangtze 
river basin (Kukulies et al. 2021). A station in the Sichuan 
basin recorded a maximum 24-h accumulated precipitation 
of 288 mm during this event Feng et al. (2014). The core 
simulation period for this case is July 14, 2008, 0 UTC–July 
24, 2008, 0 UTC.

2.1.2 � Monsoon precipitation—August 2014

August 2014 was one of the wettest Augusts in recent dec-
ades due to active Monsoon precipitation and embedded 
extreme precipitation episodes. One particularly intense 
extreme event led to massive flooding and landslides in 
western Nepal on August 14–15 2014. During the event, 
a maximum precipitation amount of 528 mm in 24 h was 
observed at the Chisapani station (Karki et al. 2018). The 
core simulation period for this case is July 27, 2014, 0 UTC 
– September 1, 2014, 0 UTC.

2.1.3 � Heavy snow event—October 2018

Climatologically there are two peaks of snow depth over 
the TP, a maximum in March and a secondary maximum in 
October. A heavy snow event was recorded at the Institute 
of Tibetan Plateau Research Nam Co station ( 30◦46.44Ń, 

Fig. 1   Topography and com-
putational domains used in the 
CPTP project. The minimum 
domain sizes for domain D1 and 
D2 are shown according to their 
top-center (TC), rigth-center 
(RC), bottom-center (BC), and 
left-center (LC) points
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90◦59.31É, 4,730 m a.s.l.) between October 4–8, 2018 Dai 
et al. (2020). The purpose of studying the event in October 
is to cover an extreme event that had been studied in detail 
by others, rather than to cover a “typical month for snow”. 
Given the period covered is short and observations are 
scarce, being able to take advantage of the existing analysis 
is desirable and useful. This was the largest snowfall event 
in October since recording began in 2005 at this station. On 
October 3, 2018, a gust of cold air passed over the group 
lakes area, causing the daily minimum temperature of the 
region to drop by about 4.5 ◦C within 24 h. As a result, the 
daily minimum temperature reached the freezing point about 
one week earlier than in previous years. The snowfall to the 
east of Nam Co was more than 50 cm while it was only 5 cm 
in the west of Nam Co. The core simulation period for this 
case is October 1, 2018, 0 UTC—October 9, 2018, 0 UTC.

2.2 � Model simulations

The CPTP community agreed on a minimal modeling 
domain that all modeling experiments have to include (D1 
from hereon). The minimum domain size is given not as 
corner points of a region but as central points to allow for 
a more efficient design of model domains concerning the 
employed map projections (Fig. 1). D1 encapsulates the TP 
region and was selected to minimize the computational cost 
for running kilometer-scale models. It was recommended to 
use a coarser resolution parent domain that incorporates a 
larger region (domain D2) if modelers decided to run their 
kilometer-scale simulations on D1.

Case study simulations were performed with five mod-
eling systems. An overview of the participating models and 
their main model settings is shown in Table 1. All simula-
tions downscale the fifth generation ECMWF atmospheric 
reanalysis (ERA5 Hersbach et al. (2020)) without the appli-
cation of nudging.

The Advanced Research (AR) Weather Research and 
Forecasting (WRF) model Skamarock and Klemp (2008); 
Powers et al. (2017) version 4.2 was used by 9 modelers 
(see Table 2). WRF is a state-of-the-art mesoscale numeri-
cal weather prediction system that is widely used for mod-
eling across weather and climate time scales. WRF uses 
fully-compressible, Eulerian non-hydrostatic equations that 
conserve dry air mass and scalar mass. It uses a staggered 
Arakawa C-grid with a terrain-following, mass-based, hybrid 
sigma-pressure vertical coordinate system with a vertically 
stretched grid. WRF features a large range of model physics 
options. We performed a reference simulation with physics 
settings that perform well in the U.S. Liu et al. (2017) (see 
Table 1). The reference simulations are offline nested and 
initialized from 12 km grid spacing simulations (performed 
on D2) that started at least 18  months before the case occur-
rence. The initial and lateral boundary conditions from the 

12 km simulations were shared to increase the comparability 
of WRF sensitivity experiments. Twenty-four, twenty-one, 
and twelve additional WRF simulations were performed, 
based on the shared initial and lateral boundary conditions, 
for the MCS, Snow, and Monsoon cases, respectively. Two 
of these simulations reproduced the reference run on a dif-
ferent high-performance computer (HPC) system to under-
stand sensitivities to HPC architectures. The other simula-
tions subsequently perturbed the planetary boundary layer 
(PBL) scheme, microphysics scheme, land surface model 
(LSM), applied a scale aware cumulus scheme, or performed 
a time-lagged ensemble to estimate the effect of natural vari-
ability on the MCS case. For an overview of the simulation 
names and perturbed physics see Table 2 where gray cells 
indicate that the settings are the same as in the reference run 
while red cells show settings that have been changed. Two 
additional simulations are performed where one uses the 
reference physics set up and runs the 4 km WRF simulation 
on D2 by directly downscaling ERA5 and the second repeats 
the reference simulation over D1 but directly downscaling 
ERA5 instead of using the 12 km run data. Although we 
do not see strong spin up effects due to the large grid spac-
ing difference between ERA5 and WRF in our simulations, 
previous studies documented that large grid spacing differ-
ences can deteriorate the regional model results (Matte et al. 
2017).

The Model for Prediction Across Scale (MPAS) is a 
modeling framework to numerically solve the equations of 
geophysical fluid dynamics (Ringler et al. 2010, 2013). Cur-
rently, four MPAS models have been developed to simulate 
different components of the climate system: atmosphere, 
ocean, sea ice, and land ice (http://​mpas-​dev.​github.​io/). 
The MPAS-Atmosphere solves fully compressible, non-
hydrostatic equations of mass, momentum, and energy 
conservation for the atmosphere (Skamarock et al. 2012). 
MPAS shares many aspects of its numerical scheme (e.g., 
time integration and numerical damping) Park et al. (2014) 
and physics parameterizations with the WRF model (Duda 
et al. 2019). The distinct features of the MPAS model are 
the global unstructured mesh on a sphere (Spherical Cen-
troidal Voronoi Tessellations (SCVT), (Ringler et al. 2010; 
Ju et al. 2011), the C-grid finite-volume scheme designed 
for the SCVT mesh, and a new terrain-following vertical 
grid (Klemp 2011). The SCVT mesh can be configured as a 
global quasi-uniform resolution mesh and as a variable-reso-
lution (VR) mesh in which grid spacing smoothly transitions 
from the refined to the coarse domain. The SCVT can also 
be set up as a regional grid, making it possible to compare 
the global and limited-area modeling approaches within one 
modeling framework (Skamarock et al. 2018), which is the 
approach taken here.

