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A B S T R A C T   

Climate change and human activity such as reservoir operation have altered the hydrological system in the 
transboundary Mekong River basin (MRB) over decades, urging a need to assess the historical changes and future 
projections of freshwater availability. Here we examined changes of terrestrial water storage anomalies (TWSA) 
from the Gravity Recovery and Climate Experiment satellites in the lower MRB during 2003–2020, and subse-
quently partitioned and attributed them into climate-driven and non-climate-driven components using the 
WaterGAP hydrological model (WGHM) with and without consideration of human activities, together with a 
statistical method driven by climatic forcing only. Further, integrated future TWSA was projected under different 
climate change scenarios during 2030–2099 forced with four downscaled and bias-corrected simulations of four 
global climate models. Results show a decreasing TWSA trend of − 3.7 ± 1.8 mm/a during 2003–2020. The 
WGHM-based climate-driven TWSA, which is highly correlated with the statistical modeling results, and non- 
climate-driven part suggests a trend of − 0.3 ± 1.4 and 0.01 ± 0.07 mm/a during 2003–2016, respectively. 
The climate-driven TWSA is well explained by the changes in decreasing precipitation (− 1.3 ± 8.5 mm/a) and 
increasing air temperature (0.05 ± 0.02 ℃/a) spatially and temporally, while the non-climate-driven component 
is closely linked to human activities such as growing sectoral human withdrawal (0.13 ± 0.14 mm/a), increasing 
reservoir regulation (0.01 ± 0.08 mm/a), and changing land cover. TWSA under future climate changes is 
projected to increase from 9.3 ± 21.4 to 12.2 ± 12.2 mm and from 1.6 ± 41.2 to 12.3 ± 30 mm in the near 
(2040–2059) and far future (2080–2099) under various scenarios comparing with the historical period 
(2003–2020). Future flood potential, estimated with TWSA and precipitation, was also projected to increase. This 
study provides important inferences for decision-makers and stakeholders to better understand the water cycle 
and manage water resources in a changing environment.   

1. Introduction 

Terrestrial water storage (TWS), which is summed from water stored 
in rivers, lakes and reservoirs, soil, groundwater systems, snow and 
glaciers, and vegetation, is a crucial variable in the global hydrological 
cycle and land–atmosphere interaction processes (Rodell et al., 2018). 
As an effective indicator of regional water balance or imbalance 
(Abhishek et al., 2021), natural hazards such as floods and droughts 
(Abhishek and Kinouchi, 2022), terrestrial carbon uptake (Humphrey 

et al., 2018), ice sheets and glaciers mass fluctuations (van den Broeke 
et al., 2009), and sea-level rise (Eicker et al., 2016), TWS changes play a 
determining role in modulating water flux interactions within various 
Earth system components (Pokhrel et al., 2021). Nevertheless, global 
variations in TWS are still inadequately known due to the paucity of field 
observation gauges worldwide and considerable uncertainties in hy-
drological and land surface models (Scanlon et al., 2018), particularly in 
the international river basins with restricted data sharing policies and 
intensive water conflicts among different countries. As one of the most 
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important international rivers of Asia, the Mekong River flowing across 
six countries, including China, Myanmar, Lao, Thailand, Vietnam, and 
Cambodia, feeds approximately 70 million inhabitants and sustains 
crops, livestock, and the ecosystem of the basin (Yun et al., 2021a). 
Under the background of emerging freshwater availability, monitoring 
TWS changes in the Mekong River basin (MRB) is of great importance to 
address the comprehensive cooperation in regional water resources 
management and development (Jing et al., 2020; Liu et al., 2022). 

Jointly developed by the National Aeronautics and Space Adminis-
tration and the German Aerospace Center, the Gravity Recovery and 
Climate Experiment (GRACE) mission that launched in March 2002 can 
provide monthly terrestrial water storage anomaly (TWSA) worldwide 
with unprecedented accuracy by measuring distance changes between 
the twin satellites (Tapley et al., 2019). After its decommissioning in 
June 2017, the GRACE Follow-On (also referred to as GRACE hereafter) 
satellites commissioned in May 2018, have continued to assess global 
TWSA changes up to the present. The GRACE satellites have enabled the 
investigation of spatiotemporal variability of TWSA on multiple tem-
poral (from seasonal to decadal) and spatial (from regional to global) 
scales (Humphrey et al., 2016; Sun et al., 2020; Guo et al., 2021). A few 
studies have attempted to reveal TWSA changes in the MRB (Pham-Duc 
et al., 2019; Jing et al., 2020; Bibi et al., 2021). Specifically, Jing et al. 
(2020) used five different GRACE solutions and found a downward trend 
with trends ranging from 0.0 to − 14.5 mm/a between 2002 and 2016 in 
the upper reach (p < 0.05), while there were no statistically significant 
trends in the lower basin. Moreover, Bibi et al. (2021) examined the 
TWSA changes in the upstream region and also discovered significant (p 
< 0.05) negative trends at rates ranging from − 3.3 to − 5.9 mm/a during 
2002–2016 based on multiple GRACE solutions. 

Climate change has significantly altered the hydrological system of 
the MRB over decades, which is mainly reflected by the variations in 
precipitation and temperature (Nie et al., 2018; Gao et al., 2019). In 
addition, the growing food demands, rapid population expansion, and 
dramatic urban development have resulted in massive changes in land 
use/land cover (LUCC), alteration of the hydrological cycle, and devel-
opment of hydropower systems throughout the basin (Johnston and 
Kummu, 2012; Liu et al., 2021). Therefore, both climate and non- 
climate factors should have played a role in the historical TWSA 
changes in the MRB. Therefore, the quantification of the respective 
contributions of the two factors to the total change in the past TWSA is 
crucial but remains unexamined. 

Most of the previous studies merely focused on the historical changes 
of TWSA in the MRB due to the relatively short period (~21 years) of the 
GRACE missions, while the future projections under the combined ef-
fects of both climatic and non-climatic factors remain rarely examined. 
There are generally-two categories of methods to obtain future TWSA. 
The first group relies on physically-based models to describe changes in 
climate, land surface, and hydrology. As an example, Pokhrel et al. 
(2021) forced a large ensemble of global hydrological models (GHMs), 
land surface models (LSMs), and dynamic global vegetation models 
(DGVMs) using four different global climate models (GCMs) from 
Coupled Model Intercomparison Project Phase 5 (CMIP5), and acquired 
global TWSA projections under distinctive emission scenarios for 
drought possibility evaluation until the end of the 21st century. This 
method has been used to assess the great potential of the combination of 
GCMs and GHMs/LSMs/DGVMs to simulate the future TWSA (Oki and 
Kanae, 2006; Schewe et al., 2014). Xiong et al. (2022) directly used the 
original GRACE observations to perform the bias correction for the 
TWSA simulations of multiple GCMs from the CMIP6 archive and sub-
sequently applied this approach to assess the future TWSA and associ-
ated flood potential changes in the Yangtze River basin. However, the 
systematic analysis of projected TWSA in the MRB is still unexplored 
using either kind of the above-introduced methods. 

Therefore, the main objectives of this study are (1) to investigate the 
spatiotemporal variability of climate-driven and non-climate-driven 
TWSA contributions as well as their influential factors over the lower 

MRB during the historical period 2003–2020; (2) to project the future 
changes of TWSA that are jointly affected by both climate and non- 
climate factors under multiple scenarios during the future period 
2030–2099. 