For this study, we use the MPAS-Atmosphere version 
7.0 and a global variable-resolution SCVT grid, on which 

http://mpas-dev.github.io/
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the grid spacing smoothly changes from ∼ 4 km over TP to 
∼ 32 km over the rest of the globe. A predefined convection-
permitting physics parameterization suite, which includes 
a scale-aware parameterization scheme for convection, is 
used (Table  1). The global VR mesh does not need lateral 
boundary conditions, therefore only the daily-mean sea sur-
face temperature and sea ice fraction are prescribed from 
ERA5, and input to the model once a day. For the MCS case, 
two additional global VR simulations are performed using 
time-lagged initial conditions (ERA5 state at 6 and 12 hours 
before the initial time, same as those of the WRF initial 
condition ensemble). A regional SCVT grid is also produced 
by extracting the high-resolution domain from the global 
4–32 km grid. For this work we limit our analysis of the lim-
ited-area simulation to the MCS case, because the regional 
MPAS simulation over TP experiences stronger numerical 
instabilities than in the global VR simulation and an optimal 
configuration of the regional SCVT over TP is being tested 
at the time of writing. For the limited-area simulation, 6-h 
lateral boundary conditions are prescribed from ERA5, and 
a shorter model time step than the global VR is used (12 s 
vs. 24 s). All the other configurations are identical between 
the global and limited-area MPAS simulations.

Another modeling group employed the COSMO (Consor-
tium for Small Scale Modeling) model run in climate mode 
(COSMO-CLM, hereafter CCLM; Rockel et al. (2008), Bal-
dauf et al. (2011)). CCLM is a non-hydrostatic, fully com-
pressible, limited-area model, which similarly to the WRF 
and MPAS model employs an Arakawa C-grid and a terrain-
following vertical coordinate with a user-defined stretched 
grid. The simulations employed the accelerated version of 
CCLM, which has been refactored to exploit heterogeneous 
node architectures Fuhrer et al. (2014) and provides a ∼ 5×

speed-up compared to the version that only runs on central 
processing units. The model was configured with a 12-km 
parent domain and a 2.2-km grid spacing child domain, the 
latter of which encompassed the extent of D2 (cf. Fig.1). 
Initial and lateral boundary conditions for the 12-km domain 
were provided at 6-hourly intervals from the ERA5 reanaly-
sis, while the 2.2-km domain was run offline with lateral 
boundary conditions updated hourly from the parent domain. 
CCLM has been used extensively for kilometer-scale cli-
mate simulations over the European Alps (e.g., Ban et al. 
2014, 2021) and was applied over High Mountain Asia for 
the first time for these simulations using similar options for 
the model configuration and physics. A few settings were 
changed to improve model stability over the complex orog-
raphy, including using a different upper boundary condition 
and introducing cold-pool diffusion in the 2.2-km domain.

The Icosahedral Nonhydrostatic model (ICON) is a uni-
fied next-generation global numerical weather prediction 
and climate modeling system Zängl et al. (2015), and was 
used by two modeling groups (see Table 2) in this study. The 

ICON model was co-developed by the Max Planck Insti-
tute for Meteorology and the German Weather Service. The 
dynamical core of ICON is formulated on an icosahedral-tri-
angular Arakawa C grid. It has a height-based vertical coor-
dinate system with terrain following layers at the surface. 
For this study, one simulation used the ICON model ver-
sion 2.6.1, while the other 2.6.3 in its operational numerical 
weather prediction mode. The limited-area simulations were 
performed on D1 for one simulation, and on the domain 
represented with light blue color in Fig. 1 for the other simu-
lation. The horizontal resolution for both the simulations 
was about 3.3km. The deep convection parameterization was 
switched off for both the simulation runs, while a shallow 
convection scheme is switched on for one of the simulations. 
Other details of the ICON model settings are summarized in 
Table 1. The ICON simulations were forced with initial and 
lateral boundary conditions directly from the ERA5 reanaly-
sis at 3-h intervals for one simulation, and 1-hourly inter-
vals for the other simulation. The ICON simulations were 
completed on the Chinese Earth System Science Numerical 
Simulator Facility “EarthLab” and on Goethe-HLR HPC 
cluster at the Goethe University Frankfurt.

Last but not least, the Regional Climate Model version 4 
(RegCM4) is developed and maintained at the Abdus Salam 
International Centre for Theoretical Physics (ICTP) in Italy 
Giorgi et al. (2012); Coppola et al. (2021) was also utilized. 
The standard version of RegCM4 with hydrostatic dynam-
ics is a widely used system that has been applied to local 
and regional seasonal forecasting and climate change studies 
for all regions of the globe, including the TP region (e.g., 
Sanjay et al. 2017; Wang et al. 2021). The CPTP case study 
experiments are performed with a development version 4.8.0 
of RegCM4 model with non-hydrostatic dynamics Coppola 
et al. (2021). The initial and 6-hourly lateral boundary condi-
tions and sea surface temperature for the 4 km simulations 
on D2 are directly derived from ERA5. The model has a 
wide choice of physical parameterizations for processes such 
as non-convective clouds and resolved-scale precipitation, 
land surface models, planetary boundary layer turbulent dif-
fusion, ocean surface fluxes etc. Giorgi et al. (2012); Cop-
pola et al. (2021). The physics options adopted for the CPTP 
experiments are summarized in Table 1. The land surface 
processes are described using the Biosphere -Atmosphere 
Transfer Scheme (BATS; Dickinson (1993)). The resolved-
scale cloud microphysics is treated by a simple subgrid 
explicit moisture scheme (SUBEX, Pal et al. (2000)), which 
has only one prognostic equation for calculating cloud water 
content based on autoconversion of cloud water to rainwater, 
accretion of rainwater, and evaporation of raindrops. The 
cloud fractional cover is diagnostically calculated as a func-
tion of grid point average relative humidity. SUBEX does 
not treat cold cloud microphysics and the fraction of ice 
is diagnosed as a function of temperature in the RegCM4 
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radiation scheme from radiative transfer calculations Giorgi 
et al. (2012).

2.3 � Observations

The TP region is an observationally sparse area with a harsh 
environment that introduces large observational uncertain-
ties. To account for these uncertainties, we use an ensemble 
of in situ, remote-sensing, and reanalysis-based precipitation 
and near-surface temperature datasets that provide data on 
daily or higher resolution.

For precipitation, we use the CHIRPS Funk et al. (2015), 
GPM-IMERG Huffman et al. (2015), CPC Xie et al. (2010), 
APHRODITE (Yatagai et al. 2012), and ERA5 Hersbach 
et al. (2020) datasets. The Climate Hazards group Infrared 
Precipitation with Stations (CHIRPS) dataset uses infrared 
satellite observations blended with station data to create 
a quasi-global ( 50◦S-50◦N ), 0.05◦ grid spacing, daily pre-
cipitation estimate. NASA’s Global Precipitation Measure-
ment (GPM) Integrated Multi-satellitE Retrievals for GPM 
(IMERG) product intercalibrates, merges, and interpolates 
all available satellite microwave precipitation estimates, 
microwave-calibrated infrared satellite estimates, and pre-
cipitation gauge observations on a global 0.1◦ grid every 
30-minutes. NOAA Climate Prediction Center (CPC) daily 
precipitation estimates combine over 30,000 gauges to cre-
ate a global, land-only gridded product with 0.5◦ spacing. 
The Asian Precipitation-Highly Resolved Observational 
Data Integration Towards Evaluation of Water Resources 
(APHRODITE) dataset incorporates 5,000–12,000 pre-
cipitation stations to create a 25 km × 25 km gridded data-
set with daily precipitation accumulations. We leverage 
the monsoon Asia version of APHRODITE in this study 
(APHRO_V1101EX_R1/), which provides data from 2007 
to 2015. ERA5 uses data assimilation to combine a large 
variety of in-situ and remote sensing observations with fore-
casts from an advanced global model to create an estimate 
of the global atmospheric state. Data is provided hourly on 
a global 30 km grid.

Gridded precipitation datasets that are based on or 
calibrated with gauge data typically feature an underes-
timation of precipitation that stems from two primary 
sources. First, gauges undercatch precipitation particularly 
in exposed and snow-dominated environments Prein and 
Gobiet (2017). Second, precipitation gauges are typically 
located in valleys and not on mountain slopes. This results 
in a sampling bias of precipitation values since precipita-
tion has a complex altitude dependence in the Himala-
yas region Singh and Kumar (1997). To account for these 
biases, we apply monthly bias correction estimates from 
Beck et al. (2020). These estimates are based on water 
budget calculations taking into account precipitation, 
runoff, and evaporation using 9372 streamflow stations 

worldwide. Satellite precipitation estimates have difficul-
ties in observing precipitation in snow dominated regions 
and frequently have large errors over high-mountain 
regions (Lu et al. 2019; Sharma et al. 2020). Precipitation 
estimates based on satellite remote sensing data, such as 
GPM-IMERG, can have deficiencies that are particularly 
large in mountain regions since satellite radars can not 
see all the way to the surface due to ground clutter, micro-
wave precipitation estimates are masked out over snowy/
icy surfaces, and ground observations for precipitation 
calibration are fewer in complex topography (Bartsotas 
et al. 2018; Huffman 2019).

For near-surface temperature, we again use ERA5 
and CPC data in addition to GLDAS Rodell et al. (2004) 
and Berkeley Earth Rohde et  al. (2013) observations. 
The Global Land Data Assimilation System (GLDAS) 
merges ground-based and satellite observational data with 
advanced land surface modeling techniques. GLDAS pro-
vides 3-hourly data on a 0.25◦ global grid. The Berkeley 
Earth dataset combines station observations with an algo-
rithm that is optimized for climate change assessments and 
provides daily data on a 1◦ global, land-only grid. All grid-
ded observational datasets and model outputs are bi-line-
arly interpolated to the ERA5 grid for model evaluation.

We decided to use GPM-IMERG as reference for pre-
cipitation analysis and GLDAS for T2M analyses and use 
these to show differences to other observational and model 
data. Using GPM-IMERG and GLDAS as references is 
subjective and any of the other observational datasets 
could be used instead. The main reason why we chose 
these two datasets is that they merge large amounts of 
information including satellite and model information, 
their high spatiotemporal resolution, and the data avail-
ability for all cases.

In addition to these gridded datasets, we also use Had-
ley Center Integrated Surface Database (HadISD) sub-
daily station observations for model validation Dunn et al. 
(2016). Global sub-daily station records are collected from 
the stations that meet specific selection criteria and a suite 
of quality control tests are performed. The location of all 
stations within the HadISD dataset is shown in Supple-
mentary Fig. S1. Hourly temperature data and 6-hourly 
precipitation accumulations are compared to model out-
put from the nearest native model grid cell if there are at 
least 30 % valid observations during the evaluation period. 
Choosing this low level of completeness is necessary to 
include stations on the TP, which often have many missing 
values in their record. Time steps that are missing in the 
observational record are also set to missing values in the 
modeled time series for consistency. Using inverse dis-
tance averaging of the four closest model grid cells leads 
to similar results.
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2.4 � Methods

The analysis of modeling uncertainties is performed simi-
larly to Rowell (2006). Therefore, we classify different 
sources of uncertainty for which simulations are available 
in the CPTP case study ensemble. We investigate three 
general classes of uncertainty—model formulation uncer-
tainty, observational uncertainty, and initial condition uncer-
tainty—and six classes that are specific to the WRF model 
ensemble—PBL scheme, microphysics, LSM, convection 
scheme, domain size, and high-performance computing 
system sensitivity. Uncertainties are estimated by averaging 
over all categories, except the one under consideration, and 
calculating the standard deviation over the data points in 
the considered category. For instance, model formulation 
uncertainties are estimated by averaging over all available 
simulations from a particular model. This results in one 
data point per model, which is used in the calculation of the 
standard deviation.

The model formulation uncertainty stems from differ-
ences in the assumptions and equations used in the partici-
pating climate models. The observational uncertainties are 
estimated by comparing different gridded observational 
products with each other. The initial condition uncertainty 
addresses the chaotic nature of the simulated cases, which 
arises from constructing a time-lagged initial condition 
ensemble. This has only been done for the MCS case with 
WRF and MPAS, but we expect the results to be similar 
for other modeling systems and cases. PBL, microphysics, 
LSM, and convective scheme uncertainties are estimated 
from the WRF physics sensitivity studies. The domain size 
uncertainty is estimated by running WRF simulations on 
D1 and D2, while HPC system sensitivities are calculated 
from running the same WRF setup on different computer 
architectures.

The Rowell (2006) method of estimating uncertainties 
is beneficial due to its simplicity and easily interpretable 
results. However, it might result in unreliable uncertainty 
estimates for categories that are sparsely populated (e.g., 
convection scheme uncertainties) and does not account for 
effects from interactions between categories (e.g., PBL 
scheme impacts on simulations on different domain sizes).