2. Data and methods 

2.1. Study area 

We selected the lower MRB as the study region because the shape of 
upstream MRB is very narrow and elongated, thus it is very likely that 
GRACE signals possess leakage errors, i.e., contamination (gain/loss) in 
the target signal from the surrounding region (e.g., glacier melting on 
the Qinghai-Tibet Plateau (Chao et al., 2020)). Located within the 
domain of 9◦48′–22◦42′N and 99◦51′–108◦42′E, the lower MRB has a 
total area of ~ 606,000 km2, occupying ~ 77 % of the whole of MRB 
with a total area of ~ 795,000 km2 (see Fig. 1). The lower MRB is shared 
by five countries in Southeast Asia including Laos, Thailand, Vietnam, 
Cambodia, and Myanmar. Dominated by the tropical rainforest climate 
and tropical monsoon climate, more than 80 % of precipitation in the 
basin occurs in the wet season (from June to November) while only ~ 
20 % is received during the dry season (from December to May) (Yun 
et al., 2021b). The cropland is the main land use type and more than 10 
million hectares of cultivated land are employed for rice production 
(Jing et al., 2020). 

The lower MRB has experienced significant climate changes since the 
1980s, which were mainly reflected by the warming at a rate higher than 
the global average warming rate and increasing annual precipitation 
(Kingston et al., 2011; Fan and He, 2015). In addition, future projections 
of air temperature are expected to steadily increase up to the end of the 
21st century, with the annual precipitation continuing to grow under 
multiple scenarios (Västilä et al., 2010; Kingston et al., 2011). The lower 
MRB feeding more than 60 million people (status: 2010, You et al., 

Fig. 1. Location of the lower Mekong River basin. Note: The red circles 
represent the operational reservoirs, whose basic information (location, func-
tion, year of completion, height and total storage capacity) is listed in Table S1. 
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2014) is heavily irrigated for agriculture purposes, and the population is 
projected to grow by 60 % by 2050 compared to its 2005 values (Pech 
and Sunada, 2008). Therefore, the growing demand for water and en-
ergy resources due to population and urban expansion has led to over 79 
large reservoirs in operation with a total storage capacity of 57.5 km3 up 
to the year 2021 (Fig. 1). The detailed information on these operational 
reservoirs is listed in Table S1. The statistics of the operational reservoirs 
are provided by a recent study (Yun et al., 2021a). Therefore, the 
increasingly evident climate and non-climate changes highlight the ur-
gent need to understand the TWSA changes in both the past and future. 

2.2. GRACE TWSA 

We used the GRACE mass concentration block (mascon) data during 
2003–2020 to assess the TWSA changes in the lower MRB, which was 
produced by the Center for Space Research at the University of Texas at 
Austin (CSR) (Watkins et al., 2015; Save et al., 2016) (Table S2). The 
mascon solutions are derived by parameterizing the gravity field with 
regional mass concentration functions. Unlike the conventionally used 
spherical harmonics GRACE products, the mascon solutions are free 
from leakage signals and several categories of post-processing errors 
such as de-correlated and de-stripping noises (Scanlon et al., 2016; 
Wiese et al., 2016). Covering the period 2003–2020, the monthly 
mascon solutions have been resampled to a common 0.5◦ spatial reso-
lution. The mascon data represents the TWSA relative to the average 
gravity field between 2004 and 2009. A total of 22 missing months due 
to instrumental issues and an 11-month data gap between two genera-
tions of GRACE satellites (from July 2017 to May 2018) are filled with a 
recently published GRACE reconstructions dataset (Li et al., 2021), 
which is also trained with the CSR mascon solution based on multiple 
climatic/hydrological variables and a combination of machine learning 
and statistical decomposition techniques. Since no calibration processes 
are needed across the missions and the precision and spatiotemporal 
sampling are equivalent, there are no existing intermission biases be-
tween GRACE and GRACE Follow-On satellites (Landerer et al., 2020). 
To investigate the influences of distinctive constraints and the scale of 
the grid cells from different processing institutions, the mascon solution 
from the NASA Jet Propulsion Laboratory (JPL) agency is also used for 
comparison. Similarly, the missing months and the data gap are filled 
with a recent GRACE reconstructions dataset trained with the JPL 
mascon solution (Mo et al., 2021), which is derived using the Bayesian 
deep learning method combined with ERA5-Land reanalysis. The com-
parisons between the continuous CSR and JPL mascon solutions on the 
basin and grid scales suggest high consistency with the correlation co-
efficient of 0.99 (Fig. S1), highlighting the negligible influences of 
divergent GRACE solutions. 

2.3. Decomposition of TWSA 

The WaterGAP (v-2.2d) hydrological model (WGHM) (Eicker et al., 
2014; Schmied et al., 2021) was applied to decompose the TWSA into 
climate- and non-climate-driven parts from the period 2003–2016. The 
WGHM is a state-of-the-art hydrological model that simulates the full 
components of TWSA including water stored in river, snow, lakes and 
reservoirs, soil, aquifers, and vegetation over non-glacierized regions. 
Forced by the “WATCH Forcing Data methodology applied to ERA- 
Interim data” (WFDEI) dataset, it provides direct human intervention 
with hydrological cycle such as irrigation, reservoir regulation, and 
groundwater extraction (Weedon et al., 2014; Schmied et al., 2021). The 
WGHM model has been widely employed in regional and global hy-
drology research (An et al., 2021; Hosseini-Moghari et al., 2020). We 
also used simulations of the surface water, groundwater, and soil 
moisture storage from the WGHM to investigate the variations of 
different components of TWSA. The climate-driven TWSA is estimated 
using the “nosoc” mode of the WGHM, which did not account for direct 
human activities such as irrigation and reservoir management. 

In addition, a recently proposed statistical method (Liu et al., 2021) 
which has been validated over major global river basins, was also 
applied to identify the climate-driven TWSA for comparison and inde-
pendent check. This method can reconstruct both seasonal and non- 
seasonal signals in climate-driven TWSA using precipitation and air 
temperature data, which were also derived from the WFDEI meteoro-
logical dataset in our study. Moreover, several widely used climate 
forcing products such as ERA5, CRU TS (v-4.05), and GLDAS (-v2.1) 
were retrieved to detect the uncertainty sourced from different climate 
inputs (Table S2). Then, we subtract the naturalized WGHM simulations 
(i.e., “nosoc” mode) from the standard WGHM outputs (i.e., “histoc” 
mode) to estimate the non-climate-driven TWSA, which has considered 
both climate and human factors (Huang et al., 2015; Xie et al., 2019). 
Similarly, we also estimated the non-climate-driven TWSA by removing 
the statistically reconstructed climate-driven TWSA from the GRACE 
TWSA for comparison (Zhong et al., 2019). The training/testing con-
figurations and the optimized parameters of the statistical method have 
been summarized in Table S3. 

2.4. Projected TWSA 

The WGHM was applied to assess the future TWSA changes under the 
joint effects of climate- and non-climate factors during the period 
2030–2099, with a uniform spatial resolution of 0.5◦. The meteorolog-
ical forcing data, including precipitation, air temperature, solar radia-
tion, wind speed, specific humidity, and surface pressure, generated 
from four GCMs (i.e., GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, and 
MIROC5) of the CMIP5 archive, have undergone statistical downscaling 
and bias correction using the Inter-Sectoral Impact Model Intercom-
parison Project (ISI-MIP) methods (Hempel et al., 2013; Lange, 2018, 
2019). Three future scenarios are considered for each GCM, including a 
low (RCP2.6), a medium–high (RCP6.0), and a high (RCP8.5) green-
house gas concentration scenario, and are subsequently divided into 
near (2040–2059) and far (2080–2099) future periods for comparison. 
The projected precipitation and air temperature were also derived to 
analyze the future changes in climatic factors. Furthermore, we also 
calculated a Flood Potential Index (FPI) using the projected TWSA and 
precipitation to evaluate the future changes in flood probability over the 
lower MRB, which were compared with the historical period during 
2003–2020. FPI was initially introduced by Reager and Famiglietti 
(2009) and has been widely used in the GRACE community to represent 
the large-scale flood possibility (Zhu and Yuan, 2021). Higher FPI (<1) 
can generally be translated into a greater flood potential, and vice versa. 
All the simulations are conducted under the framework of phase 2b of 
the ISI-MIP project (Warszawski et al., 2014). The applicability of the 
future projections of TWSA has been fully evaluated in a recent global 
study (Pokhrel et al., 2021). 