Even though most of the simulations are run with the 
same horizontal grid spacing of 4 km, the modeling sys-
tems may vary in their effective resolution and capability 
to resolve deep convective processes, i.e. due to differences 
in the numerical schemes Skamarock (2004), Zeman et al. 
(2021). To get an indication of how well kinetic energy (KE) 
is retained at different spatial scales in the used models, we 
inter-compare KE power spectra based on horizontal wind 
speeds at 500 hPa and 200 hPa. The python package scipy.
fftpack (https://​docs.​scipy.​org/​doc/​scipy/​refer​ence/​gener​
ated/​scipy.​fftpa​ck.​dctn.​html) is used to compute spectral 

coefficients from 3-h two-dimensional wind fields applying 
a discrete cosine transformation (Denis et al. 2002). The 
power spectra were constructed by calculating the vari-
ances of these spectral coefficients for specific wavelength 
bins, following the steps in Denis et al. (2002)). Note that 
all model output was first reduced to the domain D1 (Fig. 1) 
since the offset of the KE spectra is domain-sensitive.

3 � Results

This section presents results from the analysis of kinetic 
energy (Sect. 3.1), precipitation (Sect. 3.2), near-surface 
temperature (Sect. 3.3), and the analysis of uncertainty 
sources (Sect. 3.4).

3.1 � Spectral analysis

Although the grid spacing of the five participating mod-
eling systems is similar, their ability to simulate fine-scale 
atmospheric dynamics might be different due to different 
choices in how to solve the equations of motion and how 
diffusive the models are Zeman et al. (2021). Figure 2 shows 
power spectra of horizontal kinetic energy at 500 hPa (a) and 
200 hPa (c) for the participating modeling systems (UIBK-
CCLM50n, r1i2p1_NCAR-WRF42, r1i1p1_PNNL-MPA-
SLA7, IAP-ICON2.6, GUF-ICON2.6.3, IITM-RegCM480) 
and their driving reanalysis ERA5 based on hourly data from 
the 10-day long MCS case simulation (the spectra for the 
other cases look very similar—not shown). The KE spectra 
for the simulations converge well with ERA5 at higher wave-
lengths, where kinetic energy shows the largest variability, 
and spatial features are expected to be similar because they 
are mainly produced by the large-scale circulation. The 
km-scale simulations retain more energy at the small wave-
lengths compared to ERA5 and the 12 km simulations that 
served as parent simulations for nested runs with WRF and 
CCLM. This maintenance of kinetic energy can be attributed 
to the higher effective resolution in the km-scale simulations 
and to the fact that deep convection is not parametrized, as 
shown in Zeman et al. (2021) (Zeman et al. 2021).

The gray lines in Fig. 2a-d indicate theoretical slopes 
derived from observations (Nastrom et  al. 1984) that 
describe the energy loss at synoptic ( k−3 ) and mesoscales 
( k−5∕3 ) as a function of wavenumber k. These can be com-
pared to the actual spectral slopes for the KE spectra in 
Fig. 2c-d. It is discernable that the simulated slopes at 
500 hPa are shallower than the expected slope for mes-
oscales, while the slopes at 200 hPa show closer resem-
blance to the expected slopes for synoptic and mesoscales. 
For wavelengths around 1,000 km, most of the KE spectra 
exhibit slopes similar to k−3 . The slopes become shallower 
and more similar to k−5∕3 at around 400 km, which is a 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dctn.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dctn.html
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typical transition zone between synoptic and mesoscale 
(e.g. Zeman et al. 2021). The shallower slope at 500 hPa 
compared to 200 hPa is likely caused by the complex 
terrain that covers most of the domain (Fig.  1) and is 
strongly affecting the flow at 500 hPa. As pointed out by 
Skamarock et al. (2014) (Skamarock and Klemp 2008) and 
Blažica et al. (2013), topography can have considerable 
effects on divergent kinetic energy, for example through 
the generation of gravity waves or other topographic flow 
interactions.

Comparing the 12 km simulations from CCLM and 
WRF with their respective higher resolution runs at 
2.2 km and 4 km grid spacing, it can be seen that the 
KE spectra start to diverge at wavelengths of ∼ 50 km at 
500 hPa and ∼ 70 km at 200 hPa. This abrupt loss in KE 
energy can be interpreted as the effective resolution of 
the models, which is also reflected in the energy drop at 
∼ 20 km in the 4 km WRF simulation and at 10 km in the 

2.2 km CCLM simulation. For WRF and CCLM, this cor-
responds to an effective resolution of about 4–6 Δx . The 
KE spectra for MPAS look similar to those of WRF, even 
though MPAS tails off slightly earlier for kinetic energy 
at 500 hPa. These results are consistent with Skamarock 
et al. (2014), who demonstrated that global MPAS simula-
tions produce an effective resolution of about 6 Δx . The 
reason for RegCM4’s premature loss in energy at ∼ 20 km 
is not clear since the model uses a relatively short time 
step, which should be beneficial for the maintenance of 
high-frequency waves Zeman et al. (2021). While ICON’s 
spectra look similar to WRF at 500 hPa, it maintains a 
k
−3 slope until very small wavelengths at 200 hPa. While 

the KE spectra for ICON2.6 and ICON2.6.3 look similar 
at 500 hPa, they diverge from wavelengths smaller than 
200 km at 200 hPa. The exact cause of these differences 
is unclear since the two simulations differ in model ver-
sion, time step, domain size, and model physics (Table 1). 

Fig. 2   Power spectra of horizontal kinetic energy [ m2 s−2 ] at 500 hPa (a) 
and 200 hPa (c) and corresponding spectral slopes (b, d) as a function of 
wavenumber [ k rad−1 ] and wavelength [km]. The power spectra are com-

puted using the extent of the domain D1. Spectral slopes are high-pass 
filtered using a moving average to reduce noise. The gray lines mark the 
theoretical slopes for synoptic ( k−3 ) and meso-scale ( k−5∕3 ) energy loss
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The spectrum for ICON2.6.3 agrees more with WRF and 
MPAS for wavelengths > 200 km.

The different physics options within the WRF ensem-
ble do not substantially affect the KE spectra (not shown), 
but the small differences between MPAS and WRF4km at 
500 hPa for smaller wavelengths might be partly caused by 
the use of a scale-aware convective parameterization scheme 
in MPAS, while convection is explicitly simulated in the 
WRF simulations (Table 1).

3.2 � Precipitation analyses

Here we evaluate the accuracy of simulated precipitation 
against a range of observational products. The goal is to 
provide an overview of the models’ skill in capturing key 
features such as spatial precipitation patterns, precipitation 
accumulations over time, and 6-hourly precipitation rates.

Fig. 3 shows the average precipitation during the MCS 
case in July 16–21, 2008. Flood-producing rainfall was pro-
duced by the MCS in the Chinese province of Sichuan and 
heavy rainfall was also reported in the southern foothills 
of the Himalayas. All observational datasets (Fig. 3a–d) 
show a precipitation maximum at ∼ 115 ◦ east and ∼ 30 ◦ 
north, which varies in spatial extent and intensity between 
the datasets. Only the GUF-ICON2.6.3 simulation (Fig. 3h) 
was able to capture the exact location of the MCS precipita-
tion. Most simulations have a precipitation maximum that 
is displaced towards the south or miss the MCS precipita-
tion completely. The RegCM4 simulation is the only run 
that has a northward displacement of the precipitation center 
(Fig. 3i). The precipitation along the southern foothills of the 
Himalayas is accurately simulated in most models. Kukulies 
et al. [93] shows that the southward displacement of the 
MCS precipitation in most models is primarily caused by 

Fig. 3   Average daily precipitation from the MCS case during July 
16–23, 2008. The top row (a–d) shows various gridded observational 
datasets and rows below show the model simulated precipitation. 

The multi-model mean (MMM) is shown in (e). The black rectangle 
shows the approximate region of heavy precipitation that was caused 
by the MCS event
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biases in simulating jet stream interactions with the TPV. 
Differences between the simulated event average and the 
GPM-IMERGB precipitation can be seen in Supplementary 
Fig. S2. The amount and spatial distribution of event aver-
age precipitation is well captured by most models for the 
Monsoon case (Supplementary Figs. S3 and S4) while most 
models show more precipitation during the Snow case in the 
eastern foothills and on the Tibetan Plateau (Supplementary 
Fig. S5 and S6).

The domain-averaged accumulated precipitation for 
all three cases is shown in Fig. 4. For the Monsoon case 
(Fig. 4a), the observational datasets agree well when the 
precipitation correction of Beck et al. (2020) is applied. The 
ERA5 precipitation, which does not suffer from undercatch 
and sampling biases, is much higher than the one from sta-
tion-based datasets if the correction is not applied. The WRF 
ensemble has a large spread of accumulations that encom-
passes all observational datasets and all simulations from 
other modeling systems, except for those from the RegCM4 
model. The source of this spread will be explored in a later 
section. The simulations with the MPAS and ICON model 
are similar to the not bias corrected observational datasets, 
while precipitation in the CCLM and RegCM4 simulations 
is comparable to the bias-corrected version of these datasets 
and ERA5 precipitation.

The results from the domain average accumulated pre-
cipitation during the MCS case (Fig. 4b) are similar to the 
Monsoon case. Again, the WRF ensemble spread is large 
and encompasses the observational datasets and other 

model simulations. The simulated precipitation is overall 
centered on the observed precipitation, which is in part due 
to compensating errors in the spatial representation of pre-
cipitation (e.g., see Fig. 3). The largest differences between 
observational and modeled precipitation can be found in the 
Snow case (Fig. 4c). Here, the models tend to simulate much 
higher precipitation accumulations and the WRF ensemble 
does not bracket the other models, nor the observational 
datasets, even after bias correction.

To assess the models’ performance in simulating pre-
cipitation patterns we show the event-averaged precipita-
tion pattern correlation coefficients, standard deviation, 
and centered root mean square error in Taylor diagrams 
Taylor (2001) (Fig. 5). Modeled correlation coefficients 
are between 0.63–0.82 (except for r1i1p3_Cardiff-WRF42) 
for the Monsoon case (Fig. 5a), 0.3–0.65 for the MCS case 
(Fig. 5b), and 0.22–0.5 for the Snow case (Fig. 5c). The dif-
ferences between the cases are not only due to the models’ 
ability to capture precipitation under different atmospheric 
settings but are also a result of uncertainties in observa-
tional datasets. Most models have larger spatial variability 
(i.e., standard deviations) than the observational datasets, 
particularly during the Snow case. This is in part due to 
the higher effective resolution of the kilometer-scale sim-
ulations compared to the observational datasets. The best 
performing simulations according to this metric are the 
GUF-ICON2.6.3 simulations, PNNL-MPAS7 runs, the 
IAP-CAS-ICON2.6 simulation, and the WRF simulations 
that directly downscale ERA5 data over the larger domain 

Fig. 4   Domain average accumulated precipitation during the Mon-
soon (a), MCS (b), and Snow (c) case experiment. Black lines show 
various observational datasets, gray lines show bias corrected obser-
vational datasets following Beck et al. (2020), and colored lines show 

simulated precipitation. The gray contour shows the WRF ensemble 
spread. Only the WRF simulation with the lowest absolute difference 
compared to IMERG and with the lowest and larges precipitation 
accumulation are shown
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D2 (r1i2p1_NCAR-WRF42). The r1i1p3_Cardiff-WRF42 
run is an outlier concerning the low correlation coefficients 
in all cases suggesting that the combination of the MYNN3 
PBL scheme and the WDM7 microphysics results in sub-
par model performance. Interestingly, using the schemes 
separately such as in r1i1p2_Cardiff-WRF42 and r1i1p3_
UGOT-WRF42 does not deteriorate the simulations. The 
IITM-RegCM480 simulations are outliers due to their high 
spatial variability during the Monsoon and MCS case.

The simulations can capture the gauge-based 6-h precipi-
tation probability density functions well (Fig. 6) and out-
perform the ERA5 precipitation, which overestimates weak 
precipitation frequencies and underestimates high precipita-
tion frequencies. The WRF ensemble spread encompasses 

most of the other model solutions. The IMERG precipita-
tion accumulations agree well with those from the stations 
except for the Snow case, which has large observational 
uncertainties.

The correlogram in Fig. 7 provides insights into the 
similarity of case average spatial precipitation accumula-
tion patterns. The upper left corner of the correlograms 
shows the correlation coefficients comparing the observa-
tional datasets. Overall, correlation coefficients are high, 
indicating good agreement between the observed spatial 
precipitation patterns. The lowest correlation coefficients 
can be found for the Snow case confirming the previously 
discussed observational uncertainties. Bias correcting the 
observational datasets (indicated by a _BC at the end of the 

Fig. 5   Taylor diagrams showing the case average precipitation pattern correlation, spatial standard deviation, and centred root mean square error 
comparing observational (black symbols; non-bias corrected) and modeled precipitation (colored numbers) with IMERG observations
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dataset name in Fig. 7) has no systematic impact on the cor-
relation coefficients.