2.5. Auxiliary data 

Multi-source data from the remote sensing, reanalysis, and models 
were collected to analyze the climatic and non-climatic variables 
influencing the TWSA. Specifically, precipitation and air temperature 
from the WFDEI meteorological dataset were used to study the climate 
variability during 2003–2016, which is consistent with the WGHM 
model (Weedon et al., 2014). However, the FPI between 2003 and 2020 
was derived based on GRACE TWSA and ERA5 precipitation data due to 
the unavailability of the WFDEI product after 2016. The comparisons 
among different precipitation datasets show satisfactory agreement in 
the lower MRB, suggesting an insignificant uncertainty in the choices of 
precipitation datasets (Fig. S2). ERA5 reanalysis dataset is the 5th gen-
eration atmospheric reanalysis of the global atmosphere produced by 
the Copernicus Climate Change Service at the European Centre for 
Medium-Range Weather Forecasts (ECMWF). Further, the ERA5-land 
product provides a consistent view of land variables from 1950-present 
at an enhanced resolution compared to ERA5 over global land, based on 
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the 4D-Var assimilation scheme, Integrated Forecast system model-41r2, 
and HTESSEL land surface model driven by meteorological forcing from 
the ERA-Interim atmospheric reanalysis and precipitation adjustments 
based on the Global Precipitation Climatology Project (GPCP) data 
(Hersbach et al., 2020). Further, the monthly remote sensing Normal-
ized Difference Vegetation Index (NDVI) from the Moderate Resolution 
Imaging Spectroradiometer (MODIS-13C2) product was obtained to 
assess the influence of land cover on TWSA, which was also validated 
based on the yearly satellite-based land cover map retrieved from the 
ESA CCI (climate change initiative) project (ESA, 2017). 

Two global irrigation datasets from the Food and Agriculture Orga-
nization (FAO) and Nagaraj et al. (2021) were utilized to assess the 
changes in the irritation area. The basic information on dams and res-
ervoirs in the lower MRB from Yun et al. (2021a) was collected to 
investigate the changes in man-made hydrologic constructions. Simi-
larly, simulated reservoir storage from the WGHM was also collected for 
attribution analysis. The monthly actual total consumptive water use, as 
the sum of abstracted water from surface water and groundwater in the 
WGHM model (Schmied et al., 2021), was also used for the interpreta-
tion of human water use. 

We also obtained a global gridded reconstruction of water with-
drawal for sectoral water use including irrigation, domestic, electricity 
generation, livestock, mining, and manufacturing during 2003–2010 
from Huang et al. (2018) for comparison. The irrigation withdrawals are 
derived from four optimized GHMs, including the WGHM, PCR- 
GLOBWB, LPJmL, and H08 models, of which the WGHM was selected 
for consistency in this study. Finally, we obtained the satellite-based 
water level and surface area time series during 2003–2020 in the 
largest freshwater lake in South East Asia, the Tonle Sap Lake, to vali-
date our examinations of TWSA variations given its significant role in 
regulating the flows in the MRB (Campbell et al., 2009; Wang et al., 
2020; Chen et al., 2021). Therefore, the monthly water volume changes 
were estimated according to Taube (2000), which has been widely used 
in lake volume change (Zhang et al., 2017, 2019, 2021). 

2.6. Uncertainty Estimation 

Various methods were applied to quantify the uncertainties inevi-
tably embedded in and propagated from the multisource data used. 
Specifically, the uncertainty in the CSR mascon solution was estimated 
as the residuals after removing the long-term trends and seasonal 
(annual and semi-annual) signals from the raw series (Scanlon et al., 
2016). Moreover, the uncertainty in the WGHM simulations under 
“nosoc” and “histsoc” modes was calculated as the 10 % range (i.e., 90 % 
to 110 % of modeling results) (Schmied et al., 2021). The uncertainty in 
the statistically reconstructed climate-driven TWSA was taken as one 
standard deviation of 20,000 equally acceptable samples from MCMC 
simulation when training the model (Liu et al., 2021). Consequently, the 
non-climate-driven TWSA from both the WGHM and the statistical 
method were estimated as the square root of the sum of squares of un-
certainty in WGHM (“histsoc” mode) and GRACE data, respectively. 
Moreover, the uncertainty of long-term trends in TWSA can be calcu-
lated as one standard deviation of the linear regression with a signifi-
cance level of 0.95 (t-test), which was estimated using the linear 
regression method for the yearly average time series. 

Given the substantial uncertainties in future TWSA projections 
sourced from four meteorological forcings (i.e., GFDL-ESM2M, 
HadGEM2-ES, IPSL-CM5A-LR, and MIROC5), the generalized three- 
cornered hat (GTCH) method was employed to estimate their respec-
tive uncertainty during 2030–2099. The GTCH method estimates the 
relative covariance of different sets of TWSA projections among at least 
three datasets, without the need for any prior knowledge information 
(Premoli and Tavella, 1993). It has been broadly used in estimating 
TWSA uncertainty from both GRACE and models globally due to its high 
effectiveness and robustness (Long et al., 2014, 2017). Moreover, we 
fused different categories of TWSA projections using the weighted 

averaging method, in which the corresponding weights of various TWSA 
datasets were determined based on the relative variance estimated by 
the GTCH method under the assumption of no correlations with each 
other (Yan et al., 2021). We also compared the fused projections and the 
ensemble mean to constrain the uncertainty. 