Comparing the observational datasets to the WRF 
model ensemble (lower left rectangle in the correlogram) 
and the other model simulations (middle left rectangle) 
again shows that the r1i1p3_Cardiff-WRF42 simulations 

have lower correlation coefficients than the other mod-
els, independent of the observational dataset and the case 
considered. The highest correlations are seen in the GUF-
ICON2.6.3, PNNL-MPAS7, IAP-CAS-ICON2.6, and the 
WRF large domain simulations (r1i2p1_NCAR-WRF42, 

Fig. 6   Probability density function (PDF) of 6-hourly precipita-
tion accumulations comparing HadISD and ADP station observa-
tions (thick black line) with ERA5 (dotted black line), IMERG 
(black dashed line), and modeled data (colored lines). The map 
on top of each panel shows the station locations, station altitude 
(colors), and completeness of record (circle size; only stations with 

more than 30  % of valid data are considered). Gray contours show 
the WRF ensemble spread. Additionally, the WRF simulations with 
the lowest absolute PDF difference and the largest PDF difference are 
shown. The bin size to calculate PDFs is 1  mm 6h−1 and we use a 
±2 mm 6h−1 window around each bin to reduce noise in the PDF cal-
culation

Fig. 7   Correlogram showing pattern correlation coefficients of case study average accumulated precipitation between various observational data-
sets and the model simulations
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r1i3p1_NCAR-WRF42, r1i4p1_NCAR-WRF42) inde-
pendent of the observational dataset.

The correlation coefficients between the WRF ensem-
ble and the other model simulations (middle horizontal 
block) are comparable to the coefficients obtained when 
comparing the models to the observations. Precipitation 
patterns from most WRF simulations (rightmost block) 
are highly correlated, indicating that there is little sen-
sitivity to changing the model physics. Notable excep-
tions are the r1i1p3_Cardiff-WRF42 simulation, which 
uses the MYNN3 PBL and WDM7 PBL scheme, and the 
large domain WRF simulations that directly downscale 
ERA5 (r1i2p1_NCAR-WRF42, r1i3p1_NCAR-WRF42, 
r1i4p1_NCAR-WRF42).

3.3 � Two meter above ground air temperature 
analysis

This section presents a similar analysis as the previous 
section but for T2M. Figure 8 shows the July 16–23, 2008 
average T2M for the MCS case from the observational data-
sets (Fig. 8a–d) and the model ensemble (Fig. 8e–al). As 
expected, T2M strongly depends on topography with very 
warm temperatures in India and south-eastern China and 
substantially colder temperatures over the TP. The observa-
tional datasets agree reasonably well concerning the large-
scale pattern of T2M but cool differences over the TP and 
warm differences in the eastern part of the domain compared 
to the GLDAS data are present in the MCS and Monsoon 

Fig. 8   Average daily mean 2 m above surface air temperature for the MCS case during July 16–23, 2008. The top row (a–d) shows various grid-
ded observational datasets and rows below show the model simulated T2M
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case (see Supplementary Fig. S7 and S9). Large uncertain-
ties exist on regional scales (see Supplementary Fig. S6, S8, 
and S10). The simulations are generally able to capture the 
spatial pattern of T2M but similar differences as discussed 
above with too cold temperatures over the TP and warm 
differences east of the TP in the MCS and Monsoon case 
are visible (Supplementary Fig. S6, S8, and S10). The most 
noticeable difference is found in the UIBK-CCLM50n run, 
which has a warmer T2M over the plateau than other simula-
tions agreeing with the CPC observations. T2M differences 
for the Monsoon and Snow case are similar to the MCS 
case with UIBK-CCLM50n generally simulating the warm-
est temperatures over the plateau and WRF simulating the 
coldest (particularly during the Snow case; see Supplemen-
tary Fig. S8–S11).

The domain D1 average daily T2M time series are shown 
in Fig. 9. The temporal evolution of temperature is well cap-
tured by most models but many modeling systems, except 
for CCLM and RegCM, simulate lower T2M than found in 
the observational datasets, which is similar to the ERA5 
forcing data.

Hourly T2M probability density functions from station 
observations show a left-skewed (i.e., cold temperature) dis-
tribution which is caused by stations on the Tibetan Plateau 
(Fig. 10). This is most noticeable during the Snow case, 
which features a cold air outbreak over the plateau. Most 
simulations can capture the observed PDFs well except for 
the r1i1p1_PNNL-MPAS7 Monsoon and the r1i1p2_Cardiff-
WRF42 Snow simulations. The differences in the MPAS 
run are likely due to the global nature of this simulation, 

which allows it to drift from the observed weather during the 
month-long simulation. Additionally, the IITM-RegCM480 
runs also exhibit noticeable differences in the left tail of 
their PDF.

Case average T2M spatial correlation coefficients are 
larger than 0.95 comparing the observational and model 
datasets to GLDAS (Fig. 11). Interestingly, the Snow case 
has the highest correlation coefficients between the obser-
vational and modeled datasets, indicating that previously 
shown differences in Fig. 9c are primarily caused by sys-
tematic (domain-wide) T2M biases that do not affect pat-
tern correlation coefficients substantially. The high pattern 
correlation coefficients are primarily caused by the dominant 
role of topography on T2M.

The vertical distribution of T2M differences compared to 
station data is shown in Fig. 12. Most of the stations above 
2000 m are on the Tibetan Plateau. Temperatures are better 
simulated at elevations below 2000 m, and most models have 
a cold bias at higher elevations. Exceptions are the CCLM 
simulations and the r1i1p1_PNNL-MPAS7 Monsoon case 
run. The largest cold biases above 2000 m are found in the 
RegCM4 simulations, particularly during the Snow case.

3.4 � Uncertainty sources

In this section, we estimate the sources of model perfor-
mance uncertainties in simulating case-average precipita-
tion and T2M patterns and amounts (see method section for 
more details). We use the GPM-IMERG and GLDAS obser-
vations as ground truth. However, using different datasets 

Fig. 9   Domain average daily mean T2M during the Monsoon (a), 
MCS (b), and Snow (c) case experiment. Black lines show various 
observational datasets and colored lines show simulated T2M. The 

gray contour shows the WRF ensemble spread. Only the WRF simu-
lation with the lowest absolute difference compared to GLDAS and 
with the lowest and larges T2M values are shown
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as references does not change the main conclusions on the 
sources of model uncertainties but they can affect the rank-
ing of modeling systems.

For instance, we derive the pattern correlation coefficient 
for the case average precipitation between the observa-
tional datasets compared to GPM-IMERG and calculate the 
standard deviation of the resulting correlation coefficients. 
This gives us an estimate of observational uncertainties 
(Fig. 13a). This uncertainty estimate can be directly com-
pared to other sources of uncertainty as introduced in the 
methods section.

Differences in gridded observational datasets are the larg-
est source of uncertainties for all cases and statistics except 
for absolute differences in precipitation where differences in 
the model formulation are larger (Fig. 13). This highlights 
the challenges of constraining observational fields in the TP 
region. The model formulation standard deviations are of 
similar magnitude for all cases except for a larger spread in 
correlation coefficients during the Snow case (Fig. 13a) and 
a larger spread in absolute precipitation differences during 
the MCS case (Fig. 13b). The ICON simulations show the 
overall highest skill in simulating the precipitation statistics. 
MPAS runs come in as a close second, which is remarkable 
since the global MPAS simulations are not constrained by 
ERA5 lateral boundary conditions and have a much larger 

degree of freedom to deviate from observed weather patterns 
compared to the regional models. Differences in T2M cor-
relation coefficients are much smaller than for precipitation 
and the RegCM4 simulations perform best when it comes to 
capturing T2M statistics (Fig. 13c). The ensemble average 
WRF statistics are sub-optimal, however, WRF can be con-
figured to perform equally well as other modeling systems as 
can be seen when looking at the physics sensitivity results.