3. Results 

3.1. Historical TWSA variations 

Fig. 2 illustrates the monthly time series of TWSA, climate-driven, 
and non-climate-driven during the period 2003–2020, and their 
annual cycles are presented in Fig. S3. GRACE data generally ranges 
from − 300 to 300 mm except for the extremely high value in the wet 
season of 2011. The overall negligible uncertainty of GRACE TWSA is 
found (grey shaded regions), with relatively higher values in the 11- 
month data gap between July 2017 and May 2018. Larger un-
certainties in the peaks and troughs compared with other occasions are 
apparent. As a result of both climate and non-climate factors, the GRACE 
TWSA has a downward rate of − 3.7 ± 1.8 mm/a, similar to the trend 
(− 3.3 ± 2.2 mm/a) during the period 2003–2016. Moreover, consistent 
changes in WGHM TWSA with GRACE results are detected, with rela-
tively low amplitude and high uncertainty. Therefore, an under-
estimated trend of − 0.3 ± 1.4 mm/a is discovered during 2003–2016 
compared to the GRACE data, which are mainly caused by the decrease 
in groundwater (− 0.2 ± 0.4 mm/a) and surface water storage (− 0.2 ±
0.6 mm/a) (Fig. S4). The identified climate-driven TWSA from the 
WGHM and statistical model in the lower MRB are shown in Fig. 2. The 
naturalized WGHM-modeled TWSA illustrates close agreement with the 
statistically reconstructed climate-driven TWSA based on different 
climate forcings, with the respective correlation coefficient of 0.89 
(WFDEI), 0.81 (ERA5), 0.91 (CRU TS), and 0.89 (GLDAS), highlighting 
the robustness of WGHM under the natural mode. Climte-driven TWSA 
and GRACE TWSA share similar seasonal features that peak in 
September/October while reacheing the lowest in April/May, which 
may be connected to the tropical monsoonal climate that is dominated 
by the Southwest Monsoon (Fig. S3). However, there are considerable 
uncertainties in the reconstructed climate-driven TWSA, especially for 
the WFDEI and ERA5 forcings. The comparatively better performance of 
the CRU TS and GLDAS forcing might be caused by the integration of the 
in-situ observations and remote sensing products. It indicates that 
different climate forcings might produce various uncertainties in the 
climatic reconstructions, and the lack of consideration of inflow from the 
Lancang River basin will inevitably introduce some uncertainty. 
Consequently, divergent trends of climate-driven TWSA from the 
WGHM (− 0.3 ± 1.4 mm/a) and statistical model are seen during 
2003–2016, which widely range from − 3 ± 3.6 (CRU TS) and 6.7 ± 5.9 
(ERA5) mm/a. In terms of non-climate-driven changes in TWSA, sub-
stantial differences are determined from the statistical model due to the 
propagated uncertainties in GRACE and climate-driven TWSA and 
multiple datasets of meteorological forcing, causing the trends ranging 
from − 10 ± 4.6 (ERA5) and − 0.3 ± 2.4 (CRU TS) mm/a during 
2003–2016. Similarly, WGHM-based non-climate-driven TWSA presents 
a pattern that non-climate-driven TWSA is dominated by the spread of 
data uncertainty, with relatively low amplitude and trend between 2003 
and 2016 (0.01 ± 0.07 mm/a) (Fig. S5). Therefore, despite the large 
uncertainty sourced from the different models and forcings, we conclude 
that the trends in TWSA from 2003 to 2016/2020 are primarily gov-
erned by the climate-driven components with a limited contribution 
from the non-climate-driven changes. The limited influence of the non- 
climate-driven TWSA can be explained by the fact that despite a large 
number of dam reservoir constructions (Table S1), their total capacities 
(~95 mm of equivalent water depth in 2020) are one order of magnitude 
less than the TWSA amplitude variations (~800 mm). Also, the 
groundwater pumping in the lower MRB might have been small owing to 
the abundant precipitation and surface water resources, the latter of 

J. Xiong et al.                                                                                                                                                                                                                                    



Journal of Hydrology 612 (2022) 128275

5

which contributes ~ 40–45 % of TWSA changes (Pham-Duc et al., 2019). 
Fig. 3 demonstrates the spatial distribution of trends in TWSA, 

climate-driven TWSA, and non-climate-driven TWSA during 
2003–2016/2020. For the period 2003–2020. The majority of the lower 
MRB illustrates overall TWSA depletion trends (p < 0.05) except for the 
northern region where TWSA increases from 2 to 8 mm/a with the un-
certainties of ~ 3 mm/a. In addition, GRACE observations show sig-
nificant (p < 0.05) decreasing trends with rates ranging from − 16.0 to 

− 8.0 mm/a over the western and southern parts of the basin, and the 
uncertainties generally fluctuate between 2.0 and 4.0 mm/a. Further-
more, satellite-based water levels from multi-source altimetry sensors 
and water surface area from different optical imageries of the largest 
inland water body, i.e., Tonle Sap Lake in Cambodia, are demonstrated 
in Fig. S6. It can be seen that water surface area, water level, and derived 
water volume changes show downward trends during the period 
2003–2020, agreeing well with GRACE observations. A similar 

Fig. 2. Time series and trends of (a) TWSA, (b) climate-driven TWSA, and (c) non-climate-driven TWSA from the GRACE, WGHM, and statistical model in the lower 
MRB during 2003–2020. The shaded regions indicate the uncertainties of different variables. Please refer to section 2.6. “Uncertainty Estimation” for the details. 
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distribution of GRACE data is demonstrated for the period 2003–2016, 
while with relatively higher trends and uncertainties over the basin. 
WGHM-modeled TWSA generally shares a similar pattern with GRACE 
data between 2003 and 2016, with increasing trends in the north while 
decreasing trends mainly in the central and south basin. However, the 
southwestern, eastern, and southeastern regions illustrate positive 
trends with trends below 8 mm/a, with uncertainties higher than 3 mm/ 
a. Such differences might arise from the inherent uncertainty of the 
WGHM and the bias of the climate inputs (i.e., WFDEI dataset). More-
over, the climate-driven TWSA shares similar patterns in both trends and 
uncertainties with TWSA from 2003 to 2016, implying the governing 
role of the climatic factors in TWSA variations spatially. The paradigm 
can be further validated according to the comparable distributions be-
tween WGHM outputs and WFDEI-derived climatic reconstructions. In 
contrast to that, slightly increasing trends of TWSA are captured by the 
non-climate-driven TWSA in the west and south of the central basin, 
whose trends are generally below 4.0 mm/a and the uncertainties are 
lower than 1 mm/a. Forced with the WFDEI climate forcing (same as the 
WGHM), the non-climate-driven TWSA based on the statistical method 
illustrates generally similar distribution but with higher amplitudes and 
uncertainties due to the propagated uncertainty in the identification and 
separation of the climate-driven parts. We note considerable differences 
between the climatic and non-climatic TWSA reconstructions exist due 
to different meteorological forcings (Figs. S7 and S8). However, 
demonstrative insights can be provided by combining with the WGHM 
and statistical approach forced by the same dataset (i.e., WDFEI). 

Apart from long-term trends, seasonal characteristics of trends in 

TWSA are additionally analyzed owing to the divergent climate changes 
in wet and dry seasons together with the seasonality of non-climate 
factors (e.g., reservoir operation and irrigation). Fig. 4 shows the 
annual cycles of trends in TWSA, climate-driven TWSA, and non- 
climate-driven TWSA. It indicates GRACE data has a unimodal distri-
bution that the negative trends from − 8.5 ± 3.6 to − 7.9 ± 3.2 mm/a 
mainly occur in August and September and relatively small trends 
ranging from − 5.5 ± 3 (July) to − 1.4 ± 1.7 (February) mm/a happen in 
other months during 2003–2020. There are no apparent differences 
detected in GRACE TWSA during 2003–2016 than the period 
2003–2020. Compared to the GRACE results, the WGHM model dem-
onstrates underestimated trends with rates ranging from − 3.5 ± 2.9 
(June) to − 0.5 ± 1.3 (April) mm/a. Unlike the long-term trends, the 
seasonal pattern of WGHM TWSA is dominated by soil moisture, with 
apparent drying in the wet season (mainly from May to June and August 
to September) and the wetting trend in the dry season (Fig. S4). The 
seasonal distributions of trends in climate-driven TWSA are also exam-
ined, and consistent patterns between the WGHM and the statistical 
models are observed, especially with that forced with the WFDEI data-
set. The climate-driven TWSA generally presents negative trends in the 
wet season while positive trends in the dry season, which range from 
− 3.5 ± 2.9 (June) to 3.5 ± 2.1 (December) mm/a with considerable 
uncertainties. Overall deviations among different subsets of climatic 
reconstructions might be triggered by their inherent differences. As a 
consequence, the non-climate-driven component of TWSA from the 
WGHM is slightly positive from August to December, whereas negative 
trends are found in other months, particularly from January to May in 

Fig. 3. Spatial distribution of trends (upper panel) and uncertainties (lower panel) in TWSA, climate-driven TWSA, and non-climate-driven from the GRACE, WGHM, 
and statistical model in the lower MRB during 2003–2020. The black cross indicates the grid cells with significant trends (p < 0.05). 

Fig. 4. Annual cycles of trends in (a) TWSA, (b) climate-driven TWSA, and (c) non-climate-driven TWSA from the GRACE, WGHM, and statistical model in the lower 
MRB during 2003–2020. 
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the dry season. The differences between the statistically estimated non- 
climate-driven TWSA and the WGHM simulations can be sourced from 
the propagated uncertainty of identification, simulation, and/or isola-
tion of the climatic and non-climatic components. 

3.2. Influential factors of TWSA 

3.2.1. Climatic factors 
To assess the influential factors of climate-driven TWSA, multiple 

climate variables have been analyzed in the lower MRB. Fig. 5 shows the 
monthly evolution of precipitation and air temperature as well as their 
trends during 2003–2016. Precipitation generally varies between 1 and 
426 mm and shows obvious seasonality due to the monsoon climate. A 
slight downward trend at a rate of − 1.3 ± 8.5 mm/a is detected. 
Moreover, the air temperature is generally greater than 20.4 ℃ and 
presents an increasing trend of 0.05 ± 0.02 ℃/a under a warming 
climate. Consequently, the reducing precipitation and increasing air 
temperature can reasonably explain the depletion of climate-driven 
TWSA (− 0.3 ± 1.4 mm/a) due to the decreasing water availability 
under an intensified Earth’s water cycle. The annual cycles of trends in 
different climatic variables are also depicted in Fig. 5. It can be clearly 
seen that precipitation has a bimodal distribution and there are 
increasing trends from September to January and June with trends 
below 3.6 ± 1.6 mm/a (November), while the negative trends with rates 
from − 4.8 ± 2.8 (May) to − 0.2 ± 1.8 (April) mm/a appear in the 
remaining months. In contrast, the air temperature shows a consistent 
upward trend with trends higher than 0.03 ± 0.01 ℃/a (July) in most of 
the months except for January (− 0.02 ± 0.06 ℃/a) and February 
(− 0.04 ± 0.09 ℃/a). The seasonal distribution of precipitation and air 
temperature can jointly explain the increase in the climate-driven TWSA 
from November to January and its decrease in April, May, July, and 
August. Some disparities in June and March can be attributed to the 
uncertainty in the trend estimates and the precipitation/air temperature 
datasets. 

The spatial distributions of long-term trends in precipitation and air 
temperature are presented in Fig. 6. The northern, southeastern, 
southwestern, and western regions of the basins experience increasing 
precipitation with trends roughly between 5.0 and 30.0 mm/a, and the 
uncertainties are correspondingly as high as 30.0 mm/a located in the 
southwestern area. The central and southern parts witness significant 
downward trends in precipitation, and the rates change between − 30.0 
to − 15.0 mm/a with the uncertainty between 10.0 and 15.0 mm/a. 
Comprehensive rising temperature is detected over the lower MRB 
during 2003–2016, in which the significant trends (p < 0.05) are located 
in the northwestern and southeastern regions. The rates range from 0.01 
to 0.11 ℃/a and the uncertainties are favorably low (<0.036 ℃/a), 
especially in the northwestern region. Generally, the spatial distribu-
tions of trends in precipitation and air temperature agree well with those 
in the climate-driven TWSA including the TWSA gains in the north, 

centre, and south regions due to precipitation increase and the losses in 
the northwestern basin from the temperature growth. 

3.2.2. Non-climatic factors 
Multiple variables including human water use, reservoir regulation, 

and land cover changes were subject to attribution analysis of non- 
climate-driven TWSA in the lower MRB. We examined the monthly 
variations in total water abstraction over the lower MRB during 
2003–2016 (Fig. 7), which generally fluctuates between 0 and 6 mm 
with high inter- and intra-annual variability. An increasing trend of 0.13 
± 0.14 mm/a is identified between 2003 and 2016, and the value is − 0.2 
± 0.3 mm/a for the period 2003–2010. However, the sectoral water 
withdrawals show a different positive trend of 0.2 ± 0.03 mm/a, which 
might be due to the uncertainty in the WGHM model. Differences be-
tween total water abstraction indicate that the summed water with-
drawals might arise from the underestimated sectoral water use such as 
reservoir impoundment in the wet season. Furthermore, the individual 
sectoral water withdrawal presents the dominating role of irrigation to 
other categories of human activities such as manufacturing, mining, and 
electricity (Fig. S9), and it also has the highest increasing trend of 0.08 
± 0.03 mm/a during 2003–2010. In addition, seasonal distribution in 
water abstraction shows slight positive trends from February to March, 
from May to August, and December, which might cause the decrease in 
non-climate-driven TWSA. However, such effects might be constrained 
due to relatively small amplitudes (<0.08 ± 0.05 mm/a). The spatial 
distribution of trends in total water abstraction during 2003–2016 
suggests the regions with significant increasing values are mainly 
located in the southeast of the basin (Fig. 8), which might be caused by 
the rapid urbanization and expansion of the Mekong Delta (Yun et al., 
2021a). Both increasing and decreasing trends are detected in the west- 
central basin that is highly irrigated (Fig. S10) due to the changes in 
irrigations area regionally, with trends ranging from − 2.4 ± 1.6 to 1.6 
± 1.5 mm/a. We also examined the annual irrigation map over the lower 
MRB from 2001 to 2015, indicating both an increase and decrease in 
irrigation area over the centre basin, agreeing with the spatial changes 
in water extraction (Fig. 9). Specifically, the percentage of grid cells with 
high irrigation shows a downward trend of − 0.05 ± 0.01 %/a, while an 
upward trend of 0.03 ± 0.16 %/a is found for the area with low to 
medium irrigation between 2001 and 2015. The annual irrigation maps 
are depicted to show the spatiotemporal variations of irrigation area 
over the lower MRB (Fig. S11). 

The reservoir storage generally changes between 3.9 ± 0.4 and 16.6 
± 1.7 mm and shows a non-significant increasing trend (0.01 ± 0.08 
mm/a) during the period 2003–2016 (Fig. 7), favouring the increase of 
non-climate-driven TWSA. Annual cycles of trends do not present a 
significant trend from January to September except for May (0.02 ±
0.06 mm/a) but steadily grow from October (0.02 ± 0.22 mm/a) to 
December (0.08 ± 0.2 mm/a). The changing pattern of reservoir storage 
can partly explain the seasonal distribution of trends in non-climate- 

Fig. 5. (a) Monthly time series and (b) annual cycle of trends in precipitation and air temperature from the WFDEI dataset in the lower MRB during 2003–2016.  
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driven TWSA as well as its positive trend on the yearly scale, even 
though the magnitude is relatively low (0.01 ± 0.07 mm/a). There are 
no significant changes in reservoir storage that can be observed for the 

whole of lower MRB, with only a few reservoirs in the lower reach 
experiencing surface water depletion. The uncertainty of trends is 
relatively high in the west compared to that in the south of the basin. 

Fig. 6. Spatial distribution of (a, b) trends and (c, d) uncertainties in precipitation and air temperature in the lower MRB during 2003–2016. The black cross indicates 
the grid cells with significant trends (p < 0.05). 

Fig. 7. Monthly time series (left panel) and annual cycle in trends (right panel) of (a, b) total water abstraction, (c, d) reservoir storage, and (e, f) NDVI in the lower 
MRB during 2003–2016. 
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Such distribution and amplitude demonstrate similar patterns of the 
non-climate-driven TWSA suggest the potential impacts of reservoir 
constructions on the regional non-climatic TWSA variations. 