Varying initial conditions by creating a time-lag ensem-
ble causes very small uncertainties in the MCS case using 
the WRF and MPAS model. This indicates that differences 
between e.g., modeling systems or WRF physics schemes 
are robust and are not heavily affected by chaotic variability 
for the MCS case. We expect similar results for the Snow 
case, which has a comparable runtime to the MCS case, but 
internal variability might be larger during the Monsoon case 
due to the longer integration.

The large number of WRF simulations allows us to esti-
mate sources of uncertainties due to different model phys-
ics. It should be noted that not all available WRF physics 
options were tested (we focused on the most popular and 
up-to-date schemes) and that the selection of tested model 
physics affects the results. Three institutes ran WRF simula-
tions using the reference settings (see Table 1) from which 
we can assess uncertainties from running WRF on different 

Fig. 10   Probability density function (PDF) of hourly T2M observa-
tions from the HadISD station dataset (thick black line) with ERA5 
(dotted black line), IMERG (black dashed line), and modeled data 
(colored lines). The map on top of each panel shows the station 
locations, station altitude (colors), and completeness of record (cir-
cle size; only stations with more than 30 % of valid data are consid-

ered). Gray contours show the WRF ensemble spread. Additionally, 
the WRF simulation with the lowest absolute PDF difference and the 
largest PDF difference are shown. The bin size to calculate PDFs is 
1 ◦C and we use a ±2 ◦C window around each bin to reduce noise in 
the PDF calculation
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high-performance computing (HPC) systems. These uncer-
tainties are typically an order of magnitude smaller than the 
leading sources of uncertainty and do not affect our results 
substantially. Also, sensitivities to the use of a scale-aware 
deep convection scheme and different land surface models 
are small. However, land surface model sensitivities are 
likely underestimated in these short case study simulations 
since land surface processes can have a long memory, and 
uncertainties might grow in climate-length simulations.

The leading sources of WRF modeling uncertainties are 
the formulation of the microphysics, PBL schemes, and 
regional domain size. Which uncertainty source dominates 
is case- and metric-dependent. Small sensitivities are found 
for simulating spatial T2M patterns (Fig. 13c), except for 
varying the microphysics during the Snow case where the 

WDM7 and WDM6 schemes result in lower correlation 
coefficients compared to the other tested schemes. Simi-
larly, WDM7 and WDM6 result in larger T2M absolute 
biases (Fig. 13d). For precipitation metrics, microphysics 
uncertainties are largest for the Monsoon and MCS case and 
smallest for the Snow case. Again, the usage of the WDM6 
and particularly the WDM7 scheme results in lower model 
performance concerning the simulation of precipitation pat-
terns. Simulations that use the Thompson and Ylin micro-
physics result in the overall best performance in capturing 
precipitation. Concerning PBL schemes, using the MYNN3 
scheme results in sub-optimal performance for simulating 
T2M absolute differences, spatial patterns, and precipita-
tion pattern correlations in all simulated cases. Using the 
YSU or Bourgeault PBL schemes provides the overall best 

Fig. 11   Taylor diagrams showing the case average T2M pattern correlation, spatial standard deviation, and centred root mean square error com-
paring observational (black symbols) and modeled T2M (colored numbers) compared to GLDAS observations
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performance concerning T2M metrics while schemes other 
than MYNN3 perform similarly well for precipitation met-
rics. Performing WRF simulations on the large domain (D2) 
always results in better T2M and precipitation simulations 
compared to simulations on D1. T2M improvements are 
particularly large during the Monsoon case, while absolute 
precipitation differences are not improved during this case.

4 � Summary, discussion, and conclusions

In this paper, we present the first results of the Convection-
Permitting Third Pole (CPTP) CORDEX Flagship Pilot 
Study, which is an internationally coordinated effort to 
improve our understanding of climate change impacts on 
the water cycle and its extremes over the TP region. We 
outline the experimental design and show results from multi-
model, multi-physics case study simulations that focus on a 
flood-producing MCS case in 2008, a heavy rain-producing 
Monsoon period in 2014, and a heavy snow event in October 
2018. The primary goal of these experiments is to better 
understand the performance of state-of-the-art, non-hydro-
static regional modeling systems in simulating precipitation 
and T2M during different weather situations over the TP 
region and to find suitable model settings that can be used 

for climate-length runs in the future. The following points 
summarize our main findings:

•	 The performance of the five participating modeling 
systems is comparable but varies from case to case and 
among metrics. Overall, ICON and MPAS are perform-
ing best in simulating precipitation while RegCM4 per-
forms best in simulating T2M.

•	 While there is no obvious connection between the KE 
spectra of a model and its skill in simulating precipitation 
and T2M, the spectra show important differences related 
to the model formulation and indicate that models like 
e.g. WRF, CCLM, and ICON are characterized by higher 
variability at smaller scales as compared to e.g. RegCM4.

•	 The large number of WRF simulations allows us to inves-
tigate sensitivities to model physics. The WRF multi-
physics ensemble typically encompasses the spread of 
the other modeling systems for simulating precipita-
tion, similar to previously published results over Europe 
Regional climate (2015). This is different for T2M, 
where changing the modeling system can substantially 
contribute to the spread of simulated results.

•	 Differences in observational datasets are the dominant 
source of uncertainty in the model evaluation and are 
typically larger than the model formulation, and model 

Fig. 12   Differences in T2M between model simulations and hourly 
HadISD station observations dependent on the height above sea level. 
The spatial station distribution is the same as shown in the maps in 
Fig. 10. Differences are calculated in bins with 100 m size and we use 
a ±250m window around each bin to reduce noise. The WRF ensem-
ble spread is shown in gray contours and only the WRF simulations 

with the lowest and largest absolute difference to the station data are 
shown. The r1i1p1_IITM-RegCM480 results are off the chart to the 
left and not visible in these plots. The number of stations in each 
bin is shown as a dotted black line on the secondary x-axis. We only 
show values for bins with more than five stations
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physics uncertainties. Model biases and observational 
uncertainties are particularly large for the Snow case, 
which might be partly related to precipitation undercatch 
issues Prein and Gobiet (2017). This highlights a major 
challenge for evaluating model simulations in this region 
and observationally constraining the water and energy 
cycle over the TP. There is an urgent need to improve 
our in-situ and remotely sensed observational capabilities 
over the TP, which is one of the main goals of the Third 

Pole Environment (TPE) Yao et al. (2012) and Asian 
Precipitation Experiment (AsiaPEX) Asian Precipitaion 
Experiment (2022) projects. Studies have shown that kil-
ometer-scale models can simulate snowfall very well in 
data rich regions (Ikeda et al. 2010, 2021) and can even 
outperform our observational capabilities in mountainous 
regions (Lundquist et al. 2019). Therefore, future efforts 
should focus on fusing high-quality observational and 
kilometer-scale model output (Crespi et al. 2019; T.L. 

Fig. 13   Pattern correlation coefficients for event average precipitation 
(a) and T2M (c) and domain average absolute precipitation (b) and 
T2M differences (d). IMERG and GLDAS are used as reference for 
precipitation and T2M analyses respectively. Nine groups of points 
are shown for each case. The spread of these points provide an uncer-
tainty estimate from a specified source: “Model” is the RCM formu-
lation uncertainty, “Observation” represents the uncertainty between 
different observational products, “Initial Condition” is associated 
with the spread within two time-lagged initial condition ensembles 
(only available for the MCS case), “PBL” uncertainties associated 

with different planetary boundary layer schemes in WRF, “Micro-
physics” formulation uncertainty in WRF, “LSM” show land surface 
model uncertainties in WRF, “Convective scheme” shows the impact 
of using a scale aware cumulus scheme or no convection scheme in 
WRF, “Domain size” shows sensitivities to the RCM domain size 
in WRF, and HPC system shows the spread in identical WRF simu-
lations that were run on different computing systems. The standard 
deviation (SD) of each point cloud is shown at the bottom of each 
plot. The number of members in each averaged group is shown in the 
legend
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et al. in press) and use the latter to inform observational 
uncertainties Ouyang et al. (2021).

•	 WRF modeling experiments show that sensitivities due 
to the domain size (comparing simulations on D1 and 
D2) are of a similar order of magnitude as uncertainties 
stemming from the microphysics and PBL scheme. Gen-
erally, running the WRF kilometer-scale simulations on 
the large model domain (D2) improves the model results 
for all cases and metrics except for the Monsoon case 
absolute precipitation differences.

•	 WRF PBL scheme uncertainties have similar magnitudes 
for all cases and are comparable to uncertainties stem-
ming from the microphysics. While the performance of 
a PBL scheme is case- and metric-dependent, we see that 
the MYNN3 scheme results in sub-optimal performance 
compared with the YSU, UW CAM, and MYNN2.5 
schemes (except for absolute precipitation differences). 
However, the poorer performance of MYNN3 is largely 
due to its interactions with the WDM7 microphysics 
scheme while using it in combination with the Thompson 
scheme results in much better performance.

•	 Using the WDM6 and WDM7 microphysics schemes 
consistently results in lower than average performance 
independent of the case, variable, or metric in agreement 
to previous research over the Himalayas Orr et al. (2017). 
The other microphysics schemes perform equally well 
and have varying and non-systematic strengths and weak-
nesses depending on the case.

•	 There are systematic model deficiencies that most models 
share such as cold bias above 2000 m a.m.s.l. (except for 
CCLM) and a displacement of the heavy precipitation 
center towards the south (towards the north in case of 
RegCM) for the MCS case. Model performance in simu-
lating precipitation is generally lowest during the Snow 
case, partly related to the large observational uncertain-
ties. Future modeling efforts will aim to better understand 
the sources of these differences and to improve the over-
all model performance.

In-depth analyses that focus on single cases are ongoing 
that will provide additional insights into model performance 
(e.g., Kukilies et al. 93, for the MCS case). The results from 
this study will inform the modeling setup of climate time-
scale simulations in the CPTP project. The CPTP WRF 
modeling community has already adapted their modeling 
strategy and will perform future simulations on the larger 
model domain (D2) due to the systematically better model 
performance when running simulations on D2 that is shown 
here. Currently, we are running ensemble simulations of the 
2020 water year (Oct. 2019 to Sep. 2020) to better under-
stand the seasonality of model biases and the potential for 
bias accumulations over time. We selected this recent period 
due to the availability of high-quality observational datasets Ta
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over the TP from the TPE project Yao et al. (2012). These 
year-long simulations will be the basis for decadal runs of 
historical and future climate periods that will be performed 
by CPTP modelers in the next three years. Those runs will 
provide unprecedented insights into the changing energy and 
water cycle over the TP.

One key finding of this paper is the urgent need to better 
constrain water cycle processes over the TP region. This 
is essential not only for model validation but also to moni-
tor climate and environmental changes in this vulnerable 
area. High-quality in-situ and remote sensing observations 
are essential for this task but are extremely challenging to 

obtain due to the remoteness and extreme environments of 
the TP region. Fusing observational datasets with high-res-
olution modeling systems by creating e.g., a kilometer-scale 
regional reanalysis, such as has been done in other mountain 
regions Lussana et al. (2019), could alleviate some of the 
observational challenges and modeling biases and allow us 
to gain novel insights into the weather and climate of the TP.
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Table 2   Overview of WRF physics experiments
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Name PBL schemes LSM1 Microphysics CS4 Run Setup
r1i1p1 NCAR MoMCSn
r1i2p1 NCAR MoMCSn
r1i3p1 NCAR MC
r1i4p1 NCAR MC
r1i5p1 NCAR MC
r1i1p1 UGOT MoMCSn
r1i1p2 UGOT MoMCSn
r1i1p3 UGOT MoMCSn
r1i1p1 JAMSTEC MoMCSn
r1i1p1 UHH MoMCSn
r1i1p1 Cardiff MoMCSn
r1i1p2 Cardiff MoMCSn
r1i1p3 Cardiff MoMCSn
r1i1p1 ITP MoMCSn
r1i1p1 PSU MoMCSn
r1i1p1 NORCE MoMCSn
r1i1p1 NJU MCSn
r1i1p2 NJU MoMCSn
r1i1p3 NJU MCSn
r1i1p4 NJU MCSn
r1i1p5 NJU MCSn
r1i1p6 NJU MCSn
r1i1p7 NJU MCSn
r1i1p9 NJU MCSn
r1i1p10 NJU MCSn
1Land surface model (LSM).
2Multi-scale Kain-Fritsch deep convection scheme.
3High performing computer (HPC).
4Cumulus Scheme (CS).

Gray cells show the reference physics setting while red cells indicate that the correspondent physics option has been changed compared to the 
reference setup. The rightmost column shows if the simulation has been performed for the Monsoon (Mo), MCS (MC), and Snow (Sn) case
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