Human activities such as dam operation and agricultural expansion 
can generally be considered as the main factors deriving the land use/ 
land cover changes in the lower MRB (Cho and Qi, 2021). No apparent 
trend in NDVI is determined (0.0005 ± 0.0006 /a), while the decreasing 
trends between April (0.001 ± 0.0013 /a) and June (0.0001 ± 0.0009 
/a) combined with the increasing trends from July (0.0006 ± 0.0005 /a) 
to March (0 ± 0.0008 /a) are identified. Such distribution could reflect 
the effects of various human activities on the regional land cover such as 
irrigation and urbanization. Spatially, NDVI illustrates significant 
downward trends in the south of lower MRB, which may be due to the 
rapid urbanization process over the Mekong Delta (Yun et al., 2021a). 
Differently, some areas in the central basin have growing NDVI, 
consistent with the changes in the irrigation area. These patterns are also 
validated by the annual map of land cover during 2003–2020 (Fig. S12). 

3.3. Future projections of TWSA 

Given the considerable differences among climatic projections from 
different GCMs (i.e., GFDL-ESM2M, HADGEM2-ES, IPSL-CM5A-LR, 
MIROC5), we used the GTCH method to evaluate the individual uncer-
tainty and fuse the WGHM-based TWSA projections under multiple 
scenarios (i.e., RCP2.6, RCP6.0, and RCP8.5). Table S4 summarizes the 
basin-scale results, indicating the GFDL-ESM2M model has the highest 

uncertainty under different scenarios while the IPSL-CM5A-LR output 
shows the lowest except for the RCP2.6 scenario (MIROC5). Conse-
quently, the relatively high weights were assigned to the IPSL-CM5A-LR 
and MIROC5 models, while low weight was given to the GFDL-ESM2M 
data. Spatially, similar distributions of uncertainties are observed on the 
grid scale under multiple scenarios, in which there are higher values 
along with the Mekong River stretch (Figs. S13 and S14). The IPSL- 
CM5A-LR and MIROC5 models also show comparatively low un-
certainties than the GFDL-ESM2M and HADGEM2-ES data, which 
generally translate to higher weights for the fused TWSA projections 
forced with different GCMs. Hence, we developed the fused WGHM- 
projected TWSA forced with four GCMs at both grid and basin scales 
to alleviate the forcing uncertainty. Similarly, the precipitation and air 
temperature are also fused to analyze the future climatic variabilities 
over the lower MRB. 

Fig. 10 exhibits the projected changes in TWSA driven by projected 
climate changes in the lower MRB during the period 2030–2099. Pro-
jected TWSA changes under RCP8.5 scenario are smaller than the 
RCP2.6 and RCP6.0 results with relatively high uncertainties sourced 
from various climate forcings, especially during the extreme wet and dry 
periods. No obvious differences between the RCP2.6 and RCP6.0 sce-
narios are observed except for the peaks and troughs. Generally, an 
increasing trend of 0.16 ± 0.11 mm/a during 2030–2099 is calculated 
under the RCP2.6 scenario, and the value changes to 0.1 ± 0.12 mm/a 
for the RCP6.0 scenario. However, a negative trend of − 0.06 ± 0.11 
mm/a is estimated for the RCP8.5 scenario. In addition, we identified 

Fig. 8. Spatial distribution of trends (upper panel) and uncertainties (right panel) in NDVI, net abstraction, and reservoir storage in the lower MRB during 
2003–2020. The black cross indicates the grid cells with significant trends (p < 0.05). 
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Fig. 9. Spatial distribution of irrigation maps in (a) 2001, (b) 2015, and (c) changes from 2001 to 2015. Subplot (d) indicates inter-annual changes in the percentage 
of grid cells with no irrigation, low to medium irrigation, and high irrigation area over the lower MRB from 2001 to 2015. 

Fig. 10. (a) Temporal changes and (b) annual cycles of projected TWSA in the lower MRB during the period 2030–2099 under RCP2.6, RCP6.0, and RCP8.5 sce-
narios. The near future and far future indicates the period 2040–2059 and 2080–2099, respectively. The shade represents the change range of WGHM simulations 
forced with different GCMs. 
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the annual cycle of projected TWSA in the near (2040–2059) and far 
(2080–2099) future periods (Fig. 10). Similar distributions are discov-
ered under multiple scenarios and periods, suggesting TWSA increases 
from April to September and decreases from October to March. In the 
near future, the projected TWSA under RCP8.5 scenario shows high 
values compared with the RCP2.6 and RCP6.0 scenarios, particularly in 
the wet season. However, the relatively lower TWSA is projected for the 
RCP8.5 scenario in the far future. Moreover, the uncertainties in pro-
jected TWSA are larger in the extremely dry/wet months than in other 
months, and the differences become more obvious during the far future 
than in the near future. Higher inter-model variabilities are observed 
among different GCMs under the RCP8.5 scenarios than the other two 
scenarios. In addition to the fused TWSA, the ensemble mean of various 
simulations forced by the four GCMs is also presented (Fig. S15). 

The spatial distribution of absolute changes in future TWSA over the 
lower MRB is illustrated (Fig. 11). Under the RCP2.6 scenario, TWSA 
increases roughly ranging from 10 to 50 mm are discovered along the 
Mekong River and in the northwestern and southwestern of the basin in 
the near future, with the uncertainties generally greater than 10 mm 
(Fig. S16). Despite the subsequent enhancement of TWSA over the lower 
reach, some TWSA reduction below − 10 mm is found over the eastern 
region in the far future with overall higher uncertainties than the near 
future. The RCP6.0 results present a similar pattern to the RCP2.6 sce-
nario except for some TWSA loss in the southwestern region in the near 
future, which spread to the surrounding area in the far future. However, 
the TWSA gains in the northwestern basin alleviate under the RCP8.5 
scenario with the decreased TWSA in the east basin. Furthermore, the 
majority of the region in the central and northern basins experiences a 
TWSA deficit in the far future. The basin-averaged examinations indi-
cate that TWSA is projected to increase by 12.2 ± 12.2 mm and 11.6 ±
25.8 mm under the RCP2.6 scenario in the near and far future, respec-
tively. The numbers are similar to the RCP6.0 scenario, that is, 10.3 ±
18.9 mm (near future) and 12.3 ± 30 mm (far future). However, the 
RCP8.5 scenario project a lower TWSA increase of 9.3 ± 21.4 mm and 
1.6 ± 41.2 mm for the near and far future periods, respectively. The 
projected patterns of TWSA are closely associated with the projected 

future changes in precipitation and air temperature both temporally and 
spatially (Figs. S17 and S18). For example, the overall increase in pre-
cipitation in the northwest and south of the basin contributes to the 
TWSA increase under the RCP8.5 scenario, especially for the lower reach 
of the Mekong River. While the eastern basin is projected to undergo 
severe precipitation decrease as low as ~ –40 mm, in agreement with the 
TWSA distributions. Such patterns can be intensified under the sharply 
increasing air temperature, which reaches 4℃ in the upper reach of the 
lower MRB. 

To examine the future variations of flood potential with changing 
precipitation and TWSA, we compared the probability density distri-
butions of FPI during the past (2003–2020) and future (i.e., near 
(2040–2059) and far (2080–2099) future) periods (Fig. 12). The overall 
positive offsets can be observed among historical and future periods 
under different climate change scenarios, highlighting increased flood 
potential over the lower MRB in the 21st century due to increased pre-
cipitation, which is more obvious for the high-flood-risk periods. Spe-
cifically, the durations with relatively high flood potential (FPI greater 
than 0.5) have increased by 3.5 ± 2.2 % in both the near and far future 
compared to the past period under the RCP2.6 scenario (Fig. 12). The 
percentages reach 3.0 ± 1.9 % and 8.8 ± 1.1 % during the near future 
for the RCP6.0 and RCP8.5 scenarios, respectively. They are projected to 
be 4.3 ± 3.8 % (RCP6.0) and 4.6 ± 2.7 % (RCP8.5) in the far future. In a 
nutshell, the increasing flood potential induced by the changes in TWSA 
and precipitation can be identified under multiple scenarios in both the 
near and far future. 

4. Discussion 

A few studies have assessed the historical and future changes of 
TWSA in the lower MRB. Jing et al. (2020) used five different GRACE 
mascon and spherical harmonics solutions to detect the TWSA trends in 
the lower MRB, and an insignificant negative tendency was discovered 
based on Mann-Kendall test and time series decomposition methods 
during the period 2003–2016. On the contrary, the current study ob-
tained a negative trend of − 3.3 ± 2.2 and − 0.3 ± 1.4 mm/a between 

Fig. 11. (a-f) Spatial distribution and (g) basin-averaged value of projected TWSA changes over the lower MRB during the near (2040–2059) and far (2080–2099) 
future relative to the past period (2003–2020) under RCP2.6, RCP6.0, and RCP8.5 scenarios. The uncertainty is taken as the standard deviation of WGHM simulations 
forced with different GCMs. 
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2003 and 2016 using the linear regression approach based on the 
reconstructed CSR mascon solution and WGHM model, respectively. The 
slight difference can be triggered by the uncertainty in the different data 
used and distinctive calculation methods. Nevertheless, another global 
perspective revealed a decreasing trend of TWSA during the period 
2002–2016 over the majority of the MRB, especially in the midstream 
and downstream reaches (Rodell et al., 2018), which is in line with our 
findings. A recent study attempted to track the long-term trends in 
TWSA around the upper reach of the MRB, and also found significant 
negative trends ranging from − 3.2 to − 6.0 mm/a, close to the results of 
this study for the lower basin (Bibi et al., 2021). However, these studies 
merely focused on the changes in full TWSA, neglecting the respective 
non-climate-driven and climate-driven parts of TWSA, particularly in 
the context of significant human activity (Fig. S19) and climate change 
over the last decades (Liu et al., 2021). In terms of future changes in 
TWSA, Pokhrel (2021) utilized seven different LSMs, GHMs, and DGVM 
forced with four GCMs from the CMIP5 archive to assess the future 
projections of global TWSA under RCP2.6 and RCP6.0 scenarios. It was 
found that the TWSA over the southeastern of the lower MRB was pro-
jected to increase while the other regions presented a decrease, under 
RCP2.6 and RCP6.0 scenarios in the late century (2070–2099) compared 
with the historical baseline from 1976 to 2005, which are generally in 
line with our results despite different calculation periods and models. By 
combing the GCMs and hydrological model, the increased flood poten-
tial was reported by previous research (Wang et al., 2021; Yun et al., 
2021a), coinciding with the enhancement of flood potential in our study. 

To sum up, this study systematically investigated the non-climate- 
driven and climate-driven TWSA in the past (2003–2020) and future 
projections of TWSA (2030–2099), improving the understanding of the 
hydrological response to global change (Greve et al., 2014). Given the 
increasingly frequent water conflicts within different countries, parti-
tioning the climate-driven and non-climate-driven components of TWSA 
is essential for better management and cooperation of water-related 
resources (Fan and He, 2015; Yun et al., 2021b). Assessing the diver-
gent changes in the two components of TWSA also provides important 
implications for water balance studies in other basins worldwide with 
rapid reservoir constructions and varying climate conditions (e.g., pre-
cipitation and evapotranspiration) (Famiglietti and Rodell, 2013; Chao 
et al., 2020). Moreover, projecting future TWSA under multiple sce-
narios indeed can be dedicated to the exploration of terrestrial dryness/ 
wetness and associated changes in hydrological extremes like floods and 
droughts in the future (Xiong et al., 2022). 

Although the historical and future TWSA changes under the back-
ground of climatic and non-climatic changes have been successfully 
characterized, there are still some limitations existing at the current 
stage. Despite the use of reconstructed GRACE-like products, the 

relatively short time and a total of 33 missing months of GRACE satel-
lites (~21 years) could inevitably generate the uncertainty for contin-
uous monitoring of the TWSA variability at the climate scale (i.e., 
greater than30 years) (Ghobadi-Far et al., 2020; Sun et al., 2020), thus 
challenging the reasonable and accurate estimates of long-term trends in 
TWSA, especially for the lower MRB that has undergone significant 
climate changes and human activities over decades (Nie et al., 2018). 
The human water use and reservoir operation data are derived from the 
WGHM owing to the restricted data-sharing policies among different 
countries, whose outputs are only available until the end of 2016, 
causing the inconsistency with the study period (2003–2020) of our 
research. This difference might impact the rationality of the attribution 
analysis of non-climate-driven TWSA. Also, the future projections used 
in this study, developed under the framework of ISI-MIP 2b phase, were 
forced by the GCM outputs from the CMIP5 archive. Although the 
meteorological forcing data has gone through a bias-correction and 
downscaling, their bias may be higher than the latest CMIP6 GCM data 
(Eyring et al., 2016; Ferguson et al., 2018). The simulation round for the 
future scenario (2006–2099) is also relatively longer than that of the 
CMIP6 archive (2015–2099), resulting in higher uncertainty in TWSA 
simulations in this study. Hence the social-economic conditions have 
been fixed at the 2005 level during the future projection, which might 
have underestimated the influences of human activities such as reservoir 
regulation because of the rapid reservoir constructions after the year 
(Yun et al., 2021a). 

5. Conclusions 

In this study, we identified the recent changes of TWSA in the lower 
MRB during 2003–2020, and partitioned it into the climate-driven and 
non-climate-driven TWSA during the period 2003–2016 based on the 
WGHM model and a statistical approach. Subsequently, the spatiotem-
poral variability of the full TWSA and its two components have been 
investigated. Furthermore, the attribution analysis was performed in 
combination with multiple climatic (i.e., precipitation and air temper-
ature) and non-climatic (i.e., water abstraction, reservoir storage, and 
land cover) factors. Moreover, the future projections of TWSA under 
RCP2.6, RCP6.0, and RCP8.5 scenarios have been conducted for the 
period 2030–2099 using the WGHM model forced with four downscaled 
and bias-corrected simulations of four CMIP5 GCMs, which were sub-
sequently integrated using the GTCH method to eliminate the inter- 
model uncertainties. Two future periods (i.e., near (2040–2059) and 
far (2080–2099) future) are analyzed independently. In addition, the 
future changes in flood potential that closely relate to precipitation and 
TWSA were also analyzed. The main findings and conclusions are 
summarized as follows: 

Fig. 12. Probability density functions of FPI in the lower MRB during the past period (2003–2020), near future (2040–2059), and far future (2080–2099) under (a) 
RCP2.6, (b) RCP6.0, and (c) RCP8.5 scenarios. The black indicates the historical results. The coloured solid and dash lines represent the near and far future results, 
respectively. 
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(1) GRACE TWSA decreases at a rate of − 3.3 ± 2.2 mm/a (− 3.7 ±
1.8 mm/a) that mainly occurs in the months from July to October during 
2003–2016 (2003–2020), and the trend is − 0.3 ± 1.4 mm/a based on 
the WGHM outputs. Climate-driven TWSA derived from the WGHM 
model and statistical method forced with different datasets are highly 
correlated with the correlation coefficients ranging from 0.81 to 0.91. It 
exhibits a similarly negative trend (− 0.3 ± 1.4 mm/a) and the seasonal 
distribution to the full TWSA, while the non-climate-driven part presents 
a small positive trend (0.01 ± 0.07 mm/a) that occurs during August- 
December. Spatially, the GRACE TWSA shows an apparent pattern 
with a depletion in the southwestern region and an increase in the 
northern region during 2003–2016 (2020), which is consistent with 
spatial pattern of the changes in the climatic components. However, the 
non-climate-driven TWSA component presents a slight increase over the 
west and south of the central basin. Consequently, the trend in full 
TWSA is dominated by climatic factors, while the influence of the non- 
climatic factors is limited. 

(2) Decreasing trends of precipitation (− 1.3 ± 8.5 mm/a) and rising 
air temperature (0.05 ± 0.02 ℃/a) are detected during 2003–2016. The 
annual cycle and spatial distribution of precipitation are consistent with 
the climate-driven TWSA, with the comprehensive warming climate 
over the lower MRB. The variations in precipitation and air temperature 
can well explain the patterns of the climatic TWSA. A slight enhance-
ment in human water abstraction (0.13 ± 0.14 mm/a during 
2003–2020) and sectoral water withdrawal (e.g., irrigation) (0.2 ± 0.03 
mm/a during 2003–2010) that are mainly located in the south and west- 
central regions are identified, causing regional depletion in non-climate- 
driven TWSA. The increase in reservoir storage (0.01 ± 0.08 mm/a) is 
considered responsible for the growth of non-climate-driven TWSA, 
which can also be reflected by their consistent seasonal characteristics 
and spatial distribution. Changes in land cover from the varying NDVI 
can further support our attributions for non-climate-driven TWSA, 
including the decreasing trends over the southern basin due to urbani-
zation and increasing trends over the central region because of the 
irrigation area changes. 

(3) The GTCH method explicitly quantifies the uncertainty of TWSA 
projections forced by different GCMs, and their respective weights are 
estimated for data fusion. Under the RCP2.6 scenario, TWSA is expected 
to increase at a rate of 0.16 ± 0.11 mm/a during 2030–2099, and the 
trend changes to 0.1 ± 0.12 and − 0.06 ± 0.11 mm/a for the RCP6.0 and 
RCP8.5 scenarios, respectively. TWSA is projected to increase by 12.2 ±
12.2 mm and 11.6 ± 25.8 mm under the RCP2.6 scenario in the near and 
far future, respectively. The increase is similar for the RCP6.0 scenario 
(i.e., 10.3 ± 18.9 mm in the near and 12.3 ± 30 mm in the far future). 
However, the RCP8.5 scenario projects a lower TWSA increase of 9.3 ±
21.4 mm and 1.6 ± 41.2 mm for the near and far future periods, 
respectively. The projected changes of TWSA can be well explained by 
the future changes in precipitation and air temperature temporally and 
spatially. An increase in flood potential induced by the changes in TWSA 
and precipitation is identified under multiple scenarios in both the near 
and far future. 

Our results may foster the urgent discussion on a shift of the water 
withdrawals and allocations from the supply side (e.g., over-abstraction) 
to the demand side (e.g., using less water intense crops, revising 
pumping regulations, upgrading the prevailing irrigation and water 
supply technology to minimize the losses). The results are expected to 
call attention to value-added multilateral cooperation among the 
various nations and stakeholders to incentivize the water-sharing 
agreements to mitigate the future potential issues in the vicinity of the 
Mekong river basin. 
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Eicker, A., Schumacher, M., Kusche, J., Döll, P., Schmied, H.M., 2014. Calibration/Data 
Assimilation Approach for Integrating GRACE Data into the WaterGAP Global 
Hydrology Model (WGHM) Using an Ensemble Kalman Filter: First Results. Surv. 
Geophys. 35, 1285–1309. https://doi.org/10.1007/s10712-014-9309-8. 

Eicker, A., Forootan, E., Springer, A., Longuevergne, L., Kusche, J., 2016. Does GRACE 
see the terrestrial water cycle “intensifying”?: WATER CYCLE INTENSIFICATION 
WITH GRACE. J. Geophys. Res. Atmospheres 121, 733–745. https://doi.org/ 
10.1002/2015JD023808. 

J. Xiong et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.jhydrol.2022.128275
https://doi.org/10.1016/j.jhydrol.2022.128275
http://refhub.elsevier.com/S0022-1694(22)00847-2/h0005
http://refhub.elsevier.com/S0022-1694(22)00847-2/h0005
https://doi.org/10.1016/j.jhydrol.2021.126868
https://doi.org/10.1016/j.jhydrol.2021.126868
https://doi.org/10.1016/j.ejrh.2021.100896
https://doi.org/10.1016/j.ejrh.2021.100896
http://refhub.elsevier.com/S0022-1694(22)00847-2/h0040
http://refhub.elsevier.com/S0022-1694(22)00847-2/h0040
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001882
https://doi.org/10.1002/hyp.14327
https://doi.org/10.1016/j.apgeog.2021.102588
https://doi.org/10.1007/s10712-014-9309-8
https://doi.org/10.1002/2015JD023808
https://doi.org/10.1002/2015JD023808


Journal of Hydrology 612 (2022) 128275

14

ESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: 
maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf. 

Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J., Taylor, K.E., 
2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) 
experimental design and organization. Geosci. Model Dev. 9, 1937–1958. https:// 
doi.org/10.5194/gmd-9-1937-2016. 

Famiglietti, J.S., Rodell, M., 2013. Water in the Balance. Science 340, 1300–1301. 
https://doi.org/10.1126/science.1236460. 

Fan, H., He, D., 2015. Temperature and Precipitation Variability and Its Effects on 
Streamflow in the Upstream Regions of the Lancang-Mekong and Nu–Salween 
Rivers. J. Hydrometeorol. 16, 2248–2263. https://doi.org/10.1175/JHM-D-14- 
0238.1. 

Ferguson, C.R., Pan, M., Oki, T., 2018. The Effect of Global Warming on Future Water 
Availability: CMIP5 Synthesis. Water Resour. Res. 54, 7791–7819. https://doi.org/ 
10.1029/2018WR022792. 

Gao, J., Yao, T., Masson-Delmotte, V., Steen-Larsen, H.C., Wang, W., 2019. Collapsing 
glaciers threaten Asia’s water supplies. Nature 565, 19–21. https://doi.org/ 
10.1038/d41586-018-07838-4. 

Ghobadi-Far, K., Han, S.-C., McCullough, C.M., Wiese, D.N., Yuan, D.-N., Landerer, F.W., 
Sauber, J., Watkins, M.M., 2020. GRACE Follow-On Laser Ranging Interferometer 
Measurements Uniquely Distinguish Short-Wavelength Gravitational Perturbations. 
Geophys. Res. Lett. 47, e2020GL089445. https://doi.org/10.1029/2020GL089445. 

Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., Seneviratne, S.I., 2014. 
Global assessment of trends in wetting and drying over land. Nat. Geosci. 7 (10), 
716–721. 

Guo, L., Li, T., Chen, D., Liu, J., He, B., Zhang, Y., 2021. Links between global terrestrial 
water storage and large-scale modes of climatic variability. J. Hydrol. 598, 126419. 

Hempel, S., Frieler, K., Warszawski, L., Schewe, J., Piontek, F., 2013. A trend-preserving 
bias correction; the ISI-MIP approach. Earth Syst. Dyn. 4, 219–236. https://doi.org/ 
10.5194/esd-4-219-2013. 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-Sabater, J., 
Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., 
Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De 
Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., 
Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Holm, E., 
Janiskova, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de 
Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., Thepaut, J.-N., 2020. The ERA5 
global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049. https://doi.org/10.1002/ 
qj.3803. 

Hosseini-Moghari, S.-M., Araghinejad, S., Tourian, M.J., Ebrahimi, K., Döll, P., 2020. 
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